

Duże pędy poprzeczne w zderzeniach relatywistycznych jonów.

Konferencja QM05 – część II

Bożena Boimska IPJ

Seminarium Fizyki Wysokich Energii, UW

9 XII 2005

Plan

- Wstęp
- Modyfikacje widm $\boldsymbol{p}_{\scriptscriptstyle T}$ w zderzeniach A+A
- Czy obserwujemy gaszenie jetów?
 -> oddziaływania p(d)+A
 - -> korelacje azymutalne
- Podsumowanie
- Przyszłość HI

Wyniki z konferencji Quark Matter –

Budapeszt, sierpień 2005.

W cześci I było:

* charakterystyki globalne (krotności, rozkłady pospieszności)
* 'flow'

* trochę o 'hard probes' (cząstki z kwarkami ciężkimi, cząstki z dużym p_T).

W zderzeniach ciężkich jąder przy wysokich energiach tworzona gęsta, gorąca materia partonowa.

Duże p_T

Cząstki z dużym p_T :

- * pochodzą z jetów
- * są produkowane w oddziaływaniach twardych w początkowej fazie zderzenia ($\tau \sim 1/p_T \sim 0.1$ fm/c)
- * można policzyć przekrój czynny na ich produkcję metodami pQCD.

W zderzeniach A+A:

parton, który oddziaływał twardo, porusza się w ośrodku, który jest (jeszcze) gęsty i gorący => cząstki z dużym p_T (powstałe z fragmentacji tego partonu) niosą informację o materii powstałej zaraz po zderzeniu.

Dane:

Głównie z eksperymentów (BRAHMS, PHOBOS, PHENIX, STAR) przy akceleratorze **RHIC** w Brookhaven.

`Stare' dane: Au+Au ($\sqrt{s_{NN}}$ = 200, 130, 19GeV) d+Au (200GeV) p+p (200GeV)

Nowe dane:

Run4 Au+Au 200GeV Au+Au 62GeV Run5 Cu+Cu 200GeV Cu+Cu 62GeV Cu+Cu 22GeV

"long run", high statistics energy scan system size energy scan

+ nowoopracowane dane z NA49 i NA57 (SPS w CERN) dla Pb+Pb@ $\sqrt{s_{NN}}$ = 17GeV.

Mniejszy parametr zderzenia b

Większy obszar zderzenia

Więcej nukleonów uczestników N_{part} i zderzeń N_{coll}

Wyznaczanie centralności

- Niestety nie da się zmierzyć parametru zderzenia b
- Eksperymenty przy RHICu, centralność parametryzują przez liczbę zderzeń N_{coll} i liczbę uczestników N_{part}

- Mierzy się rozkłady krotności cząstek naładowanych, i rozdziela na przedziały danego ułamka całkowitego przekroju nieelastycznego σ
- Z modelu Glaubera wylicza się N_{coll} i N_{part} odpowiadające danemu przedziałowi σ

Nuclear modification factor - R

* małe p_T - miękkie oddziaływania: skalowanie z liczbą partycypantów $N_{part} \implies R < 1$ * duże p_T - twarde oddziaływania : skalowanie z liczbą zderzeń $N_{coll} \implies R = 1$ Coś ciekawego dzieje się gdy: R > 1 - wzmocnienie R < 1 - tłumienie

Widma p_T

Au+Au@200GeV

B.Cole

Duży zakres mierzonych p_T – 20 aż do 20GeV/c

R - zależność od centralności

B.Cole

Tłumienie - rośnie z centralnością

<u>dla centralnych</u>: efekt bardzo silny (R_{AA} =0.2!) dla p_T od 4 do 20GeV/c ~ const. =>bardzo gęsty ośrodek(?)

Po obniżeniu energii do 62GeV:

200 GeV pp reference from BRAHMS data – PRL 93, 242303 (2004 62.4 GeV pp reference is based on ISR collider data

11

- dla 'pół-centralnych' wzmocnienie
- dla centralnych tłumienie (ale mniejsze niż dla 200GeV)

R - zależność od rodzaju cząstki Au+Au@200GeV

D.Roehrich

Dla średnio-dużych p_T widoczne różnice pomiędzy cząstkami. Efekt masowy czy partonowy? => zbadać np. \$

Różnica mezon-barion => różny mechanizm produkcji (rekombinacja(?))

R - zależność od rodzaju cząstki Fotony bezpośrednie ('prompt photons')

B.Cole

centralne Au+Au@200GeV

Duże p_T : $\pi^{\circ}, \eta \quad \mathbf{R}_{AA} < 1$ 'prompt' $\gamma \quad \mathbf{R}_{AA} = 1$ (skalowanie z N_{coll}) - zgodne z oczekiwaniami bo γ nie oddziałują silnie z ośrodkiem

Zależność od energii raz jeszcze ... <u>Nowe dane dla SPS</u>: Pb+Pb@17GeV

Stare dane dla SPS - WA98, Eur.Phys. J. C23, 225 (2002) – niekonkluzywne Nowe dane NA49 i NA57:

- R(barion) > R(mezon) podobnie jak przy RHICu
- dla barionów wzmocnienie
- dla mezonów niewielkie tłumienie! (RHIC silne tłumienie)

15

Co na to teoria?

Efekt tłumienia produkcji cząstek z dużymi p_T przewidziany zanim uruchomiony RHIC:

M.Gyulassy et al. Phys.Lett.B243(1990)432, X.N.Wang et al. Phys.Rev.D51(1995)3436

'jet quenching'

radiacyjne straty energii przez wysokoenergetyczne partony poruszające się w gęstym ośrodku partonowym

High gluon density requires deconfined matter ("indirect" QGP signature !)

Eksperyment vs. Teoria

Modele pQCD+'energy loss' :

I.Tserruya

 dobrze opisują dane eksperymentalne dla dużych p_T
 pozwalają uzyskać informację o wytworzonej materii np. o gęstości gluonów: dNº/dy~400-600 dla SPS dNº/dy~1200 dla RHIC

Podsumowując ...

<u>Duże p_r</u>

- Centralne Au+Au@200GeV R<1 tłumienie
- Efekt słabszy (mniejsze tłumienie) gdy:
 - mniej centralne zderzenie
 - lżejsze jądra

- niższa energia (początki tłumienia widoczne przy SPS) <u>Średnio-duże p_r</u>

• Widoczna zależność od typu cząstki (mezon-barion)

Efekt tłumienia tłumaczony przez modele teoretyczne poprzez tzw. **'jet quenching'**.

Jak sprawdzić czy obserwowany efekt może być rzeczywiście wynikiem gaszenia jetów?

⇒ Badanie prostszych systemów: p(d)+A (nie spodziewamy się tworzenia gęstej, gorącej materii).

⇒ Badanie jetów

Porównanie d+Au & Au+Au

C.Gagliardi

* centralne d+Au brak tłumienia, R>1 - wzmocnienie (rośnie z centralnością)

* centralne Au+Au silne tłumienie

Tłumienie produkcji cząstek z dużym p_T w Au+Au wynik wytworzonej w zderzeniu gęstej materii partonowej => Mamy 'jet quenching'

Badanie zderzeń d+Au@200GeV R - zależność od rodzaju cząstki

Dla $p_T > \sim 1 \text{GeV/c}$:

* **R>1 - wzmocnienie** (efekt Cronina)

* R(barion) > R (mezon) - podobnie jak dla Au+Au Czy tu też rekombinacja?

Heavy quarks:

d+Au: $R \sim 1$ - skalowanie z N_{coll}

Au+Au: R ~**0.2** - **tłumienie**; <u>podobne jak dla kwarków lekkich</u>

21

R - zależność od pospieszności Co dzieje się poza obszarem centralnym ?

Au+Au@200GeV

P.Staszel

Brak wyraźnej zależności od pospieszności dla obu badanych centralności.

Czy oznacza to, że gęsta materia partonowa powstająca w centralnych zderzeniach rozciąga się aż do y=3?

R - zależność od pospieszności Cząstki zidentyfikowane

centralne Au+Au@200GeV

Piony: y=0, y=3.1

I.Tserruya

Protony: y=0, y=3

brak zależności od pospieszności

R - zależność od pospieszności d+Au@200GeV

D.Roehrich

BRAHMS: PRL 93, 242303 (2004)

Inaczej niż dla Au+Au:

- zależności od pospieszności (R maleje)
- zależność od centralności (efekt silniejszy dla zderzeń centralnych)

Efekty obserwowane w d+Au tłumaczone przez modele saturacyjne.

Saturacja gluonów

I.Tserruya

dla wysokich energii całkowite przekroje czynne rosną wolno z energią

przy maleniu x gęstość gluonów gwałtownie rośnie

Dla małych x gluony gęsto upakowane, stąd oddziaływania między nimi ("gluongluon fusion") i dlatego gęstości gluonów ograniczone ("gluon saturation")

-Color Glass Condensate (CGC) D.Kharzeev et al. PLB 561 (2003) 93

* CGC poprawnie opisuje dane z HERY dla x<10⁻²

* <u>Dla oddziaływań jądrowych efekt powinien być silniejszy</u> (zależność od A), bo większe gęstości gluonów.

Dla RHIC √s=200GeV y=3 p_T=1GeV/c: x~10⁻³ => efekty saturacji gluonów

mogłyby być widoczne

Jednak już przy SPS ...

centralne p+Pb@17GeV

Saturacja gluonów? Raczej NIE

Dla zderzeń A+A:

- zbyt duże krotności by stosować algorytmy jetowe
- badanie jetów poprzez korelacje azymutalne

+ jet + jet

Korelacje azymutalne

STAR:p+p jet event

28

Szukanie jetów (procedura statystyczna):

• Szukamy cząstki z dużym p_T (powyżej pewnego progu) – 'trigger jetu'

• Patrzymy na korelacje azymutalne pomiędzy triggerem a innymi cząstkami, tzn. na rozkład $1/N_{trig} dN/d(\Delta \Phi)$

trzeba 'odfiltrować' korelacje z innych źródeł (np. flow)

Korelacje azymutalne - Wyniki

Dla Au+Au niedobór dużych p_T dla rozkładów inkluzywnych (R<1) rezultat oddziaływań jetów z materią ('jet quenching')

Efekt powinien być również widoczny dla korelacji azymutalnych

Korelacje azymutalne

Jak można to wytłumaczyć:

Korelacje azymutalne - nowe wyniki większe p_r(trig)

Duża statystyka (**Run4**) to można badać korelacje dla cząstek z większym p_T :

niewidoczny

zaczyna być widoczny

Korelacje azymutalne - nowe wyniki większe p_T(trig) i p_T(assoc)

For the first time: clear jet-like peaks seen on near and <u>away</u> side in central Au+Au collisions

=> informacja o ośrodku (z modeli)

Korelacje azymutalne Zależność od centralności

8 < p_T(trig) < 15 GeV/c

C.Gadliardi

Podsumowanie

- W centralnych zderzeniach A+A:
 - produkcja cząstek z dużym
 $p_{\rm T}$ tłumiona w porównaniu do przewidywanego skalowania
z $N_{\rm coll}$
- obserwuje się znikanie 'jetu-away'.
- * Dla zderzeń d+Au efekt nie występuje.
 - Dane zgodne z modelami pQCD uwzględniającymi radiacyjne straty energii partonów poruszających się w gęstym ośrodku partonowym.
- * Efekt jest silniejszy dla większych energii i bardziej centralnych zderzeń (lub cięższych jąder).
- W obszarze średnio-dużych p_T widoczna zależność od typu cząstki (efekt barion-mezon) -> w modelach należałoby chyba uwzględnić dodatkowo efekty nie-perturbacyjne (takie jak np.rekombinacja)

Przyszłość - RHIC

S.Aronson

Key measurements for the future:

- Hard probes (high p_T, heavy quarks): sensitive to how the medium is created
 - jets
 - hidden charm & beauty
 - open charm & beauty
- Electromagnetic probes (real & virtual γ s): information about the medium's early properties
 - Low-mass e⁺e⁻ pairs
 - Thermal radiation

Planowane:

- → zwiększenie świetlności (początkowo x2-3, docelowo x10)
- → zwiększenie zakresu A dla wiązek (aż do uranu)
- → rozbudowa detektorów (precyzyjne detektory wierzchołka, identyfikacja dla cząstek przy wyższych p_T, poszerzenie obszaru detekcji w kierunku "do przodu", ...)

2012 – 2014 (?) - rozpoczęcie budowy eRHIC

Przyszłość - LHC

Akcelerator LHC (Large Hadron Collider) w CERNie i jego 4. eksperymenty:

ALICE (A Large Ion Collider Experiment) ATLAS (A Toroidal LHC ApparatuS) CMS (Compact Muon Solenoid) LHC –B są w trakcie budowy.

Uruchomienie planowane na rok 2007.

Badane zderzenia:

p+p przy $\sqrt{s_{NN}} = 14 \text{ TeV}$ Pb+Pb przy $\sqrt{s_{NN}} = 5.5 \text{TeV}$

W późniejszych latach prawdopodobnie będą również badane:

* zderzenia p+A

* zderzenia lżejszych jąder (Sn, Kr, Ar, O)

* niższe energie.

Overall view of the LHC experiments.

ALICE - eksperyment dedykowany badaniom HI ATLAS i CMS (badanie p+p) - mają też program HI

2007: p+p collisions @ 14 TeV 2008: Pb+Pb collisions @ 5.5 TeV

Running parameters:

Collision system	√s _{NN} (TeV)	L (cm ⁻² s ⁻¹)	Run time (s/year)	σ _{geom} (b)
рр	14.0	1034	107	0.07
PbPb	5.5	1027	106	7.7

W porównaniu do RHICa, wytworzony w zderzeniu system:

- ➡ gorętszy
- ➡ większy
- ➡ gęściejszy
- ➡ o dłuższym czasie życia.

(prawie 30 razy większa energia i cięższe jądra)

Obszar kinematyczny

Przy LHC dostępny obszar bardzo małych x (saturacja gluonów – CGC):

x~10⁻³-10⁻⁴ x~10⁻⁵-10⁻⁶ RHIC y=3 — LHC y=0 y=5

Procesy twarde

- * procesy twarde dominują
- * dużo cząstek z bardzo dużymi p_{T}
- * dużo ciężkich kwarków

Program fizyczny

* Charakterystyki globalne ('day-one measurments'): N_{ch} , $dN/d\eta$, $dE_T/d\eta$, flow

- * Jety i ich tłumienie
- * Ciężkie kwarki
- * Quarkonia $(J/\psi, \Upsilon)$
- * Fotony bezpośrednie (direct)

ALICE (małe p_T, PID) CMS & ATLAS (bardzo duże p_T)

Backup slides

R_{CP} i **R**_{AA} - różnice

D.Roehrich

Uwaga: $R_{CP} \neq R_{AA}$

Mezony: $R_{CP} < 1$, $R_{AA} < 1$ Bariony: $R_{CP} < 1$, $R_{AA} > 1$