Cyfrowe fotografie rozpadów jądrowych nowe wyniki na temat promieniotwórczości 2p

Marek Pfützner

Zakład Spektroskopii Jądrowej, IFD UW

- Promieniotwórczość 2p
- Detektor OTPC
- Testy w Dubnej
- Eksperyment w MSU/NSCL

Seminarium Fizyki Wielkich Energii, Wydział Fizyki UW, 23 lutego 2007

Types of the 2p emission

Basic issue : how are the 2p correlated ? Does the diproton configuration contribute ?

Chart of nuclei

Decay of ⁴⁵Fe

GSI: Fragmentation of ⁵⁸Ni beam @ 650 MeV/u

6⁴⁵Fe ions implanted in a stack of Si detectors

GANIL: fragmentation of ⁵⁸Ni beam @ 75 MeV/u 22 ⁴⁵Fe ions implanted in a Si strip detector M. P. et al., EPJ A 14 (2002) 279 M. P. et al., NIM A 493 (2002) 155

J. Giovinazzo et al., PRL 89 (2002) 102501

2nd GANIL experiment:

C. Dossat et al., PRC 72 (2005) 054315

	2p decay energy (MeV)	Half-life (ms)	Branching ratio	Partial half-life (ms)
Giovinazzo <i>et al</i> . [5]	1.140 ± 0.040	$4.7^{+3.4}_{-1.4}$	0.55 ± 0.12	$8.5^{+6.4}_{-3.2}$
Pfützner et al. [6]	1.1 ± 0.1	$3.2^{+2.6}_{-1.0}$	$0.80^{+0.15}_{-0.25}$	$4.0^{+3.3}_{-1.8}$
This work	1.154 ± 0.016	$1.6^{+0.5}_{-0.3}$	0.57 ± 0.10	$2.8^{+1.0}_{-0.7}$
Average	1.151 ± 0.015	$1.75^{+0.49}_{-0.28}$	0.59 ± 0.07	$3.0^{+0.9}_{-0.6}$

$T_{1/2}$ predictions for ⁴⁵Fe

3-body : L.V. Grigorenko, I.G. Mukha, M.V. Zhukov, NP A714 (2003) 425

R-matrix : B.A. Brown, F.C. Barker, PRC 67 (2003) 041304(R)

C. Dossat et al., PRC 72 (2005) 054315

Decay of ⁵⁴Zn

GANIL: fragmentation of ⁵⁸Ni beam @ 75 MeV/u 8 ⁵⁴Zn ions implanted in a Si strip detector

B. Blank et al., PRL 94 (2005) 232501

Is ⁴⁸Ni a 2p emitter?

GANIL: fragmentation of ⁵⁸Ni beam @ 75 MeV/u 4 ⁴⁸Ni ions implanted in a Si strip detector C. Dossat et al., PRC 72 (2005) 054315

Experimental decay energy	Brown [11]	Cole [12]	Ormand [13]	Ormand [14]	Nazarewicz et al. [25]
1.35 ± 0.02	1.36 ± 0.13	1.35 ± 0.06	1.14 ± 0.21	1.29 ± 0.33	0.0–2.0

The experimental challenge

Detect both protons separately, measure their energies and determine their angular distribution The aim of the NSCL exp. #05016 Competition with the Bordeaux group!

Predicted 2p opening angle for ⁴⁵Fe

L. Grigorenko : simulation for 200 events

A possible solution

The first idea: W. Dominik at IFD Symposium 13-14 XII 2002

G. Charpak et al., NIM A269 (1988) 142

TEA = Triethylamine $N(C_2H_5)_3$

Optical Time Projection Chamber

1 atm. gas: 49 % He + 49 % Ar + 1 % N2 + 1 % CH₄

M. Ćwiok et al., IEEE TNS, 52 (2005) 2895

The prototype

Chamber active volume:

20 x 20 x 15 cm³

Materials used:

Stesalit fibreglass

PCB plates

Pyrex optical window

The prototype

-annie-

Gas (1 atm) : 49% He + 49% Ar + 1% N₂ + 1% CH₄

Data acquisition

Event reconstruction

Example

Test at DUBNA

Ion identification

Measurement sequence

PMT signal

Protons after ¹³O β decay

More βp from ¹³O

-10u

-7.5u

Time [s]

A Martin Carton Carlon Contraction of the

-2.5u

-5u

3α decay of ¹²C*

Decay of ⁸Be

Experiment at NSCL/MSU

Reaction: ⁵⁸Ni at 161 MeV/u + ^{nat}Ni \rightarrow ⁴⁵Fe

Ion identification in-flight : $\Delta E + TOF$

⁴⁵Fe production at NSCL

Results of a test measurement, September 2004

Rate of ⁴³Cr and ⁴⁵Fe reduced by a factor of 2

The new "cannon"

Thinner gas:

- 66% He + 32% Ar + 1% N₂ + 1% CH₄
- as a compromize for the active length:
- > range of 550 keV proton \approx 2.3 cm
- > range of 45 Fe ion ≈ 40 cm

Ready to go!

February 2007

Decay scheme of ⁴⁵Fe

Decay of ⁴⁵Fe

decay 0.53 ms after implantation

Another 2p event

2p decay 0.47 ms after implantation

2p event in the triggering mode

implantation

2p followed by βp

implantation

2p followed by $\beta 2p$

2p decay 2.4 ms after implantation

Summary

Experiment lasted 9 days \approx 210 hours

- ▶ ⁴⁵Fe ions identified: 248
- > Decays recoreded: 125
 - 2p emission: 95
 - βp decay: 30

Preliminary results					
≻	2p branching ratio:	$\textbf{0.76} \pm \textbf{0.10}$			
>	half-life:	$3.6\pm0.3\ ms$			
>	2p partial T _{1/2} :	$4.7\pm0.4\ \text{ms}$			

	2p decay energy (MeV)	Half-life (ms)	Branching ratio	Partial half-life (ms)
Giovinazzo <i>et al</i> . [5]	1.140 ± 0.040	$4.7^{+3.4}_{-1.4}$	0.55 ± 0.12	$8.5_{-3.2}^{+6.4}$
Pfützner et al. [6]	1.1 ± 0.1	$3.2^{+2.6}_{-1.0}$	$0.80^{+0.15}_{-0.25}$	$4.0^{+3.3}_{-1.8}$
This work	1.154 ± 0.016	$1.6^{+0.5}_{-0.3}$	0.57 ± 0.10	$2.8^{+1.0}_{-0.7}$
Average	1.151 ± 0.015	$1.75^{+0.49}_{-0.28}$	0.59 ± 0.07	$3.0^{+0.9}_{-0.6}$

Important application

Z. Janas at the NEMO – SUPERNEMO Collaboration Meeting, Jaca (Spain) XII 2006

Radon contamination in the gas filling the NEMO detector has to be monitored

two triggers within 300 ms gate

Search for ²²⁰Rn - ²¹⁶Po - $\alpha\alpha$ chain

The OTPC team

Particles Division

- Wojciech Dominik
- Mikołaj Ćwiok
- Henryk Czyrkowski
- Ryszard Dąbrowski
- Waldemar Kuśmierz

Nuclear Spectroscopy Division

- Krzysztof Miernik
- Zenon Janas
- M. P.

Collaboration

Dubna Experiment:

Warsaw University

- H. Czyrkowski
- W. Dominik
- Z. Janas
- K. Miernik
- M. Pfützner

Joint Institute for Nuclear Reasearch

- A. Fomichev
- M. Golovkov
- A. Rodin
- S. Stepantsov
- R. Slepnev
- G. M. Ter-Akopian
- R. Wolski

NSCL Experiment: Warsaw University H. Czyrkowski • M. Ćwiok • W Dominik • Z. Janas • M. Karny • A. Korgul • K. Miernik M. Pfützner University of Tennessee C. Bingham • I. Darby • R. Grzywacz S. Liddick • M. Rajabali

National Superconducting Cyclotron Laboratory

- T. Ginter
- A. Stolz

Oak Ridge National Laboratory

• K. Rykaczewski