Nowe kierunki badań struktury nukleonu

Andrzej Sandacz

Instytut Problemów Jądrowych, Warszawa

Seminarium Fizyki Wielkich Energii, Uniwersytet Warszawski 12 stycznia 2007

Rozkłady partonów

rozkłady prawdopodonieństw, niezależne od spinu bądź zależne od skrętności dla kwarków o różnych zapachach i dla gluonów

dostępne w: DIS, SIDIS, DY, 'twardych' oddziaływaniach pp/ppbar, ...

dla ustalonej 'twardości' oddziaływania, zależą tylko od 1 zmiennej: ułamka pedu nukleonu niesionego przez parton (x_{Bi})

Formfaktory nukleonów

elektryczne, magnetyczne, aksjalne, dziwności, ...

zależą tylko od 1 zmiennej: kwadratu przekazu czteropędu (*t*)

w reprezentacji położeniowej odpowiadają rozkładom prawdopodobieństw w płaszczyźnie prostopadłej do osi zderzenia

Nowe kierunki

➢ Uogólnione rozkłady partonów (GPDs) badane w 'twardych' procesach ekskluzywnych np. e p → e p γ (DVCS)

Zależne od pędu poprzecznego (TMD) rozkłady partonów i funkcje fragmentacji

badane poprzez asymetrie rozkładów azymutalnych w 'twardych' procesach SIDIS

np. $e p^{\uparrow} \rightarrow e \pi^{+} X = \implies$ m.in. Collins and Sievers effects

Rozkłady poprzecznego spinu kwarków (transversity) analog tradycyjnych rozkładów partonów, ale dla spinu poprzecznego obecnie badane w 'twardych' procesach SIDIS

Konferencje dot. GPDs and TMDs w 2006

Trento, Italy June 5 - 9, 2006

Villa Mondragone, Monte Porzio Catone Rome, Italy June 12 - 16, 2006

Hard Exclusive Processes at JLab 12 GeV and a Future EIC

University of Maryland College Park October 29 - 30, 2006

Plan referatu

- > Wprowadzenie
- Modelowanie GPDs i obliczenia na sieci QCD
- Orbitalny moment pędu kwarków
- Dane doświadczalne dla DVCS
- Fomografia hadronów
- Efekt Sieversa
- > Planowane doświadczenia

PDs and GPDs

Generalized Parton Distributions

low -t process : -t << Q²

We use the notation of X.Ji and name the momenta according to:
$$\begin{split} h(P_1) + \Gamma^*(q_1) &\rightarrow h(P_2) + \Gamma(q_2) \\ \text{with } \Delta_\mu = q_{2\mu} - q_{1\mu}, \ t = \Delta^2, \ P_\mu = (P_{1\mu} + P_{2\mu})/2 \text{ and } \xi = -Q^2/2P \cdot q. \end{split}$$

$$\begin{split} &\int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P_{2} | \,\bar{q}(-\frac{1}{2}z) \,\gamma^{+}q(\frac{1}{2}z) \,|P_{1}\rangle \Big|_{z^{+}=0,z_{\perp}=0} \\ &= \frac{1}{P^{+}} \Bigg[H_{q}(x,\xi,t) \,\bar{N}(P_{2}) \gamma^{+}N(P_{1}) + E_{q}(x,\xi,t) \,\bar{N}(P_{2}) \frac{i\sigma^{+\alpha}\Delta_{\alpha}}{2M} N(P_{1}) \Bigg] \\ &\int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p' | \,\bar{q}(-\frac{1}{2}z) \,\gamma^{+}\gamma_{5} \,q(\frac{1}{2}z) \,|p\rangle \Big|_{z^{+}=0,z_{\perp}=0} \\ &= \frac{1}{P^{+}} \Bigg[\tilde{H}_{q}(x,\xi,t) \,\bar{N}(P_{2}) \gamma^{+}\gamma_{5}N(P_{1}) + \tilde{E}_{q}(x,\xi,t) \,\bar{N}(P_{2}) \frac{\gamma_{5}\Delta^{+}}{2M} N(P_{1}) \Bigg] \end{split}$$

Properties of GPDs

various parton processes embodied in a given single GPD

 $rightarrow S \neq S$ decouples for p = p $E^q, \widetilde{E}^q \neq 0$ needs orbital angular momentum between partons

$$\int dx H^{q}(x,\xi,t) = F_{1}^{q}(t) \text{ Dirac} \qquad \int dx \widetilde{H}^{q}(x,\xi,t) = g_{A}^{q}(t) \text{ axial}$$

$$\int dx E^{q}(x,\xi,t) = F_{2}^{q}(t) \text{ Pauli} \qquad \int dx \widetilde{E}^{q}(x,\xi,t) = g_{P}^{q}(t) \text{ pseudoscalar}$$

Ji's sum rule $\frac{1}{2}\int dx x (H^q + E^q) = J^q(t)$ $J^q(0)$ total angular momentum carried by quark flavour *q* (helicity and **orbital** part)

Observables and their relationship to GPDs

$$T^{DVCS} = \int_{-1}^{+1} \frac{GPD(x,\xi,t)}{x-\xi+i\varepsilon} dx + \cdots$$

Other processes related to GPDs

a production

 $M = \rho, \ \pi, \ \phi, \ J/\psi, \ \dots$

meson distribution amplitude (DA) appears

✓ access to different spin and flavour combinations of GPDs of quarks and gluons

similar to EMP

 $\gamma^* \gamma \rightarrow p \text{ pbar}, \ \pi \ \pi, \ \rho \ \rho, \dots$

generalised distribution amplitudes (GDAs) analogs of GPDs

wide angle scattering

all invariants (*s, t, u*) large $\gamma p \rightarrow \gamma p, \ \gamma^* \gamma \rightarrow p \ pbar, \dots$

GPDs from double distributions:	[Radyushkin 99, Polyakov/Weiss 99,]
 polynomiality condition automatically f 	ulfilled
 non-trivial t-dependence? 	
 GPDs from (light-cone) wave functions 	[Diehl et al. 00,]
+ non-trivial (x, ξ, t) dependence	
 only for large x, no polynomiality 	
 Non-trivial ξ-dependence via evolution 	[Shuvaev et al. 99]
Constituent Quark Models	[Scopetta/Vento 03, Pasquini et al. 04,]
•	J
For reviews see also: Goeke/Polyakov/Vanderhaeghen 01, Diehl 03, I	Belitsky/Radyushkin 05]
For reviews see also: Goeke/Polyakov/Vanderhaeghen 01, Diehl 03, I This Work: Diehl, Jakob, Feldmann and	Belitsky/Radyushkin 05] Kroll (2005)

GPDs for valence quarks:

$\begin{aligned} H^q_v(x,t,\mu^2) &= H^q(x,\xi=0,t,\mu^2) + H^q(-x,\xi=0,t,\mu^2) \\ E^q_v(x,t,\mu^2) &= E^q(x,\xi=0,t,\mu^2) + E^q(-x,\xi=0,t,\mu^2) \end{aligned}$

(Ji's notation

Related Nucleon Form Factors:

$$F_1^{p(n)}(t) = \int_0^1 dx \left(\frac{2}{3} H_v^{u(d)}(x, t, \mu^2) - \frac{1}{3} H_v^{d(u)}(x, t, \mu^2)\right)$$

$$F_2^{p(n)}(t) = \int_0^1 dx \left(\frac{2}{3} E_v^{u(d)}(x, t, \mu^2) - \frac{1}{3} E_v^{d(u)}(x, t, \mu^2)\right)$$

Strategy

- Qualitative behaviour from Regge phenomenology and physical intuition about impact-parameter GPDs.
- Compare different interpolations between small-x and large-x, assuming exponential t-dependence [default]:

 $\begin{array}{lll} H^q_{v}(x,t) &:= & q_{v}(x) \exp{[t f_q(x)]} \\ E^q_{v}(x,t) &:= & e^q_{v}(x) \exp{[t g_q(x)]} \end{array}$

- Forward limit q_v(x) from standard PDFs.
 Positivity bounds constrain e^q_v(x) (to some extent).
- Ansatz for forward limit: $e_v^q(x) \propto x^{-\alpha} (1-x)^{\beta_q}$ with $\alpha \approx 0.5$. Normalization: $\int_0^1 dx \, e_v^q(x) = \kappa_q$ (magn. moments, strange quarks neglected)
- Fit of profile functions f_q(x) and g_q(x) to electromagnetic proton and neutron form factors.

$$f_q(x) = -\alpha' (1-x)^3 \ln x + B_q (1-x)^3 + A_q x (1-x)^2$$

$$g_q(x) = -\alpha' (1-x)^3 \ln x + D_q (1-x)^3 + C_q x (1-x)^2$$

A_q, B_q fitted to F_1^p and F_1^n C_q, D_q fitted to F_2^p and F_2^n (fitting of α ' optional)

shape of profile functions motivated by Regge phenomenology (small x and t) assuming dominance of a single Regge pole:

$$H_{V}(x,t) \simeq \left(rac{x_{0}}{x}
ight)^{lpha(0)} \exp\left[\left(lpha'\lograc{x_{0}}{x}+b_{0}+\ldots
ight)t
ight]$$

Results for $H_v^q(x, t)$

- small |t|: GPDs behave like PDFs
- large |t|: pronounced maximum at increasing values of x

OAM from QCD Lattice calculations

$$\begin{aligned} A_n^q(\Delta^2) &= \int_0^1 dx \, x^{n-1} H^q(x, \Delta^2) & H^q(x, 0) = q(x) \\ B_n^q(\Delta^2) &= \int_0^1 dx \, x^{n-1} E^q(x, \Delta^2) \\ \tilde{A}_n^q(\Delta^2) &= \int_0^1 dx \, x^{n-1} \tilde{H}^q(x, \Delta^2) & \tilde{H}^q(x, 0) = \Delta q(x) \\ A_n^{Tq}(\Delta^2) &= \int_0^1 dx \, x^{n-1} H^{Tq}(x, \Delta^2) & H^{Tq}(x, 0) = \delta q(x) \\ \uparrow & \uparrow & \uparrow & 1 \end{aligned}$$

GPDs

$$\tilde{H}^{q}(x,0) = \Delta q(x)$$
$$H^{Tq}(x,0) = \delta q(x)$$

$$\frac{1}{2} (A_2^q(0) + B_2^q(0)) = J^q$$

Ji

$$A_1^q (\Delta^2) = F_1^q (\Delta^2)$$
$$B_1^q (\Delta^2) = F_2^q (\Delta^2)$$
$$\tilde{A}_1^q (\Delta^2) = g_A^q (\Delta^2)$$
$$A_1^{Tq} (\Delta^2) = g_T^q (\Delta^2)$$

GFFs

Note: here $H^q(x,\Delta^2) \equiv H^q(x,\xi=0,\Delta^2)$, etc.

OAM from QCD Lattice calculations

(Orbital) Angular Momentum

EMT :
$$J^q = \frac{1}{2} (A_2^q(0) + B_2^q(0))$$

$$\beta = 5.40, \kappa_{sea} = 0.1350$$

$$A_2(\Delta^2) = \frac{A_2(0)}{(1 - \Delta^2 / M_2^2)^2}$$

$$B_2(\Delta^2) = \frac{B_2(0)}{(1 - \Delta^2 / \hat{M}_2^2)^2}$$

QCD Lattice calculations

Chiral extrapolation

· · · but strong cancellations

$$B_1^{u+d} \approx B_2^{u+d} \approx 0 \implies E^{u+d} \approx 0$$

Diehl, Jakob, Feldmann and Kroll (2005)

from fits to nucleon formfactors

$$J^{u} = 0.20 \div 0.23 \qquad J^{d} = -0.04 \div 0.04$$
$$\boxed{L^{u+d} = -(0.06 \div 0.11)}$$

 $L^{u-d} = -(0.39 \div 0.41)$

Deeply Virtual Compton Scattering $e p \rightarrow e p \gamma$

interference + structure of azimuthal distributions + Q² dependence

a powerful tool to disantangle leading- and higher-twist effects and extract DVCS amplitudes including their phases

Available experimental data on DVCS (1)

- Iepton charge or single spin asymmetries at moderate and large x_B HERMES and JLAB results
 - > beam-charge asymmetry $A_{C}(\phi)$ $d\sigma(e^{+},\phi) - d\sigma(e^{-},\phi) \propto \operatorname{Re}[F_{1}\mathcal{H}] \cdot \cos\phi$
 - > beam-spin asymmetry $A_{LU}(\phi)$ $d\sigma(\vec{e},\phi) - d\sigma(\vec{e},\phi) \propto \text{Im}[F_1\mathcal{H}] \cdot \sin\phi$
 - > longitudinal target-spin asymmetry $A_{UL}(\phi)$ $d\sigma(\dot{P},\phi) - d\sigma(\dot{P},\phi) \propto \text{Im}[F_1 \mathcal{H}] \cdot \sin \phi$

> transverse target-spin asymmetry $A_{UT}(\phi,\phi_s)$

 $d\sigma(\phi,\phi_S) - d\sigma(\phi,\phi_S + \pi) \propto \operatorname{Im}[F_2\mathcal{H} - F_1\mathcal{E}] \cdot \sin(\phi - \phi_S) \cos\phi$ $+ \operatorname{Im}[F_2\widetilde{\mathcal{H}} - F_1\xi\widetilde{\mathcal{E}}] \cdot \cos(\phi - \phi_S) \sin\phi$

 F_1 and F_2 are Dirac and Pauli proton form factors

Beam SSA after correction for π^0 contamination from CLAS

Two data sets (e16 at 5.7 GeV,e1f at 5.5 GeV) with different torus field (different kinematic coverage) and beam energy are consistent.

Transverse Target-Spin Asymmetry from HERMES

Goeke et al., Prog.Part.Nucl.Phys.47 (2001) 401: The nucleon-helicity flip GPD *E* in the forward limit is modeled by $e(x) = A \cdot q_{val}(x) + B \cdot \delta(x)$, according to χ QSM model. The values *A* and *B* are related to J_q by: $\int dx \, x[q(x) + e(x)] = J_q$, $\int dx \, e(x) = F_2^q(0) = k^q$.

A Model-Dependent Constraint on J_u vs J_d

For the quenched Lattice calculation was done with the the pion masses 1070, 870, and 640 MeV, and extrapolated linearly in m_{π}^2 to the physical value.

Available experimental data on DVCS (2)

• cross section σ_{DVCS} averaged over φ for unpolarised protons H1 and ZEUS at small x_{B} (< 0.01) $\sigma_{\text{DVCS}}^{unp} \propto 4(\mathcal{HH}^* + \mathcal{HH}^*) - 2\frac{t}{4M^2}\mathcal{EE}^* \longrightarrow \text{H}^{\text{sea}}, \text{Hg}$

Q² dependence: NLO predictions

b assumed Q²-independent no intrinsic skewing

bands reflect experimental error on *b*: 5.26 < b < 6.40

- Wide range of Q² - sensitivity to QCD evolution of GPDs

- Difference between MRS/CTEQ due to different xG at low x_B

W dependence: NLO predictions

1996-2000

Meaurements of **b** significantly constrain uncertainty of models

Older H1 (prel.) measurement on 2000 data with a *b* value in the range [4 - 7] GeV⁻²

Impact parameter representation and probabilistic interpretation

Generically

$$A_n^q(\mathbf{b}_{\perp}^2) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{\mathbf{i} \mathbf{b}_{\perp} \mathbf{\Delta}_{\perp}} A_n^q(\mathbf{\Delta}_{\perp}^2)$$

$$H^{q}(x, \mathbf{b}_{\perp}^{2}) = \int \frac{d^{2} \Delta_{\perp}}{(2\pi)^{2}} \mathrm{e}^{\mathrm{i} \mathbf{b}_{\perp} \Delta_{\perp}} H^{q}(x, \Delta_{\perp}^{2})$$

$$\iff \langle p_+, s | \bar{q}(\mathbf{b}_\perp) \cdots q(\mathbf{b}_\perp) | p_+, s \rangle$$

$$|p_+,s\rangle = \mathcal{N} \int \frac{d^2 \mathbf{p}_\perp}{(2\pi)^2} |p_+,\mathbf{p}_\perp,s\rangle$$

Note: here $H^q(x,\Delta^2) \equiv H^q(x,\xi=0,\Delta^2)$

 $H(x, \mathbf{b}_{\perp}^2)$

→ Probability interpretation

Burkardt

Key quantities

Spatial resolution: $\delta z_{\perp} \sim 1/Q$

5.2 Nucleon tomography from default fit to $F_{1,2}^{p,n}$

valence quarks: unpolarized

Nucleon tomography from default fit to $F_{1,2}^{p,n}$

Deformation of quark space distribution in transversely polarised nucleon

$$q(x,\vec{b}_{\perp})_{p\uparrow} = H(x,\vec{b}_{\perp}) - \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\boldsymbol{\Delta}_{\perp}}$$

Intuitive connection with \vec{L}_q

- Electromagnetic interaction couples to vector current. Due to kinematics of the DIS-reaction (and the choice of coordinates \hat{z} -axis in direction of the momentum transfer) the virtual photons "see" (in the Bj-limit) only the $j^+ = j^0 + j^z$ component of the quark current
- If up-quarks have positive orbital angular momentum in the x̂-direction, then j^z is positive on the +ŷ side, and negative on the -ŷ side

note: *j* denotes current (not angular momentum)

NOTE: QCD tells us that the FSI has to be attractive, since quark and remnants form a color antisymmetric state

Chromodynamic lensing

Sievers effect

- Deformation of quark distribution in transversely polarised nucleon and
- Final state interaction

k_T asymmetry of ejected (unpolarised) quarks

Sivers: distribution of **unpol.** quarks in \perp pol. proton

$$f_{q/p^{\dagger}}(x,\mathbf{k}_{\perp}) = f_1^q(x,\mathbf{k}_{\perp}^2) - \frac{f_{1T}^{\perp q}(x,\mathbf{k}_{\perp}^2)}{M} \frac{(\hat{\mathbf{P}}\times\mathbf{k}_{\perp})\cdot S}{M}$$

Azimuthal Single-Spin Asymmetries

$$A_{UT}(\phi,\phi_{S}) = \frac{1}{\langle |S_{\perp}| \rangle} \frac{N_{h}^{\uparrow}(\phi,\phi_{S}) - N_{h}^{\downarrow}(\phi,\phi_{S})}{N_{h}^{\uparrow}(\phi,\phi_{S}) + N_{h}^{\downarrow}(\phi,\phi_{S})}$$

$$\sim \sin(\phi + \phi_{S}) \sum_{q} e_{q}^{2} \mathcal{I} \left[\frac{p_{T} \hat{P}_{h\perp}}{M_{h}} h_{1}^{q}(x,k_{T}^{2}) H_{1}^{\perp,q}(z,p_{T}^{2}) \right]$$

$$+ \sin(\phi - \phi_{S}) \sum_{q} e_{q}^{2} \mathcal{I} \left[\frac{k_{T} \hat{P}_{h\perp}}{M} f_{1T}^{\perp,q}(x,k_{T}^{2}) D_{1}^{q}(z,p_{T}^{2}) \right]$$

$$+ \cdots \quad \mathcal{I}[\ldots]: \text{ convolution integral over } k_{T} \text{ and } p_{T}$$

 \Rightarrow 2D-fit of A_{UT} to get Collins and Sivers asymmetries:

$$A_{UT}(\phi,\phi_S) = 2\left\langle \sin(\phi-\phi_S) \right\rangle_{UT} \sin(\phi-\phi_s) + 2\left\langle \sin(\phi+\phi_S) \right\rangle_{UT} \sin(\phi+\phi_s)$$

Selected projects of future DVCS measurements

CLAS12 - DVCS/BH Target Asymmetry

exclusivity => Hermetic detector

Design :

2 concentric barrels of 24 scintillators counters read at both sides

European funding (127 k€) through a JRA for studies and construction of a prototype (Bonn, Mainz, Saclay, Warsaw)

Experimental set-up for the recoil prototype test run in 2006

All scintillators are BC 408

A: 284cm x 6.5cm x 0.4cm Equiped with XP20H0 (screening grid)

B: 400cm x 29cm x 5cm Equiped with XP4512

> **Resolution on TOF** Center 340ps HV low Center 310ps HV high Expected resolution 280 ps

Projected errors of a planned DVCS experiment at CERN

 \mathcal{L} = 1.3 10³² cm⁻² s⁻¹ E_{beam} = 100 GeV 6 month data taking 25 % global efficiency

6/18 (x,Q²) data samples

3 bins in x_{B_j} = 0.05, 0.1, 0.2 6 bins in Q² from 2 to 7 GeV²

Model 1 : $H(x,\xi,t) \sim q(x) F(t)$ Model 2 : $H(x,0,t) = q(x) / x^{\alpha't}$

Good constrains for models

eRHIC ring-ring design

- Collisions at 12 o'clock interaction region
- •10 GeV, 0.5 A e-ring with 1/3 of RHIC circumference
- Inject at full energy 5 10 GeV
- Existing RHIC interaction region allows for typical asymmetric detector (similar to HERA or PEP II detectors)

Precision of DVCS unpolarized cross sections at eRHIC

HE setup: $e^{+/-}$ (10 GeV) + p (250 GeV) $\mathcal{L} = 4.4 \cdot 10^{32} \text{ cm}^{-2}\text{s}^{-1}$ 38 pb⁻¹/day For one out of 6 W intervals (30 < W < 45 GeV)

eRHIC measurements of cross section will provide significant constraints

Podsumowanie

From Stone Age to Bronze Age...

- GPD analyses are starting to be data-driven!
 - DVCS (azimuthal asymmetries)
 - DVMP
 - Form factors and wide-angle processes
- Important to disentangle x, ξ and t dependence!
 - Experimental binning
 - Theoretical parameterizations
 - Improved lattice constraints (chiral extrapol.)
- Long-term goal: ("wish/suggestion" by W.D. Nowak)
 - Define standards → Database for GPDs
 - Perform global fits

Backup slides

HERMES

SIDIS Cross Section (up to subleading order in 1/Q)

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3}$$

$$+ S_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\}$$

$$+ S_{T} \left\{ \sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} \right.$$

$$+ \frac{1}{Q} \left(\sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \sin \phi_{S} \, d\sigma_{UT}^{12} \right)$$
Beam Target Polarization
$$+ \lambda_{e} \left[\cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \left(\cos \phi_{S} \, d\sigma_{LT}^{14} + \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right) \right] \right\}$$

y Phase

Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309 "Trento Conventions", Phys. Rev. D 70 (2004) 117504

Deep Exclusive experiments

I

Published		Preliminary results		2004 2005		•••••	2009 ? 201		
HERMES 27 GeV	HERA 27.5-900 GeV	CLAS 4-5 GeV	CLAS 5.75 GeV	Hall A 6 GeV	CLAS 6 GeV	HERMES	COMPASS	JLab@ 12GeV	
DVCS - BSA + BCA + nuclei d-BSA d-BCA ep→epρ σ _L + DSA ep→enπ+ +	DVCS	DVCS BSA	DVCS DDVCS ADVCS D2VCS Polarized	DVCS proton neutron	DVCS Proton	DVCS BSA+BCA <i>With recoil</i> <i>detector</i>	DVCS σ+BCA With recoil detector	EVERYTHING, with 1	
			DVCS $ep \rightarrow ep \rho_L$ $ep \rightarrow ep \omega_L$ $ep \rightarrow ep \pi^{0}/\eta$ $ep \rightarrow en \pi^+$ $ep \rightarrow ep \Phi$	ep→epπ ^o	ер→ерπ ⁰ /η			nore statistics than ever before	

Kinematic Coverage of DVCS Experiments

Fixed-target experiments

