Eksperyment MINOS

Pierwsze wyniki dotyczące neutrin akceleratorowych

Katarzyna Grzelak

Seminarium Fizyki Wielkich Energii 21.04.2006

K.Grzelak (UW ZCiOF)

Eksperyment MINOS

Seminarium FWE 1 / 62

- The

イモトイモ

Wprowadzenie

- 2 Wiązka neutrin NuMI
- 3 Eksperyment MINOS
- 4 Dane z Bliskiego Detektora
- 5 Analiza oscylacji neutrin dla 0.93 imes 10²⁰ pot

< ロ ト < 同 ト < 三 ト < 三 ト

MACIERZ MIESZANIA DLA NEUTRIN

Trzy zapachy neutrin jako kombinacja trzech stanów własnych masy.

$$\begin{pmatrix} \nu_{\mathsf{e}} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{\mathsf{e}1} & U_{\mathsf{e}2} & U_{\mathsf{e}3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

 $egin{aligned} & s_{ij} = \sin heta_{ij} \ & c_{ij} = \cos heta_{ij} \ & \delta &
ightarrow ext{faza } ext{amania CP} \end{aligned}$

イロト イポト イヨト イヨト

MACIERZ MIESZANIA DLA NEUTRIN, cz. 2

Zakładając zachowanie CP ($\delta = 0$):

$$\left(\begin{array}{c}\nu_{\mathbf{e}}\\\nu_{\mu}\\\nu_{\tau}\end{array}\right) =$$

PRAWDOPODOBIEŃSTWO PRZEMIANY $\nu_{\alpha} \rightarrow \nu_{\beta}$

$$egin{aligned} & \mathcal{P}_{
u_lpha
ightarrow
u_eta}(\mathcal{L}) = \sum_k |U_{lpha k}|^2 |U_{eta k}|^2 \ & + 2 Re \sum_{k>j} U^*_{lpha k} U_{eta k} U_{lpha j} U^*_{eta j} exp[-irac{\Delta m^2_{kj}}{2E_
u} \mathcal{L}] \ & \Delta m^2_{kj} \equiv m^2_k - m^2_j \end{aligned}$$

Parametry modelu: 3 kąty mieszania θ_{23} , θ_{13} i θ_{12} , 1 faza δ i dla trzech rodzajów neutrin 2 niezależne różnice mas Δm^2 .

イロト イヨト イヨト 一日

• obserwacje znikania danego rodzaju neutrin

$${\cal P}(
u_{\mu}
ightarrow
u_{\mu}) \simeq 1 - \sin^2 2 heta_{23} \sin^2 rac{1.27 \Delta m_{atm}^2 L}{E_
u}$$

Jednostki: $\Delta m^2 [eV^2] (= 2.5 \times 10^{-3} eV^2)$ $E_{\nu} [GeV]$ L[km] (= 735 km)

Maksimum oscylacji dla

$$\frac{1.27\Delta m_{atm}^2 L}{E_{\nu}} = \frac{\pi}{2}$$

obserwacje pojawiania się nowego rodzaju neutrin

$$\begin{split} \mathcal{P}(\nu_{\mu} \rightarrow \nu_{e}) &\simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \Delta \\ &\mp \alpha \sin 2\theta_{13} \sin \delta_{CP} \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin^{3} \Delta \\ &+ \alpha \sin 2\theta_{13} \cos \delta_{CP} \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \sin^{2} \Delta \\ &+ \alpha^{2} \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \sin^{2} \Delta \end{split}$$

$$\Delta \equiv \frac{\Delta m_{atm}^2 L}{4E_{\nu}}, \qquad \alpha \equiv \frac{\Delta m_{sol}^2}{\Delta m_{atm}^2}$$

Dokładnie mierzy się tylko kombinację parametrów, a nie tylko samo $\sin^2 2\theta_{13}$

K.Grzelak (UW ZCiOF)

Eksperyment MINOS

- Daleki Detektor (ND) → poszukiwanie oscylacji
- Bliski Detektor (FD) → widmo energii niezakłócone przez oscylacje

→ Ξ > < Ξ</p>

CELE FIZYCZNE EKSPERYMENTU MINOS, cz. 1

$$P(
u_{\mu}
ightarrow
u_{\mu}) \simeq 1 - \sin^2 2 heta_{23} \sin^2(rac{1.27 \Delta m_{23}^2 L}{E})$$

 $u_{\mu} N \rightarrow \mu X$

- Weryfikacja hipotezy oscylacji neutrin w obszarze atmosferycznym i precyzyjne pomiary (z precyzją < 10 %) parametrów oscylacji Δm²₂₃ i sin²(2θ₂₃)
- Przedstawienie prawdopodobieństwa zanikania ν_{μ} z wiązki w funkcji energii
- $\bullet \ Wykluczenie \ egzotycznych \ modeli \rightarrow rozpad \ neutrin$

CELE FIZYCZNE EKSPERYMENTU MINOS, cz. 2

$$P(\nu_{\mu} \rightarrow \nu_{e})$$

 $\nu_e N \rightarrow e X$

 Poszukiwania oscylacji ν_μ → ν_e Możliwość pierwszego wykazania niezerowej wartości θ₁₃ !

również

- Pierwszy, bezpośredni pomiar oscylacji ν vs ν
 poprzez badanie neutrin atmosferycznych !
 (Pierwszy podziemny detektor z polem
 magnetycznym)
- Poszukiwanie neutrin sterylnych

WIĄZKA NEUTRIN NuMI

K.Grzelak (UW ZCiOF)

Eksperyment MINOS

Seminarium FWE 11 / 62

э

イロト イポト イヨト イヨ

WIĄZKA NuMI - WSTĘP

 Protony o energii 120 GeV z akceleratora Main Injector w Fermilabie

- Protony uderzają w grafitową tarczę o długości 1m
- π⁺, K⁺ są ogniskowane przez dwa paraboliczne rogi (*ang.* horn) magnetyczne
- Piony i kaony rozpadają się w próżniowej rurze rozpadowej o długości 675m

< ロト < 同ト < ヨト < ヨト

- Pierwotna wiązka protonów: wysyłana w 5-6 paczkach, w czasie 8-10 μs
- 2.3×10^{13} protonów/puls co 2.2s

- 10

WIĄZKA PIERWOTNA - PROTONY LICZBA DOSTARCZONYCH PROTONÓW

Już zebrane więcej danych niż w czasie całego działania K2K !

K.Grzelak (UW ZCiOF)

Eksperyment MINOS

Seminarium FWE 14 / 62

WIĄZKA WTÓRNA - NEUTRINA

Unikalną cechą wiązki NuMI jest możliwość zmiany widma neutrin poprzez zmianę położenia tarczy.

Obecnie dane zbierane głównie z konfiguracją niskoenergetyczną (LE), ale na początku zebrane 1.5×10^{18} pot dla ME i HE.

SKŁADOWE WIDMA NEUTRIN BLISKI DETEKTOR

 Rozkład widma neutrin i antyneutrin na składowe pochodzące z rozpadów pionów, kaonów i mionów.

- Skład wiązki neutrin (LE): 92%
 ν_μ, 6.5 % ν_μ
- Mały dodatek (<~ 1.5%) ν_e, ν_e z rozpadów kaonów i mionów

EKSPERYMENT MINOS

K.Grzelak (UW ZCiOF)

Eksperyment MINOS

Seminarium FWE 17 / 62

MINOS: PIERWSZY UŻYTKOWNIK WIĄZKI NuMI

- Drugi w historii i jedyny obecnie zbierający dane eksperyment z długą bazą
- Detektory umieszczone w osi wiązki NuMI
- Bliski Detektor (ND) (1kt) w ośrodku Fermilab pod Chicago
- Daleki Detektor (FD) (5.4 kt) znajduje się 735km dalej w kopalni Soudan, w Minnesocie

< ロト < 同ト < ヨト < ヨト

MINOS: PIERWSZY UŻYTKOWNIK WIĄZKI NuMI

Pierwsze oddziaływanie neutrina z wiązki w dalekim detektorze: 7 marzec 2005

FERMILAB #98-1321D

K.Grzelak (UW ZCiOF)

Eksperyment MINOS

Seminarium FWE 19 / 62

・ 何 ト ・ ヨ ト ・ ヨ ト

SOUDAN

K.Grzelak (UW ZCiOF)

Eksperyment MINOS

Seminarium FWE 20 / 62

MINOS: BLISKI I DALEKI DETEKTOR

Bliski i Daleki Detektor eksperymentu MINOS mają tak bardzo jak to możliwe podobną budowę:

- naprzemiennie: stalowe płyty (2.54 cm) i paski scyntylatora (1cm)
- paski w co drugiej płaszczyźnie są do siebie prostopadłe

MINOS: BLISKI I DALEKI DETEKTOR

イロト イロト イヨト イヨト

MINOS: BLISKI I DALEKI DETEKTOR

- Bliski Detektor: 1kt, 282 płaszczyzny, 3.8m imes 4.8m imes 15m
- Daleki Detektor: 5.4kt, 484 płaszczyzny , $8m \times 8m \times 30m$
- B ~ 1.2 T w obu detektorach próbkowanie) Bliskiego Detektora

周レイヨレイ

TOPOLOGIE PRZYPADKÓW

Monte Carlo, Daleki Detektor

K.Grzelak (UW ZCiOF)

Eksperyment MINOS

TYPOWE ODDZIAŁYWANIE W DALEKIM DETEKTORZE

NIE Z WIĄZKI

Głębokość 2070 mwe: strumień mionów kosmicznych to 50000 przypadków/dzień Oddziaływania neutrin atmosferycznych: $0.54 \pm 0.05/dzień$

Eksperyment MINOS

OBECNA SELEKCJA PRZYPADKÓW CC u_{μ}

- Jeden zrekonstruowany tor (kandydat na mion)
- Wiarygodny obszar detektora (fiducial volume). Położenie wierzchołka oddziaływania:
 - ND: 1m < z < 5m, R < 1m od środka wiązki
 - FD: z > 50cm od pierwszej płaszczyzny, z > 2m od ostatniej płaszczyzny , R < 3.7m od środka detektora

- In Miony z ujemnym ładunkiem (wybór u_{μ})
- Cięcie na parametrze PID (Particle IDentification), używanym do selekcji oddziaływań NC i CC

< ロ ト < 同 ト < 三 ト < 三 ト

ODRÓŻNIANIE ODDZIAŁYWAŃ CC u_{μ} i NC

Trzy *wejściowe* funkcje gęstości prawdopodobieństwa (PDF), które różnicują oddziaływania CC ν_{μ} i NC

- Długość przypadku (liczba płaszczyzn)
- Suma sygnałów dla toru dzielona przez całkowitą wysokość zarejestrowanego sygnału
- Ola toru: średnia wysokość sygnału w płaszczyźnie

★ ∃ > < ∃ >

- The

Eksperyment MINOS

ODRÓŻNIANIE ODDZIAŁYWAŃ CC ν_{μ} i NC

Prawdopodobieństwo, że dany przypadek jest CC ν_{μ} lub NC (P_{μ} lub P_{NC}) jest iloczynem trzech funkcji gęstości prawdopodobieństwa dla CC ν_{μ} i odpowiednio trzech funkcji dla NC.

 $PID = -(\sqrt{-\log(P_{\mu})} - \sqrt{-\log(P_{NC})})$

CC selection efficiencies and purities

PDF PID parameter distribution for true CC and NC events

K.Grzelak (UW ZCiOF)

Eksperyment MINOS

Seminarium FWE 29 / 62

・ 同 ト ・ ヨ ト ・ ヨ

イロト イロト イヨト イヨト

K.Grzelak (UW ZCiOF)

Eksperyment MINOS

Seminarium FWE 30 / 62

イロト イポト イヨト イヨト

K.Grzelak (UW ZCiOF)

Eksperyment MINOS

Seminarium FWE 31 / 6

イロト イロト イヨト イヨト

K.Grzelak (UW ZCiOF)

Eksperyment MINOS

Seminarium FWE 32 / 62

イロト イロト イヨト イヨト

K.Grzelak (UW ZCiOF)

Eksperyment MINOS

Seminarium FWE 33 / 62

イロト イロト イヨト イヨト

STABILNOŚĆ REKONSTRUKCJI WIDMA ENERGII

イロト イポト イヨト イヨト

- W bliskim detektorze bardzo duża statystyka: po cięciach czyszczących około 1 \times 10^7 ν dla 1 \times 10^{20} pot
- Widoczne detale budowy detektora

Zrekonstruowany kąt pomiędzy torem mionu a osią Y (oś pionowa). Wiązka pod kątem 3° do poziomu.

- The

K.Grzelak (UW ZCiOF)

Eksperyment MINOS

Seminarium FWE 37 / 62

Zmienne używane do odróżniania oddziaływań CC ν_{μ} i NC.

K.Grzelak (UW ZCiOF)

Eksperyment MINOS

4 3 > 4 3

< 17 ▶

Rozkład parametru PID dla wiązki niskoenergetycznej (LE)

BLISKI DETEKTOR - WIDMA ENERGII

Zrekonstruowana Energia (GeV)

Dane/MC

• • • • • • • • • • •

ANALIZA OSCYLACJI NEUTRIN DLA $0.93 \times 10^{20} \text{ pot}$

K.Grzelak (UW ZCiOF)

Eksperyment MINOS

Seminarium FWE 41 / 62

ANALIZA PRZYPADKÓW Z DALEKIEGO DETEKTORA

- Pierwsze wyniki dla neutrin akceleratorowych na podstawie danych zebranych pomiędzy 20.05.2005 a 6.12.2005
- 0.93×10^{20} pot
- Do dzisiaj zebrane 1.39 × 10²⁰ pot (Od początku marca przerwa w pracy akceleratora)

A (1) < A (2) < A (2) </p>

- Zabezpieczenie się przed nieumyślnym naginaniem wyników do oczekiwanego (zgodnego z wynikiem Super-Kamiokande)
- Wszystkie dane z Bliskiego Detektora są dostępne
- Część danych z Dalekiego Detektora ukryta (zgodnie z nieznaną funkcją długości przypadku i energii zdeponowanej w detektorze)
- Przed otwarciem *puszki* wszystkie procedury dotyczące analizy danych muszą być zamrożone
- 4.03.2006: Otwarcie *puszki* dla 0.93×10^{20} pot

イロト イポト イヨト イヨト

ODDZIAŁYWANIE NEUTRINA Z WIĄZKI

Run: 32133, Snarl: 97235, Slice: 1(/1), Event 1(/1)

Reco

```
#Trks: 1
```

```
#Shws: 2
```

```
q/p: -0.517 +/- 0.034, p/q: -1.935
```

TrkRangeEnergy: 2.042 RecoShwEnergy: 0.196 Vtx: -0.52, -2.42, 6.20

Truth

N/A

- N/A
- N/A
- NI/A
- 19/74
- N/A
- N/A

Transverse vs Z view - U Planes

DANE Z DALEKIEGO DETEKTORA - OTWARTA PRÓBKA

Przypadki w przedziale 10 μ s zgodnie z szerokością wiązki NuMI. Tło od promieniowania kosmicznego (0.5 Hz) całkowicie usuwalne za pomocą cięć na topologię przypadku.

・ 同 ト ・ ヨ ト ・ ヨ ト

Eksperyment MINOS

DANE Z DALEKIEGO DETEKTORA - OTWARTA PRÓBKA

Liczba zarejestrowanych przypadków w funkcji czasu.

DANE Z DALEKIEGO DETEKTORA - OTWARTA PRÓBKA

Rozkład wierzchołków oddziaływań neutrin z wiązki w Dalekim Detektorze. Porównanie MC i danych.

・ 同 ト ・ ヨ ト ・ ヨ ト

30

Ekspervment MINOS

PRZEWIDYWANIE WIDMA W DALEKIM DETEKTORZE

METODA BEAM MATRIX

- FD Daleki Detektor, ND Bliski Detektor
 - Poprawka na czystość (purity);Reconstructed->True; poprawka na efektywność.

 $E_{ND \ CC-like}^{Reconstructed} \Rightarrow E_{ND \ CC}^{True}$

Macierz Wiązki (BEAM MATRIX)

$$E_{ND \ CC}^{True} \Rightarrow E_{FD \ CC}^{True}$$

Irue → Reconstructed (Bez oscylacji). Czystość używana do znalezienia tła od NC.

$$E_{FD \ CC}^{True} \Rightarrow E_{FD \ CC-like}^{Reconstructed}$$

イロト イポト イヨト イヨト

METODA BEAM MATRIX

Eksperyment MINOS

æ

イロト イロト イヨト イヨト

POPRAWIONE WIDMO ENERGII W DALEKIM DETEKTORZE

Czerwony histogram \rightarrow nominalne MC Punkty \rightarrow przewidziane widmo energii w FD w oparciu o dane z ND

Far Detector True Spectrum : Red Line is Nominal Monte Carlo & Black Points the Predicted Spectrum using Near Detector Data

DANE Z DALEKIEGO DETEKTORA - PEŁNA PRÓBKA

Otwarcie puszki 4.03.2006

Time distribution of neutrino candidates Events MINOS PRELIMINARY 40 35 30 25 20 15 10 5 -40 -30 -20 -10 10 20 30 40 50 n Time relative to SpillServer prediction (us)

Około dwa razy więcej przypadków niż dla samej próbki pierwotnej.

- E - S-

DANE Z DALEKIEGO DETEKTORA - PEŁNA PRÓBKA

Liczba zarejestrowanych przypadków w funkcji czasu.

DANE Z DALEKIEGO DETEKTORA - PEŁNA PRÓBKA

Rozkład wierzchołków oddziaływań neutrin z wiązki w Dalekim Detektorze. Porównanie MC i danych.

Reconstructed track vertices of neutrino candidates

4 A 1

→ Ξ → < Ξ</p>

Eksperyment MINOS

Cięcie	Liczba Przypadków	Efektywność
Wszystkie przypadki	331	-
(fiducial volume)		
Przypadki z torem (mion)	296	89.4 %
Cięcia na jakość toru	281	84.9 %
Cięcie na PID (CC-like)	204	61.6 %
Dodatnie miony	186	56.2 %
$E_{Rec} < 30 GeV$	166	50.2 %

э

イロト イロト イヨト イヨト

Próbka danych	obserwowane	oczekiwane	stosunek	znaczoność
Kandydaci na CC	204	298 ± 15	0.69	4.1 <i>σ</i>
(CC-like)				
$(u_{\mu}+\overline{ u_{\mu}})$				
$ u_{\mu}$ (< 30 GeV)	166	249 ± 14	0.67	4.0 σ
$ u_{\mu}$ (< 10GeV)	92	177 ± 11	0.52	5.0 σ

э

イロト イロト イヨト イヨト

< 17 ▶

DALEKI DETEKTOR ROZKŁADY ZMIENNYCH

K.Grzelak (UW ZCiOF)

Eksperyment MINOS

э

イロト イロト イヨト イヨト

PRZESTRZEŃ PARAMETRÓW OSCYLACJI DOZWOLONE OBSZARY

K.Grzelak (UW ZCiOF)

Eksperyment MINOS

Seminarium FWE 58 / 62

イロト イポト イヨト イヨト

Eksperyment MINOS

イロト イポト イヨト イヨ

BŁĘDY SYSTEMATYCZNE

Źródło błędu	Zmiana Δm^2	Zmiana sin ² 2 θ_{23}
Normalizacja \pm 4 %	$0.63 imes10^{-4}$	0.025
Skala energii $\mu\pm$ 2 %	$0.14 imes10^{-4}$	0.020
Względna skala		
energii kaskady	$0.27 imes10^{-4}$	0.020
hadronowej \pm 2 %		
Zawartość NC \pm 30 %	$0.77 imes10^{-4}$	0.035
Niepewność σ CC	$0.50 imes10^{-4}$	0.016
Niepewność wiązki	$0.13 imes10^{-4}$	0.012
Oddziaływania wewnątrz-		
jądrowe	$0.27 imes10^{-4}$	0.030
RAZEM (suma w kwadratach)	$1.19 imes 10^{-4}$	0.063
Błąd stat. (dane)	$6.4 imes10^{-4}$	0.15

æ

イロト イロト イヨト イヨト

PERSPEKTYWY NA PRZYSZŁOŚĆ

э

イロト イロト イヨト イヨト

• Pierwsze wyniki z eksperymentu MINOS dotyczące oscylacji neutrin akceleratorowych dla 0.93×10^{20} pot.

$$\Delta m^2_{23} = 3.05^{+0.60}_{-0.55}(stat) \pm 0.12(syst) \times 10^{-3} eV^2$$

$$\sin^2 2\theta_{23} = 0.88^{+0.12}_{-0.15}(stat) \pm 0.06(syst)$$

・ 同 ト ・ ヨ ト ・ ヨ ト