Efekty spinowe w ekskluzywnej produkcji mezonów ρ^0 w eksperymencie COMPASS

Seminarium Fizyki Wielkich Energii, Warszawa, 19V 2006

Oleg A. Grajek

IPJ, Zakład Fizyki Wielkich Energii (P-VI)

Plan:

- reakcja ekskluzywnej produkcji mezonów wektorowych (EVMP)
- motywacja
- eksperyment COMPASS
- selekcja danych do analizy
- efekty spinowe w EVMP
- wyniki
- podsumowanie

Reakcja ekskluzywnej produkcji mezonów wektorowych (EVMP)

Na niebiesko czastki (tory) rejestrowane przez spektrometr COMPASSa.

$$\mathsf{BR}(
ho^0 o \pi^+\pi^-) \approx 100\%$$

 $p_t^2 pprox |t - t_{\min}|$

$$egin{aligned} Q^2 &= -q^2 = -(k-k')^2 \ x_{
m Bj} &= Q^2/(2\,
u\,m_{
m p})\,, \quad
u &= p\cdot q/m_{
m p} \ W^2 &= (p+q)^2 \qquad y =
u/E_{
m beam} \ t &= (p-p')^2 = (q-v)^2 \end{aligned}$$

k,~k',~q,~v,~p,~p'~- 4-pędy cząstek $~\mu,~\mu',~\gamma^*,~
ho^0,~N,~N'$

• wymiana reggeonów (\mathbb{R}) w kanale t

o parzystości P naturalnej $(
ho,\ \omega,\ f,\ a_2)$ i nienaturalnej $(\pi,\ a_1)$

- w zakresie energetycznym COMPASSa dominuje wymiana pomeronu (ℙ)
 ⇒ proces dyfrakcyjny (parzystość naturalna)
- pozwala testować perturbacyjne i nieperturbacyjne aspekty oddziaływań silnych
- to seminarium \implies produkcja niekoherentna na spolaryzowanej tarczy ⁶LiD

Nieperturbacyjny i perturbacyjny opis reakcji EVMP

Motywacja dla badania reakcji EVMP

- badanie hadronowej struktury wirtualnego fotonu
- proces dyfrakcyjny \implies przy dużych W dominuje wymiana pomeronu w kanale t (badanie jego fizycznej natury, sprzężeń itp.)
- proces ekskluzywny => w obszarze stosowalności pQCD dostęp do uogólnionych rozkładów partonów (ang. Generalized Parton Distributions, GPDs)
- efekty spinowe w EVMP:
 - dość dobrze poznana dynamika reakcji dla niespolaryzowanej albo spolaryzowanej wiązki i niespolaryzowanej tarczy
 - \Rightarrow spinowa macierz gęstości (ang. spin density matrix, SDM) mezonów wekt.

 \Rightarrow testowanie hipotezy SCHC

- bardzo słabo znana dynamika reakcji dla spolaryzowanych wiązki i tarczy
 - ⇒ szczególna motywacja do badania asymetrii podwójnie–spinowych
 - \Rightarrow zależne od spinu GPDs (pQCD)

Eksperyment COMPASS (NA-58) w CERN-ie

CO mmon M uon and P roton A pparatus for S tructure and S pectroscopy

MEMBER

STATES

ok. 230 fizyków z 28 instytutów z 11 krajów + CERN zatwierdzony w 1997r., rozpoczęcie budowy w 1998 r. run techniczny w 2001 r., rozpoczęcie zbierania danych w 2002 r.

COMPASS wykorzystuje wiązkę mionową dostarczaną z SPS za pomocą linii wiązki M2

COMPASS — spektrometr (2003 r.)

- spektrometr 1-ramienny, dł. ok. 60 m
- 2 podukłady (LAS, SAS), każdy wyposażony w magnes dipolowy (odp. SM1 i SM2)
- detektory śladowe, m.in. MicroMeGas, GEM, komory dryfowe, MWPC, komory słomkowe
- 2 detektory mionów: Muon Wall (LAS i SAS)
- kalorymetry: 2 hadronowe (LAS i SAS), 1 elektromagnetyczny (SAS)
- identyfikacja cząstek: RICH

COMPASS — pierwszy CERN-owski eksperyment XXI wieku

COMPASS

Trigger-System

MicroMegas

GEM

Straws

Readout electronics

Calorimeter readout

Scintillating fiber trackers

- nowe technologie
- detektory nowego typu: MicroMeGas, GEM
- nowe rozwiązania w detektorach ,,standardowych"
- nowa szybka elektronika do odczytu detektorów (ok. 250000 kanałów detekcyjnych)
- system akwizycji danych à la LHC, z przetwarzaniem potokowym i buforowaniem danych

COMPASS — układ trygera

- tryger mionowy (,,geometryczny") inkluzywny
 - pary płaszczyzn hodoskopów scyntylacyjnych
 - podzielony na 4 podukłady: Inner, Ladder, Middle i Outer Trigger
- dodatkowo sygnał z jednego z kalorymetrów hadronowych tryger semiinkluzywny
- tryger ,,czysto" kalorymetryczny (CT) największe Q^2

COMPASS — zbieranie danych w latach 2002–2004

	2002	2003	2004	
czas na wiązce [dni]	106	90	109	
przygotowania [dni]	30	7	3	
$\epsilon_{_{ m SPS}}$	0.90	0.63	0.67	
$\epsilon_{ m spectr}$	0.77	0.83	0.87	
liczba przyp. ze zrek.				
wierzch. $ imes 10^9$	~ 2.2	\sim 2.5	\sim 4.0	
obj. danych [Tbyte]	\sim 200	\sim 250	\sim 450	

Efekty spinowe w ekskluzywnej produkcji mezonów ho^0 — analiza

2 niezależne przypadki — przebadane w ramach niezależnych analiz:

wiązka:	spolaryzowana	spolaryzowana		
tarcza:	niespolaryzowana (zsypano przypadki z obu cel)	/zowana spolaryzowana dki z obu cel)		
obiekt: badany:	spinowa macierz gęstości (SDM) mezonu $ ho^0$	asymetria podwójnie spinowa $A_1^ ho$		
dane:	całe 2002	całe 2002 + 2003		
zakres Q^2 :	$Q^2 > 0.01~{ m GeV}^2$	cały dostępny		

Tarcza deuteronowa (⁶LiD)

Selekcja przypadków z ekskluzywną produkcją mezonów ho^0

- przypadek musi mieć zrekonstruowany wierzchołek pierwotny wierzchołek pierwotny — w. oddziaływania mionu wiązki z nukleonem tarczy
- wierzchołek pierwotny musi być wewnątrz jednej z cel tarczy
- tylko przypadki z 3 torami wychodzącymi z wierzchołka pierwotnego
- jeden z 3 torów musi być torem mionu rozproszonego, pozostałe 2 muszą być torami hadronowymi i mieć przeciwne ładunki
- RICH nie używany do identyfikacji cząstek
 1) torom hadronowym przypisane hipotezy masowe m_{π±} i m_{K±} ⇒
 2) obliczone masy m_{ππ} i m_{KK}
- $z_{
 m last} < 33$ m dla torów pionów $\, \Rightarrow \,$ obniża liczbę misidentyfikacji μ' jako π
- taki sam strumień mionów wiązki musi przechodzić przez obie cele tarczy (tylko w analizie asymetrii $A_1^{
 ho}$)
- $E_{\mu'}>$ 20 GeV i u> 30 GeV

COMPASS — rozkłady zmiennych mionowych dla próbki ekskl. ho^0

COMPASS — rozkłady zmiennych hadronowych dla próbki ekskl. ho^0

$$egin{aligned} \hline m_{\pi\pi} \, [{
m GeV}] \ \hline 0.5 < m_{\pi\pi} < 1 \, [{
m GeV}] \ \hline E_{
m miss} \, [{
m GeV}] \ \hline E_{
m miss} \, = \, (m_X^2 - m_{
m p}^2)/2 \, m_{
m p} \ m_X^2 = \, (p + q - v)^2 \ -2.5 < E_{
m miss} < 2.5 \, [{
m GeV}] \ \hline p_t^2 \, [{
m GeV}^2] \ \hline 0.15 < p_t^2 < 0.5 \, [{
m GeV}^2] \ \Rightarrow {
m produkcja niekoherentna} \ \langle \, p_t^2 \,
angle = 0.27 \, {
m GeV}^2 \end{aligned}$$

Kąty $oldsymbol{ heta}$, $oldsymbol{\Phi}$ i $oldsymbol{\psi}$ dla ekskl. produkcji i rozpadu mezonów wektorowych

γ^* N center-of-mass frame

Spinowa macierz gęstości mezonu ho^0 [1]

Formalizm poniżej wg pracy: K. Schilling, G. Wolf, Nucl. Phys. B 61 (1973) 381

• Standardowy formalizm dla reakcji 2–ciałowych (M. Jacob, G.C. Wick, 1959) \Rightarrow amplitudy skrętnościowe T dla reakcji $\gamma^* N \rightarrow V N'$:

$$T_{\lambda_V \lambda_{N'}, \lambda_\gamma \lambda_N} = \langle \lambda_V \lambda_{N'} \mid j_{\lambda_\gamma} \mid \lambda_N \rangle$$

• Spinowa macierz gęstości (SDM) mezonu wektorowego — ho(V):

 $ho(V) \propto \sum_{\lambda_N \lambda_{N'}} T
ho(\gamma) T^{\dagger}, \quad ext{gdzie }
ho(\gamma) - ext{spinowa macierz gestości fotonu}$

• Rozkład ho(V) w bazie macierzy hermitowskich ho^{lpha} :

$$ho(V) = \sum_{lpha=0}^{8} \, \Pi_{lpha} \, {oldsymbol
ho}^{lpha}$$

gdzie elementy SDM (SDME) ρ^{α} :

$$\left(egin{aligned} & \left(
ho_{\lambda_V \lambda_V'}^{lpha} = \left(2N_{lpha}
ight)_{\lambda_N, \lambda_{N'}, \lambda_{\gamma}, \lambda_{\gamma'}}^{-1} T_{\lambda_V \lambda_{N'}, \lambda_{\gamma} \lambda_N} T_{\lambda_V \lambda_N} \Gamma_{\lambda_{\gamma}, \lambda_{\gamma'}}^{lpha} T_{\lambda_V' \lambda_{N'}, \lambda_{\gamma'} \lambda_N}
ight)
ight)
ight)$$

 Γ^{α} , $\alpha = 0, 1, \dots, 8$ — hermitowskie macierze bazowe przestrzeni 3×3 , N_{α} — stałe normalizacyjne Zasada zachowania parzystości P i własności symetrii macierzy Γ^{α} redukują liczbę niezależnych SDME $\rho^{\alpha}_{\lambda\lambda'}$ do 26. O.A. Grajek, Seminarium FWE 19.05.06, s. 17

Spinowa macierz gęstości mezonu ho^0 [2]

• Przy braku separacji przekroju czynnego $\sigma(\gamma^*N \to VN')$ na wkłady σ_L i σ_T od fotonów odpowiednio γ_L^* i γ_T^* (np. COMPASS), definiuje się następujące SDME:

$$r_{ik}^{04}=rac{
ho_{ik}^0+\epsilon' R\,
ho_{ik}^4}{1+\epsilon' R}$$
, $r_{ik}^lpha=rac{c\,
ho_{ik}^lpha}{1+\epsilon' R}$,

gdzie: $\alpha = 1-3, 5-8, i, k = -1, 0, 1$ $c = 1 \text{ dla } \alpha = 1-3 \text{ i } c = \sqrt{R} \text{ dla } \alpha = 5-8$ $R = \sigma_L/\sigma_T, \quad \epsilon' \equiv \epsilon + \delta = \Gamma_L/\Gamma_T$ ϵ — parametr polaryzacyjny fotonu $\delta = 2m^2Q^{-2}(1-\epsilon)$ — poprawka masowa dla $m \neq 0 \pmod{m}$ (m — masa leptonu)

• Rozkład kątowy cząstek w rozpadzie mezonu wektorowego na 2 cząstki bezspinowe: $\frac{\mathrm{d}^3 N}{\mathrm{d}\cos\theta\,\mathrm{d}\phi\,\mathrm{d}\Phi} \equiv W(\cos\theta,\,\phi,\,\Phi) = \sum_{\alpha=0}^8 \Pi_{\alpha}(\Phi)\,W^{\alpha}(\cos\theta,\,\phi)$

gdzie:

$$W^{\alpha}(\cos\theta,\phi) = \frac{3}{4\pi} \left[D^{1}_{\lambda_{V}0}(\phi,\theta,-\phi) \right]^{*} \rho^{\alpha}_{\lambda_{V}\lambda_{V}'}(V) D^{1}_{\lambda_{V}'0}(\phi,\theta,-\phi)$$
$$D^{\alpha}_{\beta\gamma} - \text{Wignera funkcje obrotów}$$
O.A. Grajek, Seminarium FWE 19.05.06, s. 18

Rozkład kątowy produkcji i rozpadu (na 2 cząstki bezspinowe) mezonu wekt. w jawnej postaci)

$$\begin{split} W(\cos\theta, \phi, \Phi) &= W(\cos\theta, \phi, \Phi)_{\text{unpolar.}} \pm W(\cos\theta, \phi, \Phi)_{\text{long. polar.}} = \\ \frac{3}{4\pi} \left\{ \left\{ \frac{1}{2} (1 - r_{00}^{04}) + \frac{1}{2} (3 r_{00}^{04} - 1) \cos^2\theta - \sqrt{2} \operatorname{Re} r_{10}^{04} \sin 2\theta \cos\phi - r_{1-1}^{04} \sin^2\theta \cos 2\phi - \epsilon \cos 2\Phi \times \\ \left(r_{11}^{04} \sin^2\theta + r_{00}^{1} \cos^2\theta - \sqrt{2} \operatorname{Re} r_{10}^{1} \sin 2\theta \cos\phi - r_{1-1}^{1} \sin^2\theta \cos 2\phi \right) - \\ \epsilon \sin 2\Phi \left(\sqrt{2} \operatorname{Im} r_{10}^{2} \sin 2\theta \sin\phi + \operatorname{Im} r_{1-1}^{2} \sin^2\theta \sin 2\phi \right) + \\ \sqrt{2\epsilon} (1 + \epsilon') \cos\Phi \times \\ \left(r_{11}^{5} \sin^2\theta + r_{00}^{5} \cos^2\theta - \sqrt{2} \operatorname{Re} r_{10}^{5} \sin 2\theta \cos\phi - r_{1-1}^{5} \sin^2\theta \cos 2\phi \right) + \\ \sqrt{2\epsilon} (1 + \epsilon') \sin\Phi \left(\sqrt{2} \operatorname{Im} r_{10}^{6} \sin 2\theta \sin\phi + \operatorname{Im} r_{1-1}^{6} \sin^2\theta \sin 2\phi \right) \\ \right\} (\operatorname{unpolar.}) \pm \\ P_{b} \left\{ \sqrt{1 - \epsilon^2} \left(\sqrt{2} \operatorname{Im} r_{10}^{3} \sin 2\theta \sin\phi + \operatorname{Im} r_{1-1}^{3} \sin^2\theta \sin 2\phi \right) + \\ \sqrt{2\epsilon} (1 - \epsilon) (1 + 2\delta/(1 + \epsilon)) \times \\ \left[\cos\Phi \left(\sqrt{2} \operatorname{Im} r_{10}^{7} \sin 2\theta \sin\phi + \operatorname{Im} r_{1-1}^{7} \sin^2\theta \sin 2\phi \right) + \sin\Phi \times \\ \left(r_{11}^{8} \sin^2\theta + r_{00}^{8} \cos^2\theta - \sqrt{2} \operatorname{Re} r_{10}^{8} \sin 2\theta \cos\phi - r_{1-1}^{8} \sin^2\theta \cos 2\phi \right) \right] \right\} (\operatorname{long. polar.}) \right\} \\ 23 \operatorname{niezaležne} \operatorname{SDME} r_{ik}^{04} i r_{ik}^{\alpha} : 15 (+8) \operatorname{dostępnych z wiązką niespolar.} (spolar.) \end{split}$$

 $P_{
m b}$ — polaryzacja wiązki

Hipoteza zachowania skrętności w kanale $oldsymbol{s}$

ang.: *s*-channel helitity conservation — SCHC

mezon wekt. zachowuje skrętność fotonu-rodzica, zdefiniowaną w kanale s:

Jeśli SCHC obowiązuje to tylko 5 SDME $r_{ik}^{04/\alpha} \neq 0$, 3 z nich niezależne:

$$r_{00}^{04}, \quad \operatorname{Im} r_{1-1}^2 = -r_{1-1}^1, \quad \operatorname{Im} r_{10}^6 = -\operatorname{Re} r_{10}^5$$

• reakcja EVMP inicjowana przez fotony γ_T^* and γ_L^*

 \Rightarrow badanie względnych wkładów w zależności od zmiennych kinemat.

testowanie samej hipotezy SCHC

Cel badań:

COMPASS: element r_{00}^{04} spinowej macierzy gęstości mezonu ho^0

O.A. Grajek, Seminarium FWE 19.05.06, s. 23

COMPASS: element $r^1_{1\ -1}$ spinowej macierzy gęstości mezonu ho^0

Jeśli obowiązuje SCHC i w kanale t wymieniany jest obiekt o naturalnej parzystości P to

$$egin{aligned} W(oldsymbol{\psi}) &= rac{1}{2\pi}(1\,+\,2\,\epsilon\,r_{1\,-\!1}^1\,\cos2\psi) \ r_{1\,-\!1}^1 &= rac{1}{2}\,(1\,-\,r_{00}^{04}) \end{aligned}$$

Zachodzi też związek

Asymetria podwójnie–spinowa $A_1^{ ho}$)

• Definicja:

$$egin{aligned} A_1^{m{
ho}} &= rac{\sigma_{1/2}^{} - \sigma_{3/2}^{}}{\sigma_{1/2}^{} + \sigma_{3/2}^{}} \end{aligned}$$

- $\begin{array}{cccc} \bullet & \sigma \equiv \sigma(\gamma^* N \to \rho^0 N) \\ \bullet & & \longrightarrow \vec{q} & & \longrightarrow \vec{q} & \text{oś kwantyzacji} \\ & 1/2 & \vec{s}_{\gamma} \Rightarrow \Leftarrow \vec{s}_N & \text{lub} & \vec{s}_{\gamma} \Leftarrow \Rightarrow \vec{s}_N \\ & 3/2 & \vec{s}_{\gamma} \Rightarrow \Rightarrow \vec{s}_N & \text{lub} & \vec{s}_{\gamma} \Leftarrow \leftarrow \vec{s}_N \end{array}$
- Możliwe źródła:
 - wymiana trajektorii $oldsymbol{a}_1(1260)$ w kanale $oldsymbol{t}$
 - interferencja amplitud z wymianą w kanale t reggeonów z naturalną i nienaturalną parzystością P
 - trajektorie z naturalną P: $ho,~\omega,~f,~a_2(1320),~{\sf P}$
 - trajektorie z nienaturalną P: $\pi, \; a_1(1260)$
 - wymiana pomeronu:
 - P nieperturbacyjny (,,miękki"): $A_1^{
 ho} pprox 0$
 - P pQCD (,,twardy"): możliwa $A_1^{
 ho} \neq 0$

Trochę fenomenologii dotyczącej asymetrii $A_1^
ho$

Istnieją 3 klasy modeli:

- model oparty na GVMD: H. Fraas (1976)
 - podstawowa idea: wymiana reggeonów i ,,tradycyjnego'' pomeronu w kanale $m{t}$
 - wiąże asymetrię $A_1^
 ho$ z asymetrią inkluzywną A_1 : $A_1^
 hopprox 2{\cdot}A_1$
 - stosowalny od $Q^2
 ightarrow 0\,$ do $\,Q^2 pprox 10-\!20\,\,{
 m GeV^2}$
- modele oparte na pQCD: M.G. Ryskin (1999) *;
 S.W. Gołoskokow i P. Kroll (2005); inni
 - wymiana pary perturbacyjnych gluonów w kanale t (model perturb. pomeronu)
 - wymiana par $qar{q}$ w kanale t (model perturb. reggeonów) tylko w st
 - zawierają zależne od spinu GPDs: ΔG , Δq i $\Delta \bar{q}$ (kwarki tylko w *)
 - wiążą ΔG , Δq i $\Delta ar q$ z $A_1^
 ho$
 - obowiązują w obszarze stosowalności pQCD do reakcji EVMP: $Q^2\gtrsim 4$ GeV 2
- model łączący teorię Regge i idee pQCD: S.I. Manajenkow (1999)

Asymetrie podwójnie–spinowe (podłużne) dla ekskl. produkcji ho^0 [1]

- Asymetria mierzona dla liczb przypadków (${\cal N}$) oddz. mion–nukleon $\mu N o \mu' N
ho^0$:

$$A_{LL}^{\text{meas}} = \frac{1}{2} \left(\frac{\mathcal{N}_{+-}^{\text{u}} - \mathcal{N}_{++}^{\text{d}}}{\mathcal{N}_{+-}^{\text{u}} + \mathcal{N}_{++}^{\text{d}}} - \frac{\mathcal{N}_{++}^{\text{u'}} - \mathcal{N}_{+-}^{\text{d'}}}{\mathcal{N}_{++}^{\text{u'}} + \mathcal{N}_{+-}^{\text{d'}}} \right)$$

• Asymetria dla przekrojów czynnych mion–nukleon $\sigma(\mu N o \mu' N
ho^0)$:

$$A_{LL}(\mu N o \mu' N
ho^0) = rac{\sigma(\mu N)_{\uparrow \Downarrow} - \sigma(\mu N)_{\uparrow \uparrow}}{\sigma(\mu N)_{\uparrow \Downarrow} + \sigma(\mu N)_{\uparrow \uparrow}} = rac{1}{f} \cdot rac{1}{P_{
m b}} \cdot rac{1}{P_{
m t}} \cdot A_{LL}^{
m meas}$$

- Asymetria dla przekrojów czynnych foton–nukleon $\sigma(\gamma^*N o
ho^0N)$:

$$A_1(\gamma^*N o
ho^0 N) pprox rac{1}{D} A_{LL}(\mu N o \mu' N
ho^0)$$

gdzie:

D

f

+, +, - — polaryzacje wiązki (stała) i tarczy (odwracana)

$$P_{
m b}, P_{
m t}$$
 — polaryzacje wiązki i tarczy

- czynnik depolaryzacji (ang. depolarization factor)
- czynnik rozcieńczenia (ang. dilution factor)

Eksperymentalna metoda wyznaczenia $A_1^ ho$

Dla minimalizacji efektów systematycznych zastosowano:

- metodę 2^{go} rzędu z wagami:
 - każdemu przypadkowi przypisuje się wagę $w = f D P_{
 m b}$
 - konstruuje się równanie 2^{go} rzędu na $A_1^{
 ho}$:

 $a(A_1^
ho)^2 \ + \ bA_1^
ho \ + \ c \ = \ 0$

gdzie współczynniki $a,\ b,\ c$ są funkcjami wag w, $P_{
m t}$ i akceptacji cel tarczy $a_{
m u},\ a_{
m d},\ a'_{
m u},\ a'_{
m d}$

• rozwiązanie fizyczne na A_1^{ρ} jest jednym z 2 uzyskanych (2-gie jest odrzucane):

$$A_1^
ho ~=~ (-b~\pm~\sqrt{b^2~-~4ac)}~/~2a$$

• konsekutywne grupowanie danych

 $oldsymbol{N}$ konsekutywnych ,,paczek" danych

$$A_{1}^{
ho} \,=\, \sigma_{\!ar{A}}^{2} {\scriptstyle\sum\limits_{i=1}^{N}} A_{1,i}^{
ho} / \sigma_{\!A,i}^{2}$$

COMPASS: Czynnik depolaryzacji dla ekskluzywnej produkcji ho^0

COMPASS: Czynnik rozcieńczenia dla ekskluzywnej produkcji ho^0

• Definicja:

$$f_0 \;=\; rac{n_{\mathrm{D}}}{n_{\mathrm{D}}+\Sigma_{\mathrm{A}}\,n_{\mathrm{A}}\,(ilde{\sigma_{\mathrm{A}}}/\, ilde{\sigma_{\mathrm{D}}}\,)}$$

 $n_{
m D}$, $n_{
m A}$ — liczby nukleonów w deuteronie i jądrze o liczbie masowej A w tarczy $ilde{\sigma}_{
m D}$, $ilde{\sigma}_{
m A}$ — przekrój czynny na nukleon na reakcję ekskluzywnej niekoherentnej produkcji ho^0 na deuteronie i jądrze A

• Do wyznaczenia $A_1^{
ho}$ używana jest wielkość $f = C_1 \cdot f_0$, gdzie czynnik C_1 uwzględnia fakt, że są 2 spolaryzowane deuterony w jądrze ⁶LiD.

COMPASS: asymetria $A_1^ ho$ dla ekskluzywnej produkcji ho^0

Błędy: kreski — stat., pasmo — syst.

Przedział Q^2	1	2	3	4	5	6	7	8
$\langle Q^2 angle $ [GeV 2]	0.017	0.036	0.072	0.16	0.35	0.69	1.7	8.2
$\langle x_{_{ m Bj}}^{} angle$	0.00017	0.00036	0.00071	0.0016	0.0037	0.0073	0.020	0.094
$\langle \ u \ angle$ [GeV]	57.7	61.3	62.7	62.6	59.4	60.2	56.7	54.1

Porównanie wyników COMPASS-a i HERMES-a dla $A_1^{ ho\,({ m d})}$

HERMES — wyniki dla A_1^{ρ} na tarczach protonowej i deuteronowej

Opublikowane w Eur. Phys. J. C 29 (2003) 171.

Błędy: kwadratowa suma stat. i syst.

Obie analizy:

- bardzo precyzyjne pomiary obserwabli spinowych dla EVMP w szerokim zakresie kinemat.
- rozszerzenie pokrywanego zakresu w Q^2 i $x_{_{\rm Bj}}$ o 1–2 dekady w dół w porównaniu z innymi eksperymentami

Asymetria $A_1^ ho$ dla ekskluzywnej produkcji mezonu ho^0 :

- uzyskano wyniki fizyczne na pełnej próbce danych z lat 2002 i 2003
- w całym przebadanym zakresie Q^2 i $x_{_{
 m Bj}}$ asymetria $A_1^
 ho$ jest zgodna z zerem
- \Rightarrow niewielki wkład trajektorii z nienaturalną parzystością P do amplitud prod. ho^0
- planowane włączenie do analizy danych z r. 2004 ⇒ ok. 2-krotne zwiększenie liczebnośc próbki w stosunku do danych 2002–2003

 \Rightarrow Istotne zwiększenie precyzji w obszarze $Q^2\gtrsim 4$ GeV 2 (pomiar ΔG ?)

Elementy spinowej macierzy gęstości mezonu ho^0 :

- wyniki dla 4 SDME i stosunku $oldsymbol{R}$ zgodne z wynikami innych eskperymentów
- odstępstwo SDME r_{1-1}^{04} od $0 \Rightarrow$ słabe łamanie SCHC (zgodne z wynikiem ZEUS-a)
- podobna analiza na danych z 2003 r. w toku (planowane również włączenie danych z r. 2004)
- planowane wyznaczenie 23 (pełnego zestawu) elementów SDM