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What is the machine learning?

"The goal of machine learning is to build computer systems that can
adapt and learn from their experience." - Tom Dietterich

These algorithms identify the dependencies between data elements
using examples.

When we DO NOT need them? When we know and understand all
the functional dependencies in the system under investigation. It is
not a common case.

What do we need for analysis? Collection of examples, could be
Monte Carlo data.

Tasks:
Classification (discrete output states, signal/background)
Regression (continuous output spectrum)

Learning methods:
Supervised learning (proper answers are known for the training
sample).

Unsupervised learning — system reflects the statistical structure of
data (Kohonen, Hopfield networks) — topic for a separate seminar, but

will be mentioned here.
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Multivariate analysis methods

Multivariate analysis — makes use of the dependencies between the
variables. Multidimensional probability distribution contain, in general,
more information then single variable spectra.

Linear and non-linear analysis — in most cases we deal with non-linear
problems, however in some applications linear methods are very useful
(fast and robust).

Popular algorithms:
e Linear
e Fisher linear discriminants
e Principal Component Analysis
e Independent Component Analysis
e Non-linear
e Probability Density Estimator
e Neural Network (feed-forward)
e Support Vector Machine
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Fisher Linear Discriminant

Projection on one dimension and signal/background separation

Corresponds to a linear
decision boundary.

f(X)=w-X
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O-wi thin
Mew distributions \ ] 0-2 = (ﬁ; -y — ﬁ/ .1 )2
a4 between H signal H background
2 2
"‘ O-wzthln O-signal + O-background
Ey Fa 2T o - :
al=w"-S-w S —variance
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Successfully used since 1936.

Non-linear separation needed: can be converted to the non-linear kernel
Fisher discriminant using a kernel trick (to be described later).
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Principal Component Analysis

Reduces dimensionality of data, loosing as little information as possible.

Finds orthogonal basis of the covariance matrix, eigenvectors with
smallest eigenvalues are removed.

Procedure:

[ ]
ks

® o Input wectors
2 Reconstructed
—— PCA subspac®

Compute Cov(X)

Compute its eigenvalues A, and
eigenvectors v,

Eliminate u, with smallest amount of
variation

Unsupervised technique, relies
entirely on the input data.

Can be converted into non-linear
technique by a kernel trick or using
neural networks (described later).
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Independent Component Analysis

- Novel technique — Helsinki University of Technology
- Basic Idea

e Assume X = (x,,..,X,)T is a linear sum X = AS of independent

sources S = (s,,..,S,)". Both A, the mixing matrix, and S are
unknown.

e Find a de-mixing matrix T such that the components of
U = TX are statistically independent.

- Applications:
e filtering a single source of sound from other sources,

e signal separation in telecommunication,

e separation of brain activity from artifacts in
magnetoencephalography (MEG) recordings,

e in astrophysics to separate various signal sources,

e decomposition of the Fermilab booster beam monitor data into
independent source signals
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Two measured signals to be
separated into two independent
sources.

After whitening, i.e. linear
transformation forcing signals to
be uncorrelated.

|CA transformation— rotation,
signals should be as non-
Gaussian as possible (kurtosis is
a measure of non-Gaussianity).

Kurtosis - u /o,— 3, where u,is

the fourth moment about the
mean and o is the standard
deviation.



Probability Density Estimation
— a non-linear method

* Purpose

Signal/background discrimination (classification).
Parameter estimation (regression).

e Basic Ildea

Parzen estimation (1960s) — approximation of the unknown probability.
as a sum of kernel functions placed at the points x_ of the training

sample: = zhdqbﬁx H l<n<N

P(x—x,)—6(x—x) when the points density grows to infinity.

Dix)= p(sig|x)
Discriminant: p(sig|x)+ p(bckg|x)
Typical kernels: Gaussian, 1/x", square etc.

Conceptually simple, no problems with local minima (in contrast to
neural networks).

Each vector to be classified requires looping over all points from the
training data set (CPU and memory demanding).
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UAERO package from D0 experiment
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FIG. 1. The background density {a), signal density (b},

and selected region (shaded) (¢} determined by QUAERO for
the standard model processes discussed in the text. From
top to bottom the signals are: WW — eplfr, Z5 — eelj,
tf — elfy 47, and ¢f — epdfr 27, The dots in the plots in the
rightmost column represent events observed in the data.
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FIG. 2. QUAERO's analysis of signatures involving undis-
coverad particles. From top to bottom the hypothetical sig-
nals are: fhogn — ZZ — ee2j, Zigg —  — ellydj,
Whis — el 25, and LCQQQEL_QQQE — ee2j. Plots () of the
first two rows show the discriminant [ {curve), the threshold
Doy (horizontal line), and the data (histogram); the region
with I} = Doyt is selected.



How to speed it up? PDE_RS method

*method published by T. Carli, B. Koblitz, NIM A 501 (2003) 576-588, used by HERA

«Count signal (n ) and background (n,) events in N-dim hypercube around
the event classified — only few events from the training sample needed.

*Hypercube dimensions are free parameters to be tuned.
sDiscriminator D(x) given by signal and background event densities:

D(x)=—"2
ng+n,
: - 591
e o . * . -z
¥ @ ®
@ - [ ] ® . 2
LY ‘e
.-% ® .,
e e ¢
B ® & _— [
o ox 0 p’

«Straight forward error calculation possible.
sEvent stored in the binary tree — easy to find neighbor events.
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Application to T identification in ATLAS
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*analysis performed by E. Richter-Was,
t. Janyst and T. Szymocha

Six discriminating variables, none
of them give separately really
good discrimination.

Variables not necessarily
independent

Hard to separate signal from
background.
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Application of PDE RS

[ Discriminant distribution | sigDisc
Entries 18060 S
a0.05 Mean  0.6998 Cut GHGIYSIS
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Approximately two times
less background than for
standard cut analysis.
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Feed-Forward Neural Networks

» What can they do:
= Signal/background discrimination
» Parameter estimation

» Hardware implementations in trigger systems

« Characteristics

» Can model any function as a composition of many
basic functions assigned to single neurons.

» Can be trained on examples — network training is
similar to fitting a function to data.
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Feedforward Network

f_wx 0 - f(a)

n(x,w) = 1w,/ (@)+6)

Activation function

Input nodes Hidden nodes Output node
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Training a neural network

Minimize the empirical risk function with respect to the set of weights w:
— 1 _ 2
R(C()) - N z [ti n(xl., C())]
]

A network trained for classification (B-background, S- signal)
returns a probability of a given event to be a signal p(S/x):

p(x]S) p(S)
> plxlk) p(k)

k=S,B

n(x,w)— p(S|x)=

How to train a multilayer network”? How to tune the weights of hidden
layers? This problem stopped the NN development for 30 years.

Solution - a backpropagation method. An error d=t-n(x, ) is
propagated back through the net using the present weights (“revolution”
in neural networks in middle 80’).
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Overtraining

- Overtraining - network learns single

events instead of general rules.

- Similar overtraining effect — too
narrow kernels in the PDE method.

/

Ver
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Stop'\

\\Qample

Overtrained cycles

5.05.2006 Marcin Wolter: “Multivariate Analysis Methods”

16




Neural Network Trigger at the H1
Experiment

Works since 1996.

Implemented on several parallel
computers (CNAPS from Adaptive
Solutions ).

20us decision time.
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Application: Identification of low
energetic electrons in ATLAS experiment

B Each track extrapolated to the EM
calorimeter

B For ech layer a cell with maximum
energy deposit is found

B Eight e/n separation variables based on
# cascade shapes - calorimeter
@ joined Inner Detector/Calo information
& inner Detector information

Towers in Sampling 3
AgecAn =0.0245005

Square towers in
Sampling 2

leta|<2.4, PT>2 GeV/c
Track quality cuts:

A. Kaczmarska (IFJ)

# of hits in silicon detectors NSi>8 o BB (IFJ)
e e . : J. Cochran (IsV)
# of hits in pixel detector NPix>1 F. Derue (LPNHE, Paris)
hits in B-layer >= 1 K. Facius (The Niels Bohr Institute, Copenhagen)
Transverse impact parameter AO<lmm P. Schwemling (LPNHE, Paris)
E. Stanecka (IFJ)
M. Wolter (IFJ)
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Neural network vs. standard method

0 Rejection of pions in H->uu i,
= — :
? k ~ vs. electron efflaency in H >bb
+ | f.; 1 Tiﬁ ; _ |
a T‘Ht
"E"’,.Inl! E_ .................................................. R S SR
S r
Ei - ; g | g ; 5 Significant improvement
%, . S M S— S— ——_T% S— (watch the log scale)
- | Likelihood E 5
[ Neuml Ne’r
10 S e e e s S, To S
£ Stuttgart Neural
C AT B S B Network Simulator

AL AT E R LS L Englg?my (e) Feed-forward network:

Standard method - ratio of likelihood: -input layer - 8 nodes
-2 hidden layers, 10

XRL= log ( [ PDF(e)/MN PDF(e) ) nodes in each

No correlations taken into account!
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Support Vector Machines

- Relatively new algorithm .

. Basic idea: R |
e build a separating hyperplane using the minimal
number of vectors from the training sample
(Support Vectors).

e should be able to model any arbitrary function.

- Functionally algorithm similar to Neural Network
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Support Vector Machine

Early sixties: — “support vectors” method

developed for pattern recognition using separable

the separating hyperplane (Vapnik and

Lerner 1963, Vapnik and Czervonenkis .o, e v

1964). J} A I R

Early 1990: method extended to the non- | "o ’® e @ o

linear separation (Boser 1992, Cortes ——r

and Vapnlk 1995) nonlinear

1995: further development to perform * . * e

regression (Vapnik 1995) ’\ * o \
*-e | . naonlinaar ':"':' .
DG » majp ¥ DD .

nonseparable
nonlinear
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Linear classifier

1

X

e means y=+1

° means y=-1 .
Support Vectors // -
-points defining the &7 ~~—>!

margin.

V. y,(wX+b)—1=0
w-X+b=0 straightline
2

\ 4

f > yest

f(x,w,b) = sign(w. x - b)

margin= ﬁ
w

minimize |Ww|

Maximum margin linear classifier

~ Intuitionally is the best.

> Not sensitive on errors in the

hyperplane position.

> Separation depends on support
vectors only.

~ Works in practice!

Maximize margin = minimize |w|?
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If data are not separable

- Additional slack variable:

&:=0 x;corectly classified ° means +1
& =distance x;incorrectly classified ° means -1
- And we get: .

V. y,(#X+b)—1+E>0

- For the linear classifier:
w-X+b=0 .

minimize : ;— W[ +C Z &

- Cis a free parameter - cost variable.
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Problem —

2
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data separable but non-linear

A

e inpul space

Transformation to higher

P:R? = R’ ) :
dimensional feature space,

1f -1'% E-\'.-rg feature space where data ARE Iinearly

N e separable.
Wi, 2 /W
R A In this example data separable
f) by elliptic curve in R? are

T ’) i 1 3
f{.l'}=ﬂg|1hr l.1'i+|r|.'3.1'_;+u'_,,ﬁ.=.'l.1'_,+h) Imearly Separable In R :

We need a universal

A j method of transformation
R to the higher dimensional
- space!
|
. =
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Some mathematics

- Lagrangian and Lagrange multipliers:
L(Vv,b,&)=1/2|w|2—z o (y.[(w,%)+b]-1)

;=0
Y, [(W,%)+b]—-1=0 thebonds

- Lagrangian should be minimized in respect to w and b and maximized in
respect to a..

v, [{(w,X)+b]-1>0 — «,=0 (not contributing)
v, [(w,X)+b]-1=0  support vectors

oL oL

o - “==0 =0
in the extremum: 37 S 3o

_>Zayl O W Zayll

. we substitute into L and we have maximized W in the space of a

W (e ZO(__ZZ‘X yyj<5éi’fj>
Z =0 In this space W is
s a function of products xi*xj
f(3)=sgn((,%)+b)=sgn| X, o,y (X, %)+b
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Kernel trick
Margin w maX|m|zat|on usmg Laplace multipliers o

Za——ZZaayy]<x X;)

Margin depends on dot products x. xj only.

Function ® transforms the input space to the higher dimensional feature
space, where data are linearly separable:

@ (x):input R"—>R" (N=n)
e \We can replace:

(x,,3,) (B (x,), B(x ) =K (x,,x )

The resulting algorithm is formally similar, except that every dot product
is replaced by a non-linear kernel function. This allows the algorithm to fit
the maximum-margin hyperplane in the transformed feature space. The
transformation may be non-linear and the transformed space high
dimensional; thus though the classifier is a hyperplane in the high-
dimensional feature space it may be non-linear in the original input

space.
Za——ZZa o; 3y, K (%, %))

No need to know functlon CD(x), enough to know kernel K(xi,xj).
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Commonly used kernels

* Polynomal

« Sigmoid H J ..
K(x.x | tanh | H(K: . x_:)+ f))

« Gaussian o
K(x.x | exp|— P |1 — X, " ]

Must be symmetric:
K(x;, xj):K(xj: x;)

If the kernel used is a radial base function (Gaussian) the

corresponding feature space is a Hilbert space of infinite dimension.
Maximum margin classifiers are well regularized, so the infinite

dimension does not spoil the results.

5.05.2006 Marcin Wolter: “Multivariate Analysis Methods”
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Regression — “g insensitive loss”

+€

We have input data:
X = {(x1,d1), ceeey (xNde)}

We want to find f(x), which has small deviation from
d and which is maximally smooth.

Define a cost function:
y — f(x)|e := max{0, [y — f(x)| — ¢}
Minimize:
%H"ﬂ'«’”ﬂj s zzzm; i — f(x:)le

And repeat the kernel trick
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Non-linear Kernel example

Gaussian kernel

: > 3 » »|2, 2
Kernel: K(x.x) = exp{—|x,—x_f| Sa7) plot by Bell SVM applet

5.05.2006 Marcin Wolter: “Multivariate Analysis Methods”
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SVM and feed-forward neural network
A comparison

NN - complexity controlled by a number of nodes.

SVM - complexity doesn't depend on the
dimensionality.

NN - can fall into local minima.
SVM — minimization is a quadratic programming
problem, always finds minimum.

SVM - discriminating hyperplane is constructed in
a high dimensionality space using a kernel function.

Jianfeng Feng, Sussex University
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SVM strength

Statistically well motivated => Can get bounds on the error, can use
the structural risk minimization (theory which characterizes
generalization abilities of learning machines).

Finding the weights is a quadratic programming problem -
guaranteed to find a minimum of the error surface. Thus the
algorithm is efficient and SVM generates near optimal classification
and is quite insensitive to overtraining.

Obtain good generalization performance due to high dimension of
the feature space.

Jianfeng Feng, Sussex University
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SVM weakness

eSlow training (compared to neural network) due to computationally
intensive solution to QP problem especially for large amounts of
training data => need special algorithms.

eSlow classification for the trained SVM.

eGenerates complex solutions (normally > 60% of training points
are used as support vectors), especially for large amounts of
training data.

E.g. from Haykin: increase in performance of 1.5% over MLP.
However, MLP used 2 hidden nodes, SVM used 285

eDifficult to incorporate prior knowledge.

Jianfeng Feng, Sussex University
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Applications In physics

While neural networks are quite commonly used, SVM are
rarely applied.

e | EP compared NN and SVM

“Classifying LEP Data with Support Vector Algorithms”
P. Vannerema K.-R. Muller B. Scholkopf A. Smola S. Soldner-
Rembold

e There were some tries in DO and CDF (Tufts Group — top
quark identification)

SVM works well in other areas (for example handwriting
recognition).

- One should look carefully, the method might be
worth trying!
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Application of SVM to tau identification

Grid search to find SVM working point e —
— optimal C and width of Gaussian kernel

" 4 -14

SVM discriminant I

700 | I -' IGQZ(Q}
600 S_lg_nal ]1 i' = ;“it.;rllzérig;ﬁlnl )
C | — . "
LO0 ; l,L. i , s = T 12
400 | log5(©)
300 |
200 | backgriound SVM with Gaussian kernel.
: all - Grid search in C- to optimi
100 ol ] g space to optimize
. mj“m ani Lblk_ parameters.

0 0.2 0.4 0.6 0.8 1

Discriminant — probability of an event to
SV output

be a signal - p(signal|x).
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Neural Network in ATLAS tau
identification

Neural Net discriminant
300 s L
: signa "‘
250 LL
2010 7
150 J'[
00 |._blackground
: i
N L“N“w L |
GE,EMMLHHMM‘.“‘... Hh‘t
i 0.2 0.4 0.6 0.8 1

NN autput

* T. Szymocha, M. Wolter
com-phys-2006-019

feed-forward network

same discriminating as used by
PDE_RS method.

NN: 6 inputs, 2 hidden layers

- - _--
i W T -"___.;:__é _.--ﬂ'___.'.é
e - r I
-t Ty - *
2 : 4 Tl — L -
Pl - -~ _|'
e e - = L
= "
S
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Comparison of three methods in tau

identification.
= 1 ¢ Method | Efficiency | Rejection
._g 0.9 - 90 % | 58% £ 1%
et T . ~Ia PDE-RS 0% | 15%E1%
008 | < (6 variables) | 70 % | 83%+1%
0.7 | N 0% |66 1%
S \ NN 0% | TR 1%
00.6 | rees—PDE-RS \ (6 vaniables) | 70 % | 8% £ 1%
0.5 | NN \ 90 % | 64% £ 1%
= : 5 SVM 80 % | TT%+1%
004 ¢ - 5VM W [Casiable) [ 0% [ S5AE17
0.3 : \'1
0.2 ¢t i Similar results, probably
01 L classification efficiency
) ' close to the statistical limit.
0 0.2 0.4 0.6 0.8 1 + Performance of methods
Signal efficiency [Bﬁ?;];hange by different
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Unsupervised NN Methods

Non-linear PCA using neural network

MNetwork Analyzer °
b~ 7 | | Data can be

reduced to one

| srID |

dimension.

« Non-linear
transformation

i
IS heeded.
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Non-linear PCA

A
.L1h
g 706
-5.471
o

7278
U.F/
{9 9
-QE5:

0+r8 o

The network is trained by presenting the same
vectors to the input and the output. Than the
network is cut into two parts.

5.05.2006
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Hopfleld recurrent network

Recurrent network — binary self coupled system.

Output signals are at the same time input signals

for the next training cycle x(k)=y.(k-1).

The network works as an autoassociative memory:
e memorizes the presented vectors

e after presenting the unknown vector return the
memorized vector closest to it.

Example — a network trained on 3 letters:

Used for pattern used for pattern recognition in tracking algorithms

assigning track segments to the tracks — ALEPH, HERA, DELPHI. Mostly
used for TPC tracking (clean 3D hits).
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Kohonen network -
Self Organizing
Map (SOM)

- Unsupervised learning
- Transforms vectors from an n-dimensional N I I *n,

input vector

space into (typically) 2D map in such a way, that similar input vectors are
close to each other on the map.

-« Training:
e Random initial neuron weights

e |nput vectors x are presented, an output neuron having a vector of
weights w closest to x is a winner.

e Vector w (and similar vectors) are corrected to be closer to x.
e The procedure is repeated until the system is stable.
- Application: automated classification, groups similar vectors into clusters.
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Comments on classification

s Every classification task tries to solve the same fundamental problem:
» After adequately pre-processing the data

» . .find a good, and practical, approximation to the Bayes decision
rule:  Given X, if P(S|X) / P(B|X)>cut , choose hypothesis S
otherwise choose B.

s |f we knew the densities p(X]S) and p(X]|B) and the priors p(S) and
p(B) we could compute the Bayes Discriminant Function (BDF):

D(X) = P(S|X)/P(B|X)

s All presented methods are simply different algorithms to approximate
the Bayes discriminant function D(X).

s |t follows that if a method is already close to the Bayes limit, then
no other method, however sophisticated, can be expected to yield
dramatic improvements.

Harrison B. Prosper

5.05.2006 Marcin Wolter: “Multivariate Analysis Methods” 42



5.05.2006

Summary

Multivariate analysis is useful, if it is important to

extract as much information from the data as possible.

For classification problems, the common methods
provide different approximations to the Bayes
discriminant.

There is considerably empirical evidence that, as yet,
no uniformly most powerful method exists. Therefore,
be wary of claims to the contrary!
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Literature and links to SVMs

http://www.autonlab.org/tutorials/ - wyktady Andrew Moore'a.

http://www.cs.colorado.edu/~grudic/teaching/CSCI4202_ 2004/ - wyktady
Greg Grudic

http://www.informatics.sussex.ac.uk/users/jianfeng/ -strona Janfeng
Feng

http://www.kernel-machines.org/papers/Burges98.ps.gz - “A Tutorial on
SVM ...”, C. Burges (b. dobry)

http://www.kernel-machines.org/ -bardzo intersujgca strona
http://www.csie.ntu.edu.tw/~cjlin/libsvm/ - software
http://www.cs.cornell.edu/People/tj/svm_light/ - software

AN INTRODUCTION TO SUPPORT VECTOR MACHINES (and
other kernel-based learning methods).

N. Cristianini and J. Shawe-Taylor, Cambridge University Press. 2000.
ISBN: 0 521 78019 5
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Literature — Neural Networks

Christopher M. Bishop ,Neural Networks for Pattern
Recognition”

Andreas Zell ,Simulation neuronaler Netze”
Ryszard Tadeusiewicz ,Sieci neuronowe”
S. Osowski, “Sieci Neuronowe w ujeciu algorytmicznym”

Tools:
MLP in ROOT and in PAW
SNNS:

http://www-ra.informatik.uni-tuebingen.de/SNNS/
PDP++
http://www.cnbc.cmu.edu/Resources/PDP++//PDP++.htn
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Tau identification variables

+ Number of strips, N;?"ﬁm, with energy deposition above a threshold m strip layer of the
electromagnetic calormeter

# The wulth of the energy deposibon m strips, Hqﬁim! caleulated as the vamance of the g
coordmate, weighted by the transverse energy deposition i a given strip

e Fraction of the transverse energy deposibed m the radms 0.1 < AR < 0.2 wiath respect to
the total energy i the cone AR = (L2,

¢ Eloctromagnetic radms, R, weighted by the transverse energy deposition for given cell
In additiom, as an wentification varable we use alsos

* Ratw of the track transverse momenta and energy deposited m the hadromce calormeter
m the viemuty of the track,

radi AD "
%r,andfmﬁpmngdatamta]mmmufprﬂfaﬂthmtmdm.

* Ratiwo of energy deposited m a radius 0.2 < AR < (.4,

Eath.l:r.ﬁ'.ﬂrf E]:'HI:T‘JL’W
r E*%; , which represents isolation criteria.
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Demonstration applets

SVM in action:

http://wiesiek.ifj.edu.pl/SVM/javal/test_applet.html
e Neural network applets:

http://wiesiek.ifj.edu.pl/talks/NeuralNetUJ/applets/tutorial/
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