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What is the machine learning?
• "The goal of machine learning is to build computer systems that can 

adapt and learn from their experience." ­ Tom Dietterich
• These algorithms identify the dependencies between data elements 

using examples.
• When we DO NOT need them? When we know and understand all 

the functional dependencies in the system under investigation. It is 
not a common case.

• What do we need for analysis? Collection of examples, could be  
Monte Carlo data.

Tasks:
• Classification (discrete output states, signal/background)
• Regression (continuous output spectrum) 

Learning methods:
• Supervised learning (proper answers are known for the training 

sample).  
• Unsupervised learning – system reflects the statistical structure of 

data (Kohonen, Hopfield networks) – topic for a separate seminar, but 
will be mentioned here.
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Multivariate analysis methods

• Multivariate analysis – makes use of the dependencies between the 
variables.  Multidimensional probability distribution contain, in general, 
more information then single variable spectra.

• Linear and non-linear analysis – in most cases we deal with non­linear 
problems, however in some applications linear methods are very useful 
(fast and robust).

• Popular algorithms:

• Linear

• Fisher linear discriminants

• Principal Component Analysis

• Independent Component Analysis

• Non-linear

• Probability Density Estimator

• Neural Network  (feed­forward)

• Support Vector Machine
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Projection on one dimension and signal/background separation

Corresponds to a linear
decision boundary.

Fisher Linear Discriminant

f x=w⋅x

S=
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2
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2 =w⋅signal−w⋅background 
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f x=S signalS background
−1⋅signal−background⋅x

Successfully used since 1936.
Non­linear separation needed: can be converted to the non­linear kernel 
Fisher discriminant using a kernel trick (to be described later).
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Principal Component Analysis
• Reduces dimensionality of data, loosing as little information as possible.
• Finds orthogonal basis of the covariance matrix, eigenvectors with 

smallest eigenvalues are removed.

Procedure:

• Compute Cov(X) 

• Compute its eigenvalues λλii and 
eigenvectors vi

• Eliminate ui with smallest amount of 
variation

• Unsupervised technique, relies 
entirely on the input data.

• Can be converted into non­linear 
technique by a kernel trick or using 
neural networks (described later).
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Independent Component Analysis
• Novel technique – Helsinki University of Technology
• Basic Idea

• Assume X = (x1,..,xN)T is a linear sum X = AS of independent 
sources S = (s1,..,sN)T. Both A, the mixing matrix, and S are 
unknown.

• Find a de-mixing matrix T such that the components of       
U = TX are statistically independent.

• Applications:
• filtering a single source of sound from other sources,

• signal separation in telecommunication,

• separation of brain activity from artifacts in 
magnetoencephalography (MEG) recordings, 

• in astrophysics to separate various signal sources, 

• decomposition of the Fermilab booster beam monitor data into 
independent source signals 
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 • Two measured signals to be 
separated into two independent 
sources.

• After whitening, i.e. linear 
transformation forcing signals to 
be uncorrelated.

• ICA transformation– rotation, 
signals should be as non­
Gaussian as possible (kurtosis is 
a measure of non­Gaussianity).

• Kurtosis - μ
4
/σ

4
 – 3 , where μ

4 
is 

the fourth moment about the 
mean and σ is the standard 
deviation.
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Probability Density Estimation 
– a non-linear method
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● Purpose
● Signal/background discrimination (classification).
● Parameter estimation (regression).

● Basic Idea 
● Parzen estimation (1960s) – approximation of the unknown probability. 

as a sum of kernel functions placed at the points x
n
 of the training 

sample: 

● Discriminant:
● Typical kernels: Gaussian, 1/xn, square etc.
● Conceptually simple, no problems with local minima (in contrast to 

neural networks).
● Each vector to be classified requires looping over all points from the 

training data set (CPU and memory demanding).

 x−xn x−xn when the points density grows to infinity.

D  x= p sig∣x
p sig∣x p bckg∣x
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QUAERO package from D0 experiment



Marcin Wolter: “Multivariate Analysis Methods”5.05.2006 10

How to speed it up? PDE_RS method
*method published by T. Carli, B. Koblitz, NIM A 501 (2003) 576-588, used by HERA

•Count signal (n
s
) and background (n

b
) events in N­dim hypercube around 

the event classified – only few events from the training sample needed.

•Hypercube dimensions are free parameters to be tuned.

•Discriminator D(x) given by signal and background event densities:

•Straight forward error calculation possible.

•Event stored in the binary tree – easy to find neighbor events.

D  x=
nS

nSnb
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Application to identification in ATLAS
*analysis performed by E. Richter-Wąs,

 Ł. Janyst and T. Szymocha

• Six discriminating variables, none 
of them give separately really 
good discrimination.

• Variables not necessarily 
independent

• Hard to separate signal from 
background.

N
strips W

strips

Remfrac ET
R12

Et
charged had/pT

track (ET
other EM+ET

other had)/ET
calo
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signalbgd

Discriminant 

                       Cut analysis              PDE-RS
                        sig.        bg              sig.    bg.

Full sample     58.9%   14.3%        58.9%    9.3%
Only gluon      58.9%   10.0%        58.9%    4.8%
Only quark     58.9%    21.5%        58.9%   11.8%

gluon

quark

all

1-εb

Application of PDE_RS

Approximately two times
less background than for
standard cut analysis. 
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Feed-Forward Neural Networks
What can they do:

Signal/background discrimination
Parameter estimation

Hardware implementations in trigger systems

Characteristics
Can model any function as a composition of many 
basic functions assigned to single neurons.
Can be trained on examples – network training is 
similar to fitting a function to data. 
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Feedforward Network
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Minimize the empirical risk function with respect to the set of weights ω:

∑ −=
i

iiN xntR 21 )],([)( ωω

Training a neural network

A network trained for classification (B-background, S- signal)
returns a probability of a given event to be a signal p(S|x): 

     How to train a multilayer network? How to tune the weights of hidden 
layers? This problem stopped the NN development for 30 years.  

     Solution ­ a backpropagation method. An error δ=t-n(x, is 
propagated back through the net using the present weights (“revolution” 
in neural networks in middle 80’).

n x , pS∣x =
p x∣S  p S 

∑
k=S , B

p  x∣k  pk 
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Overtraining

Proper

Overtrained cycles

Training 
sampleStop!

• Overtraining ­ network learns single 
events instead of general rules.

• Similar overtraining effect – too 
narrow kernels in the PDE method.

Verification 
sample
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Neural Network Trigger at the H1 
Experiment

• Works since 1996.
• Implemented on several parallel 

computers (CNAPS from Adaptive 
Solutions ).

• 20µs decision time.
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Each track extrapolated to the EM 
calorimeter 

For ech layer a cell with maximum 
energy deposit is found

Eight e/ separation variables based on

cascade shapes ­ calorimeter

joined Inner Detector/Calo information

inner Detector information 

Application: Identification of low 
energetic electrons in ATLAS experiment

|eta|<2.4,  PT>2 GeV/c
Track quality cuts:
# of hits in silicon detectors NSi>8
# of hits in pixel detector NPix>1         
        hits in B-layer >= 1        
Transverse impact parameter A0<1mm

  A. Kaczmarska (IFJ)
  T. Bołd          (IFJ)
  J. Cochran      (ISU)
  F. Derue              (LPNHE, Paris) 
  K. Facius         (The Niels Bohr Institute, Copenhagen)
  P. Schwemling   (LPNHE, Paris) 
  E. Stanecka     (IFJ)
  M. Wolter       (IFJ)
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# TR hits

Difference 
cascade-track 
extrapolation

Cascade isolation 
~E(3*7)/E(7*7)

  E1/E 

Cascade 
width

Et(calo)/pt

Transverse 
impact 
parameter

E3/E

Discriminating variables

electrons
pions
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Neural network vs. standard method 

Likelihood
Neural Net

 Stuttgart Neural 
  Network Simulator
  Feed-forward network:
  -input layer – 8 nodes
  -2 hidden layers, 10   
    nodes in each

Standard method - ratio of likelihood:

     XRL= log ( П PDF(e)/П PDF(e) )

No correlations taken into account!

Significant improvement 
(watch the log scale) 

Rejection of pions  in H->uu
 vs. electron efficiency in H->bb
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Support Vector Machines

• Relatively new algorithm

• Basic idea: 

• build a separating hyperplane using the minimal 
number of vectors from the training sample 
(Support Vectors).   

• should be able to model any arbitrary function.

• Functionally algorithm similar to Neural Network
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Support Vector Machine

• Early sixties: – “support vectors” method 
developed for pattern recognition using 
the separating hyperplane (Vapnik and 
Lerner 1963, Vapnik and Czervonenkis 
1964).

• Early 1990: method extended to the non­
linear separation (Boser 1992, Cortes 
and Vapnik 1995)

• 1995: further development to perform 
regression (Vapnik 1995) 
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Linear classifier α

f         x yest

 means yi=+1

means yi=-1

f(x,w,b) = sign(w. x - b)

Support Vectors 

-points defining the  
margin.

Maximum margin linear classifier 
➢ Intuitionally is the best.

➢ Not sensitive on errors in the 
hyperplane position.

➢ Separation depends on support 
vectors only.

➢ Works in practice!

Maximize margin = minimize |w|2

∀i y i  w⋅xib−10
w⋅xb=0 straight line

margin=2
∣w∣

minimize∣w∣2



Marcin Wolter: “Multivariate Analysis Methods”5.05.2006 24

If data are not separable

• Additional  slack variable:

• And we get:

• For the linear classifier:

• C is a free parameter ­ cost variable.

means +1

means -1

1ε

2ε

3ε

i=0
i=distance

x i corectly classified
x i incorrectly classified

∀i y i  w⋅xib−1i0

w⋅xb=0

minimize :
1
2
∣w∣2C∑

i

i
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• Transformation to higher 
dimensional feature space, 
where data ARE linearly 
separable.

• In this example data separable 
by elliptic curve in R2 are 
linearly separable in R3.

• We need a universal 
method of transformation 
to the higher dimensional 
space!

Problem – data separable but non-linear
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Some mathematics
• Lagrangian and Lagrange multipliers:

• Lagrangian should be minimized in respect to w and b and maximized in 
respect to α

i
.

• in the extremum:

• we substitute into L and we have maximized W in the space of α
i

L w ,b ,=1/2∣w∣2−∑
i

i  y i[〈 w ,x 〉b]−1

i≥0
yi [〈 w ,x 〉b ]−1≥0 the bonds

yi [〈 w ,x 〉b ]−10  i=0 not contributing 
yi [〈 w ,x 〉b ]−1=0 support vectors

∂ L
∂b

=0 ,
∂ L
∂ w

=0

∑
i

i y i=0 w=∑
i

i y i xi

W =∑
i

i−
1
2
∑
i
∑
j

 i j y i y j 〈 xi , x j 〉

 i≥0 , ∑
i

yii=0

f x=sgn〈 w ,x 〉b=sgn ∑i i y i 〈 x i ,x 〉b 

In this space W is 
a function of products x

i
*x

j



Marcin Wolter: “Multivariate Analysis Methods”5.05.2006 27

Kernel trick
• Margin w maximization using Laplace multipliers 

i
:

• Margin depends on dot products x
i
*x

j
 only.

• Function Ф transforms the input space to the higher dimensional feature 
space, where data are linearly separable:

• We can replace:

 
• The resulting algorithm is formally similar, except that every dot product 

is replaced by a non­linear kernel function. This allows the algorithm to fit 
the maximum­margin hyperplane in the transformed feature space. The 
transformation may be non­linear and the transformed space high 
dimensional; thus though the classifier is a hyperplane in the high­
dimensional feature space it may be non­linear in the original input 
space.

• No need to know function Ф(x), enough to know kernel K(x
i
,x

j
).

 x: inputℜnℜN N≥n

W =∑
i

i−
1
2∑i ∑j

i j yi y j K  xi , x j

〈 xi , x j 〉〈 xi  , x j 〉=K  xi , x j

W =∑
i

i−
1
2
∑
i
∑
j

i j y i y j 〈 x i , x j 〉
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Commonly used kernels

If the kernel used is a radial base function (Gaussian) the 
corresponding feature space is a Hilbert space of infinite dimension. 
Maximum margin classifiers are well regularized, so the infinite 
dimension does not spoil the results. 

K  xi , x j=K  x j , xi

Must be symmetric:
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Regression – “ε insensitive loss”

+ε

−ε

ε

L(f,y)

We have input data: 

       X = {(x1,d1), …., (xN,dN)}

We want to find f(x), which has small deviation from 
d and which is maximally smooth.

• Define a cost function: 

• Minimize:

• And repeat the kernel trick
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Non-linear Kernel example

Gaussian kernel
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• 

Jianfeng  Feng, Sussex University

SVM and feed-forward neural network
A comparison

NN   – complexity controlled by a number of nodes.
SVM – complexity doesn't depend on  the 
dimensionality.
NN    – can fall into local minima.
SVM – minimization is a quadratic programming 
problem, always finds minimum.
SVM – discriminating hyperplane is constructed in 
a high dimensionality space using a kernel function.
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SVM strength

• Statistically well motivated => Can get bounds on the error, can use 
the structural risk minimization (theory which characterizes 
generalization abilities of learning machines).

• Finding the weights is a quadratic programming problem ­ 
guaranteed to find a minimum of the error surface. Thus the 
algorithm is efficient and SVM generates near optimal classification 
and is quite insensitive to overtraining.

• Obtain good generalization performance due to high dimension of 
the feature space. 

Jianfeng  Feng, Sussex University
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SVM weakness

•Slow training (compared to neural network) due to computationally 
intensive solution to QP problem especially for large amounts of 
training data => need special algorithms.

•Slow classification for the trained SVM.

•Generates complex solutions (normally > 60% of training points 
are used as support vectors), especially for large amounts of 
training data. 

E.g. from Haykin: increase in performance of 1.5% over MLP. 
However, MLP used 2 hidden nodes, SVM used 285 

•Difficult to incorporate prior knowledge.

Jianfeng  Feng, Sussex University
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Applications in physics

• While neural networks are quite commonly used, SVM are 
rarely applied.

• LEP compared NN and SVM 

    “Classifying LEP Data with Support Vector Algorithms”            
P. Vannerema K.-R. Muller  B. Scholkopf  A. Smola  S. Soldner-
Rembold

• There were some tries in D0 and CDF (Tufts Group – top 
quark identification)

• SVM works well in other areas (for example handwriting 
recognition).

• One should look carefully, the method might be 
worth trying!  
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Application of SVM to tau identification

• SVM with Gaussian kernel.
• Grid search in C­g space to optimize 

parameters.
• Discriminant – probability of an event to 

be a signal ­ p(signal|x).

signal

background

SVM discriminant

Grid search to find SVM working point 
– optimal C and width of Gaussian kernel
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Neural Network in ATLAS tau 
identification

● T. Szymocha, M. Wolter 
com-phys-2006-019 

● feed-forward network

● same discriminating as used by 
PDE_RS method.

● NN: 6 inputs, 2 hidden layers

signal

background

Neural Net discriminant
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Comparison of three methods in tau 
identification.

• Similar results, probably 
classification efficiency 
close to the statistical limit.

• Performance of methods 
may change by different 
tuning. 

PDE-RS
NN
SVM
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Unsupervised NN Methods
Non-linear PCA using neural network

• Data can be 
reduced to one 
dimension.

• Non­linear 
transformation 
is needed.
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Non-linear PCA 

   The network is trained by presenting the same 
vectors to the input and the output. Than the 
network is cut into two parts.
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Hopfield recurrent network
• Recurrent network – binary self coupled system. 

Output signals are at the same time input signals 
for the next training cycle x

i
(k)=y

i
(k­1).

• The network works as an autoassociative memory: 

• memorizes the presented vectors

• after presenting the unknown vector return the 
memorized vector closest to it.

• Example – a network trained on 3 letters:

• recognizes patterns:

Used for pattern used for pattern recognition in tracking algorithms 
assigning track segments to the tracks – ALEPH, HERA, DELPHI. Mostly 
used for TPC tracking (clean 3D hits). 
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Kohonen network -
Self Organizing 
Map (SOM)

• Unsupervised learning 
• Transforms vectors from an n­dimensional 

     space into (typically) 2D map in such a way, that similar input vectors are 
close to each other on the map.

• Training:

• Random initial neuron weights 

• Input vectors  x are presented, an output neuron having a vector of 
weights w closest to x is a winner.

• Vector w (and similar vectors)  are corrected to be closer to x.

• The procedure is repeated until the system is stable.
• Application: automated classification, groups similar vectors into clusters.
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Comments on classification
Every classification task tries to solve the same fundamental problem: 

After adequately pre­processing the data
…find a good, and practical, approximation to the Bayes decision 
rule:    Given X, if P(S|X) / P(B|X)>cut , choose hypothesis S 
otherwise choose B.

 If we knew the densities p(X|S) and p(X|B) and the priors p(S) and 
p(B) we could compute the Bayes Discriminant Function (BDF):

D(X) = P(S|X)/P(B|X)

All presented methods are simply different algorithms to approximate 
the Bayes discriminant function D(X).

It follows that if a method is already close to the Bayes limit, then 
no other method, however sophisticated, can be expected to yield 
dramatic improvements.

Harrison B. Prosper
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Summary

• Multivariate analysis is useful, if it is important to 
extract as much information from the data as possible.

• For classification problems, the common methods 
provide different approximations to the Bayes 
discriminant.

• There is considerably empirical evidence that, as yet, 
no uniformly most powerful method exists. Therefore, 
be wary of claims to the contrary!
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Appendix
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Literature and links to SVMs
• http://www.autonlab.org/tutorials/ ­ wykłady Andrew Moore'a.
• http://www.cs.colorado.edu/~grudic/teaching/CSCI4202_2004/ ­ wykłady 

Greg Grudic
• http://www.informatics.sussex.ac.uk/users/jianfeng/ ­strona Janfeng 

Feng
• http://www.kernel­machines.org/papers/Burges98.ps.gz ­ “A Tutorial on 

SVM ...”, C. Burges (b. dobry)
• http://www.kernel­machines.org/ ­bardzo intersująca strona
• http://www.csie.ntu.edu.tw/~cjlin/libsvm/ ­ software
• http://www.cs.cornell.edu/People/tj/svm_light/ ­ software

AN INTRODUCTION TO SUPPORT VECTOR MACHINES (and 
other kernel-based learning methods). 
N. Cristianini and J. Shawe­Taylor, Cambridge University Press. 2000. 
ISBN: 0 521 78019 5

http://www.autonlab.org/tutorials/
http://www.cs.colorado.edu/~grudic/teaching/CSCI4202_2004/
http://www.informatics.sussex.ac.uk/users/jianfeng/
http://www.kernel-machines.org/papers/Burges98.ps.gz
http://www.kernel-machines.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.cs.cornell.edu/People/tj/svm_light/
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Literature – Neural Networks

Christopher M. Bishop „Neural Networks for Pattern 
Recognition”
Andreas Zell „Simulation neuronaler Netze”
Ryszard Tadeusiewicz „Sieci neuronowe”
S. Osowski, “Sieci Neuronowe w ujęciu algorytmicznym”

Tools:
MLP in ROOT and in PAW
SNNS:

http://www­ra.informatik.uni­tuebingen.de/SNNS/  

PDP++

http://www.cnbc.cmu.edu/Resources/PDP++//PDP++.html

http://www-ra.informatik.uni-tuebingen.de/SNNS/
http://www.cnbc.cmu.edu/Resources/PDP++//PDP++.html
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Tau identification variables
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Demonstration applets
• SVM in action:

    http://wiesiek.ifj.edu.pl/SVM/java/test_applet.html

• Neural network applets:

    http://wiesiek.ifj.edu.pl/talks/NeuralNetUJ/applets/tutorial/

http://wiesiek.ifj.edu.pl/SVM/java/test_applet.html
 http://wiesiek.ifj.edu.pl/talks/NeuralNetUJ/applets/tutorial/

