Obserwacja silnie sprzężonego sektora Higgsa w detektorze CMS przy LHC

Paweł Zych

IFD Warszawa

27 stycznia, 2006

- 1. Dlaczego chcemy łamać symetrię elektrosłabą w Modelu Standardowym?
- 2. Jak złamać symetrię przez sektor silnie sprzężony?
- 3. Co jest przejawem tego łamania a co może być tłem do niego?
- 4. Czy to łamanie będzie można odkryć detektorem CMS przy LHC?
 - (a) Jak wysymulowac sygnał i tło?
 - (b) Kilka słów o detektorze?
 - (c) Jak mogłaby wyglądać selekcja danych?.
- 5. Podsumowanie: czyli czy detektor CMS jest wystarczająco uniwersalny?

- łamanie symetrii w Modelu Standardowym (SM)
 - 1. najpopularniejszy sposób nadania mas cząstkom elementarnym
 - 2. spontaniczne łamanie symetrii SU(2)_L xU(1)_Y \rightarrow U(1)_Q
 - 3. pojawiają się bozony Goldstona
 - 4. bezmasowe W i Z + bozony Goldstona \Rightarrow masywne W i Z
- jak złamać symetrię?
 - 1. rozszerzenie SM o potencjał Higgsa (mechanizm Higgsa)
 - ale bozon Higgsa nie został jeszcze odkryty!
 - 2. rozszerzenia SM bardziej skomplikowane:
 - č 2HDM
 - č supersymetria
 - č modele małego Higgsa
 - č modele z dodatkowymi wymiarami (ED)
 - rozszerzenie SM o sektor silnie sprzężony (SSS) == silnie sprzężony sektor Higgsa

- SSS to pola cechowania, których oddziaływanie staje się silne przy wyzszej skali energii
- SSS dla niskich energii
 - efektywny model Weinberga opisał silne oddziaływanie pionów
- SSS dla wysokich energii mniej/bardziej realistyczne teorie z SSS istnieją:
 - $\check{}$ SSS w Modelu Standardowym (SM) z m_H \gtrsim 700 GeV
 - 1. sprzężenie $V_L V_L V_L V_L \sim m_H^2 \implies V_L$ oddziałują silnie (co z rachunkiem zaburzeń?)
 - 2. unitarność jest łamana w rozpraszaniu $V_L V_L \rightarrow V_L V_L$
 - 3. same problemy \Rightarrow SM nie może być pełną teorią dla m_H \lesssim 700 GeV
 - č technicolor
 - č modele z rezonansami (np. model ED autorstwa Csaki et al.)
- opiszmy wszystkie możliwe teorie z SSS w jednym modelu efektywnym:
 - č nie ma głębszej motywacji teoretycznej
 - * model przybliżony o energetycznie ograniczonej stosowalności
 - ^v opisuje/parametryzuje oddziaływanie silne w przypadku braku eksperym. potwierdzonej teorii
 - č realizacja określonego scenariusza pomaga w konstrukcji prawdziwej teorii

- 1. łamanie symetrii EW:
 - SSB SU(2)_xSU(2)_R \rightarrow SU(2)_C w SSS powoduje SU(2)_xU(1)_Y \rightarrow U(1)_Q w SM
 - V_L's oddziałują jak GB pojawiające sie w wyniku SSB
- silne oddziaływanie między skalarami (GB) jest opisywane przez rozszerzenie SM do nieliniowo-zrealizowanego Lagranżjanu efektywnego:

 $\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}}$ (bez higgsa) $+ rac{\mathbf{v}^2}{4} < \mathbf{D}_{\mu}\mathbf{U}\mathbf{D}^{\mu}\mathbf{U}^{\dagger} > + \mathcal{L}_4 + \mathcal{L}_5$,

$$\begin{split} \mathcal{L}_{\mathbf{4}} &= \mathbf{a_4}(<\mathbf{D}_{\mu}\mathbf{U}\mathbf{D}^{\nu}\mathbf{U}^{\dagger}>)^{\mathbf{2}}, \, \mathcal{L}_{\mathbf{5}} = \mathbf{a_5}(<\mathbf{D}_{\mu}\mathbf{U}\mathbf{D}^{\mu}\mathbf{U}^{\dagger}>)^{\mathbf{2}}, \\ U &= exp(irac{ar{\pi}ar{ au}}{v}), \, ar{\pi} - \mathbf{3} \text{ would-be GB, } ar{ au} - \mathbf{macierze Pauliego} \\ & ext{ inne } \mathcal{L}_{\mathbf{i}} \text{ dają wkład do m}_V, \, \mathbf{TGC}, \dots \end{split}$$

(por. alternatywne rozszerzenie SM z zachowaniem sektora Higgsa (*liniowo-zrealizowany* Lagranżjan efektywny): $\mathcal{L}_{eff} = \mathcal{L}_{SM}(z \text{ higgsem}) + \sum_{n \geq 5} \sum_{i} \frac{f_{i}^{(n)} \mathcal{O}_{i}^{(n)}}{\Lambda^{n-4}})$

3. jedyne parametry (do rzędu p^4): a_4 , a_5

- liczymy amplitudę rozpraszania
- wymuszona unitarność fal cząstkowych (unitaryzacja)

Modele: \longrightarrow

rezonansowe

(wynik zastosowania unitaryzacji - jak w rozpr. $\pi\pi$):

- $\ddot{}$ skalarne (\sim SM z ciężkim bozonem Higgsa)
- č wektorowe
- škalarno-wektorowe
- nierezonansowe

Eksperymentalny przejaw łamania symetrii przez SSS

1. 1 rzeczywiste W + dżety: Wj, Wjj, Wjjj (j=u, \bar{u} , d, \bar{d} , g) $u \rightarrow W + u \rightarrow W$

3. EW \bigoplus QCD WWjj - redukowalne (inna kinematyka, umiarkowany σ) \Rightarrow pominięte

4. rozpraszanie VV \rightarrow W_TW_T, VV \rightarrow W_LW_T (inna kinematyka niż V_LV_L \rightarrow V_LV_L rzędu rozpraszania V_LV_L w SM dla m_H \sim 100 GeV i już jest włączone do EW WWjj) \Rightarrow pominięte

1. procesy sygnału:

- (a) rozpraszanie $V_L V_L \rightarrow W_L W_L$
- (b) PYTHIA z Electro-Weak Chiral Lagrangian (EWChL) (od Butterworth et al.)
- 2. procesy tła
 - (a) Wj i tt wygenerowane w PYTHIA
 - (b) wielodżetowe procesy Wjj, Wjjj, ttj, ttjj generowane w etapach:
 - COMPHEP: 4-wektory stanów końcowych
 - PYTHIA: ISR (promieniowanie stanów początkowych) jest dodawany, fragmentacja, hadronizacja
 - rozwiązany problem przekrywania się próbek (problem z ISR)

Przekroje czynne obliczone w PYTHIA i COMPHEP (LO)

procesy		
S4		
W [±] j		
W ⁺ jjj		
tī		
tīj		

Przekroje czynne obliczone w PYTHIA i COMPHEP (LO)				
	ро			
	gener.			
procesy	presel.			
	σ [pb]			
S4	0.035			
W [±] j	1770			
W ⁺ jjj	≈175			
tī	273			
tīj	272			

- etapy preselekcji:
 - 1. podczas generacji w

PYTHIA i COMPHEP

obiekty: partony, W i t

cięcia na pT(W, t)>100 GeV i η

Przekroje czynne obliczone w PYTHIA i COMPHEP (LO)				
	ро	ро		
	gener.	presel.		
procesy	presel.	*BR		
	σ [pb]	σ [fb]		
S4	0.035	6.9		
W [±] j	1770	9500		
W ⁺ jjj	≈175	163		
tī	273	1360		
tīj	272	753		

- etapy preselekcji:
 - 1. podczas generacji w

PYTHIA i COMPHEP

obiekty: partony, W i t

cięcia na pT(W, t)>100 GeV i η

- 2. dedykowana preselekcja
 - (a) 1 twardy mion
 - (b) przynajmniej 1 twardy centr. dżet
 - (c) przynajmniej 1 twardy znakujący dżet

	ро	ро	po selekcji		
	gener.	presel.	z pełną rekonstrukcją		
procesy	presel.	*BR		$(I = \mu)$	
	σ [pb]	σ [fb]	σ [fb]	#/100 fb ⁻¹	
S4	0.035	6.9	0.55	55±5	
W [±] j	1770	9500			
W ⁺ jjj	≈175	163	0	pprox 0.	
tī	273	1360	0.	<3x4.4	
tīj	272	753	0.57	57±29	

- Przekroje czynne obliczone w PYTHIA i COMPHEP (LO)
- etapy preselekcji:
 - 1. podczas generacji w

PYTHIA i COMPHEP

obiekty: partony, W i t

cięcia na pT(W, t)>100 GeV i η

- 2. dedykowana preselekcja
 - (a) 1 twardy mion
 - (b) przynajmniej 1 twardy centr. dżet
 - (c) przynajmniej 1 twardy znakujący dżet
- selekcja:
 - zoptymalizowana z dokładną
 symulacją i rekonstrukcją detektora

5

- 1. • wieże kalor.: $\Delta \eta x \Delta \phi = 0.087 \times 0.087$
 - wieża ma $E \Rightarrow E_T = E^* \sin \theta$, m=0. $\Rightarrow \vec{p}$
- 2. Algorytm stożkowy:
 - główny parametr: stożek $\Delta R = 0.5, 0.7$
 - dżetowanie rozpoczyna się od najtwardszych wież (osie)
 - wieże odległe od osi o $\sqrt{\Delta\eta^2 + \Delta\phi^2} < \Delta R$ należą do dżetu
- 3. wyznaczenie 4-pędu dżetu: schematy rekombinacji:
 - (a) schemat E(CDF in Runl/II i DØ w Runll): $p_J^{\mu} = \sum_{i \subset J} p_i^{\mu}$
 - (b) schemat ET("Snowmass", DØ w Runl): dobry tylko dla wąskich dżetów $E_T^J = \sum_{i \in J} E_T^i$, $p_J^{\mu} = \sum_{i \subset J} \frac{E_T^i * P_i^{\mu}}{E_T^J}$
- 4. masa jetu: $m_J = \sqrt{E_J^2 p_J^2}$

W_{Hadr} rekonstruowany z 1 lub 2 dżetów, dżety: p_{\perp} >20 GeV, $|\eta|$ <2.0

Obserwacja silnie sprzezonego sektora Higgsa...15

Seminarium Fizyki Wysokich Energii, 27 stycznia, 2006 P. Zych, IFD Warszawa

Bozony W w Monte Carlo

Obserwacja silnie sprzezonego sektora Higgsa...16

Seminarium Fizyki Wysokich Energii, 27 stycznia, 2006 **P. Zych, IFD Warszawa**

• korekcje: zmniejszyć różnicę w p^{μ} między dżetem a początkowym partonem

- przyczyny różnicy:
 - č fizyka: UE, pile-up, wycieki poza stożek (miekkie ślady)
 - detektor: martwe regiony, wycieki poza kalorymetr, nieliniowość odpowiedzi kalorymetru
- metoda: porównane WHadr(1dżet) zrekonstruowanego z MC
- poprawki są zależne od świetlności
- w eksperymencie: użycie charakt. sygnatur (np. γj)

Hadr W przed korekcja

- stożek = 0.7
- schemat E
- WHadr = 1 dżet
- korekcja dżetowa

- znaczne zwiększenie # przypadków sygnału (cięcie: p₁(WWjj)<50 GeV)
- poprawiona rekonstrukcja wartości M(WW) - masy rezonansu

proces tła	# po selekcji	#/100 fb $^{-1}$
tī	0	<3x4.4
tīj	4	57±29
Wj		
W ⁻ jj	0	<3x10.
W ⁺ jjj	0	0.

- zbyt mała statystyka procesów tła?
- zbyt restrykcyjna selekcja?

Wyniki z użyciem szybkiej symulacji detektora:

Wstępne wyniki z użyciem dokładnej symulacji detektora i rzeczywistej rekonstrukcji:

model	m[GeV]	# / 100 fb ⁻¹	$S=N_S/\sqrt{N_B}$
S1	1400	30±2	3.9±1.0
S4	900	55±5	7.2±2.0
S6	770	49±4	6.4±1.7

odkrycie dla S \geq 5 S=5 \Rightarrow prawdopodobieństwo odkrycia=50%

- przejawy spontanicznego łamania symetrii przez sektor silnie oddziałujacy zostaną zaobserwowane w detektorze CMS
- rezonanse do mas \approx 1300 GeV mogą być odkryte
- opracowano schemat analizy danych eksperymentalnych:
 - 1. rozważenie wielodżetowego tła (dotychczas głównie Wj i t \overline{t})
 - 2. opracowanie preselekcji
 - użycie dokładnej symulacji detektora i rekonstrukcji przypadków w CMS
 - 4. specyficzna i bardzo efektywna rekonstrucja $W \rightarrow q\bar{q}$

Dodatkowe transparencje

Obserwacja silnie sprzezonego sektora Higgsa...24

Seminarium Fizyki Wysokich Energii, 27 stycznia, 2006 P. Zych, IFD Warszawa

- oddziaływanie QCD pozostałych partonów z tego samego protonu (underlying event==UE)
- pile-up odziaływanie QCD partonów między innymi protonami nałożenie dodatkowo 25x8 QCD przypadków
 - związany ze świetlnością: dodatkowo 25 oddziaływań QCD zachodzi przy \mathcal{L}_{int} =100 fb⁻¹ (tylko 5 przypadków 20 fb⁻¹)
 - związany z wolnymi (obserwującymi kilka kolejnych przecięć) poddetektorami czynnik skalujący: x8
- 3. dokładna symulacja odpowiedzi detektora i rzeczywista rekonstrukcja obiektów (ślady, leptony, dżety, fotony, MET, znaczenie b)

- kanały hadronowe (dżety)
- hermetyczność \Rightarrow rekonstrukcja uciekających cząstek z brakującej ET, np.LSP, ν
- izolacja kalorymetryczna

1. rodzaje algorytmów dżetujących:

- stożkowe (Snowmass, MidPoint)
- klastrowe (kT, JADE, Durham, Cambridge)
- niedżetowe (JetEnergyFlow)

2. stożkowe (Snowmass):

dżetujemy wieże kalorymetryczne (ECAL+HCAL) o $E_T=E^*\sin\theta$

- (a) zaczynamy od najtwardszych
- (b) do dżetu włączamy wszystkie będące w stożku
- (c) obliczamy ważony E_T środek dżetu
- (d) wracamy do (b) aż uzyskamy stabilny dżet
- (e) wracamy do (a) aż wszystko zdżetujemy
- 3. wyznaczenie 4-pędu dżetu: schemat rekombinacji

twarde µ rekonstruowane z użyciem det. śladowego i komór mionowych,

rekonstrukcja ν:

$$\vec{MET} = -\sum_{wiee \ CALO} \overrightarrow{E_T^i}$$
$$\vec{p_T} = \overrightarrow{MET}$$

$$p_z^{\mu} \ge M(\mu + \nu) = M_W$$

WLept for MET rec algos

