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1. Introduction

No FCNC processes with charged leptons observed, but numerous ex-

periments measuring neutrino oscillation has been made or are currently

collecting data. Brief summary based on Particle Data Group review:

• Gallium (Eν ≥ 0.2 MeV), chlorine (Eν ≥ 0.8 MeV) and Cherenkov

(water) detectors (Eν ≥ 5 MeV) provide a more than 5σ evidence of

oscillation of solar produced electron neutrinos νe → νµ,τ . A global

analysis including reactor experiments (KAMLAND) gives neutrino

mass splitting ∆(m2) ≈ 6 − 9 · 10−5 eV 2 and large mixing angle.

• Underground detectors observing neutrino produced by cosmic rays

in the atmosphere measure νµ/νe ratio much less than expected. This

can be explained by νµ → ντ oscillations with ∆(m2) ≈ 1−3·10−3 eV 2

and almost maximal mixing angle of νµ and ντ . The effect has been

confirmed by K2K experiment with accelerator neutrinos.

Major experimental breakthrough - massive neutrinos require going be-

yond the minimal version of the SM!
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Neutrino masses by many orders of magnitude lighter then any other

fermions. Why? Theoretical explanation(s) necessary.

Common approach: “see-saw mechanism”.

Assume existence of the right handed neutrinos. Then, one can add neu-

trino Yukawa coupling to the Lagrangian. After electroweak symmetry

breaking and replacing Higgs field by the VEV one gets the neutrino

mass term (“Dirac” mass):

Y IJ
ν H⋆

i lIi νJ
R → v

2
Y IJ

ν νI
LνJ

R ≡ mIJ
D νI

LνJ
R

Not enough to explain mass hierarchy. But, νR are singlets of all SM

gauge groups- one can add to the Lagrangian gauge invariant explicit

mass term (forbidden for all other non-singlet particles):

mIJ
D νI

LνJ
R − MIJ

R νI
RνJ

R
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“See-saw” mass matrix:

(νL, νR)


 0 mD

mT
D MR




 νL

νR




Correct mass hierarchy: suppose further that SM is a low energy effective
theory for some more general Grand Unified Theory with bigger gauge

symmetry, valid at the high energy scale EGUT ∼ O(1014 − 1016) GeV.
In many such GUTs, right neutrinos would be also a singlet of a “big”
gauge group. Mass term is thus still permitted, and has natural value
MR ∼ O(EGUT).

In such case neutrino mass matrix can be “block-diagonalized” (“Takagi
diagonalization”, Takagi 1925!)

Define 6 × 6 matrix U :

U =


 i m∗

DM−1
R

−iM−1
R mT

D 1
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and rotate light and heavy neutrino states with the use of U matrix.

New effective mass matrix:

UT


 0 mD

mT
D MR


U ≈


 mT

DM−1
R mD 0

0 MR


+ small corrections

Effective 3 × 3 mass matrix for light neutrinos:

Mν ≈ mT
DM−1

R mD

Finally, diagonalize mν:

νI
l = (U∗

MNS)IJ(νJ
l )phys

U
†
MNSMνU∗

MNS = diag(mν1, mν2, mν3)

Assuming “Dirac mass” to be mD ∼ O(0.1 − 100) GeV, like typical

masses of other SM fermions, one has neutrino masses in the correct

range: mν ∼ O(10−1 − 10−5) eV!
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See-saw: very elegant solution, but require presence of heavy right neu-

trinos. We assume existence of something very difficult to confirm ex-

perimentally - very heavy and gauge singlet... Indirect clues - cosmology,

leptogenesis?

See-saw mechanism can be introduced within the extended SM. What

changes in SUSY models? Two questions:

1. Is the see-saw neutrino mass structure modified comparing to SM?

2. Or, can SUSY offer an alternative model of neutrino masses, not

based on heavy unobservable beings?

Answer to both questions is positive!
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2. Supersymmetric heavy sector: right sneutrinos

Work in progress - not published yet.

Superpotential (NI - heavy neutral superfields, neutrinos + sneutrinos):

W = ǫij(µĤ1
i Ĥ2

j + Y I
ℓ Ĥ1

i L̂I
jR̂

I + Y IJ
ν Ĥ2

i L̂I
jN̂

J) +
1

2
MININI ,

Soft terms (Higgs and sleptons):

VS = m2
H1

H1∗
i H1

i + m2
H2

H2∗
i H2

i

+ (m2
L)IJL̃I∗

i L̃J
i + (m2

R)IJR̃I∗R̃J + (m2
N)IJÑI∗ÑJ

−
[
(m2

B)IJÑIÑJ + ǫij
(
m2

12H1
i H2

j + AIJ
ℓ H1

i L̃I
jR̃

J + AIJ
ν H2

i L̃I
jÑ

J
)
+ H.c.

]

In general, Yν, Aν are complex 3 × 3 matrices, M is a real diagonal, m2
N

is hermitian matrices, m2
B is complex symmetric matrix.

m2
B leads to mass splitting of real and imaginary part of sneutrino fields:

one gets 6 + 6 real instead of 3 + 3 complex fields.
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Mass scale assumptions:

1. Neutrino sector: ‖Yν‖ <∼ O(1) (or equivalently ‖mD‖ <∼ mt), ‖M‖ ∼
MGUT ≫ v.

2. Charged slepton sector ‖m2
L‖ ∼ ‖m2

R‖ ∼ v2.

3. Sneutrino sector ‖Aν‖ <∼ v (constrained by charged slepton mass nat-

uralness), ‖m2
B‖ <∼ v‖M‖ (SUGRA), ‖m2

N‖ ∼ v2 or ‖m2
N‖ ∼ ‖M2‖, de-

pending on details of SUSY breaking mechanism.

Further constraints aposteriori, after comparing to experimental data.

Consequences of new mass terms? Left slepton mass matrix:

M2
L = m2

L + m2
l + D − term

“Obvious” generalization:

M2
ν̃L

= m2
L + m∗

DmT
D + D − term

Not true, m∗
DmD term is supressed! Errors in many papers.
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Correct approach - see-saw mechanism for sneutrinos. More complicated
- one needs to start from 12 × 12 mass matrix and get 6 × 6 effective
mass matrix for 6 light real sneutrino fields. It reads as:

M2
ν̃ℓ

≡

 M2

LC (M2
LV )∗

M2
LV (M2

LC)∗




Denoting Av = avYv and Xv = av + µ∗ cotβ, one gets:

M2
LC ≈ m2

L + m∗
D

1

M
m2

N
1

M
mT

D +
1

2
M2

Z cos 2β

M2
LV ≈ MνXT

ν + XνMν − 2mD
1

M
m2

B
1

M
mT

D = O(mνMSUSY )

Immediate consequence - sneutrino mass splitting:

m2
Si

= (M2
LC)ii − Re(M2

LV )ii

m2
Si+3

= (M2
LC)ii + Re(M2

LV )ii i = 1,2,3

Mass splitting ∆m2
Si,i+3

= 2Re(M2
LV )ii ∼ O(mνMSUSY ). Sneutrino oscil-

lations possible? Discussed later...

J. Rosiek, Neutrino Masses and Supersymmetry



Sneutrino mass structure is already subject of experimental constraints.

1. Diagonal M2
LC entries, or the typical sneutrino mass scale - constrained

by gµ − 2.

2. Off diagonal M2
LC entries constrained by µ → eγ and τ → eγ, τ → µγ

decays:

BR(µ → eγ) =
48π2e2

m2
µG2

F

|C12|2

where

C12 ≈ e2mµ

2(4π)2s2W

(
M2

LC

)12
( √

2

cos β

m
χ+

i

MW
Z1i∗

+ Z2i∗
− D11 − |Z1i

+ |2D23

)

and similarly BR(τ → eγ) ∼ |
(
M2

LC

)13 |2, BR(τ → µγ) ∼ |
(
M2

LC

)23 |2
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Numerical estimate:

M2
LC =




& 2002 . 32 . 322

... & 2002 . 282

... ... & 2002


 .

Knowledge of M2
LC can give insight into Yν flavour structure independent

from the one derived from neutrino oscillations, particularly if m2
L is

flavour-diagonal (SUGRA type models)

Further conclusion:
||m2

N ||
||M2|| ≤ 0.01.

In standard MSSM, left slepton and sneutrino mass difference is fixed:

m2
ẽ − m2

ν̃e
= −M2

W cos 2β

Right sneutrino effects alter the relation:

m2
ẽ − m2

ν̃e
= −M2

W cos 2β − (m∗
D

1

M
m2

N
1

M
mT

D)11 ≈ −M2
W cos 2β + O(xm2

D)

With sufficient accuracy, such effect can be measured?
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Off-diagonal block M2
LV affects directly the neutrino mass matrix via

loop corrections:

Mν = M tree
ν + M1−loop

ν = M tree
ν −

mχ0
i

32π2
Re

[
(g2Z2i

N − g1Z1i
N )2

(
M2

LV

)]
C0

Assumption that the loop corrections are at most of the order of the
tree-level mass gives constraint on M2

LV :

M2
LV =




. 2 × 10−9 ... ...

... . 2 × 10−6 ...

... ... . 10−5


 ,

Alternatively, one can ask how far some particular form of M2
LV may

change the the neutrino masses and mixing.

Example: assume diagonal Yν, i.e. no mixing at the tree level: UMNS = 1!
Denote also:

α = − 1

32π2
mχ0

i
(g1Z1i

N − g2Z2i
N )2C0
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Then

Mν = mD
1

M
mD − αRe(M2

LV )

Using

M2
LV = mD

1

M
mDXT

ν + XνmD
1

M
mD − 2mD

1

M
m2

B
1

M
mT

D

and assuming Xν to be real, one gets

Mν = (1 + αXν)mDM−1mD (1 + αXT
ν )

− α2XνmDM−1mDXT
ν − 2α mD

1

M
Re m2

B
1

M
mD

Choose now m2
B such that the last two terms cancels - fine tuning,

but can be always done. Then we require first term to restore physical

neutrino masses and mixings:

(1 + αXν)mDM−1mD (1 + αXT
ν ) = Uphys

MNS mphys
νℓ

(Uphys
MNS)

T .
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This can be solved as:

Xν =
1

α

[
Uphys

MNS diag(β1, β2, β3) − 1
]

, with βI ≡

√
2MI mphys

νI

v2Y I
ν

.

Some algebra, but conclusion is clear - starting from diagonal Yν (mD),

one can find soft parameters in right sneutrino sector restoring any set

of neutrino masses and mixings.

This is possible even if tree level neutrino masses were degenerated, i.e.

no tree level mass splitting and oscillations!

The explicit analytical solution given above is rather ugly and strongly

fine-tuned, but numerically one can find more realistic ones.

In general - corrections from right sneutrino sector potentially very im-

portant!
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One more interesting effects: sneutrino oscillations?

Pν̃I→ν̃I(ν̃
∗
I )

≈ 1

2
e
− t

τI

[
1 ± cos∆mν̃I

t
]

Pν̃→ν̃(ν̃∗) is proportional to the number Nl−(Nl+) of l−(l+)’s final state

in the reaction ν̃ → l− + χ+(ν̃∗ → l+ + χ−). Asymmetry

Al =
Nl− − Nl+

Nl− + Nl+
∼ cos(∆m t)

Can be measured if

∆m

Γν̃
≃ O(1)

Not very likely - unfortunately for most parameter choices ∆m ≪ Γν̃.

Many interesting effects, nice piece of physics. But, is the presence of

right heavy sector really unavoidable?

J. Rosiek, Neutrino Masses and Supersymmetry



3. Alternative to see-saw mechanism: SUSY with broken R-parity.

Standard recipe for MSSM construction:

• add supersymmetric partners to the SM particles; add additional

Higgs doublet

• extend SM couplings to incorporate new particles.

• add “soft” supersymmetry breaking terms - they do not involve mat-

ter fermions

Complete? Not really!

SM: lepton number conservation is not due to an imposed symmetry,

just reflects the fact that all such combinations of SM fields are ruled

out by gauge invariance and renormalisability! [Weinberg].

MSSM: lepton and baryon number violating terms can appear naturally.
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Standard Yukawa couplings (indices suppressed):

LY = YlH1LLER + YdH1QLDR + YuH2QLUR + µ0H1H2

In SM Yukawa couplings describe interactions of scalar Higgs fields to

leptons or quarks. In MSSM all combinations exist - Higgs-fermions or

Higgsino-fermion-sfermion.

Additional couplings (λ’s, like Y ’s, are matrices in flavour space):

LR−par = λLLLLER + λ′LLQLDR + λ′′DRDRUR + µLH2

+ analogous terms in soft breaking sector...

New couplings break lepton and/or baryon number.
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To distinguish between various couplings, let’s introduce discrete sym-

metry - “R-parity”.

R =





1 SM particles and Higgs fields

−1 superpartners

Formally R = (−1)L+3B+2S ≡ (−1)2S+(B−L)

SM-like Yukawa interactions preserve R-parity. The new ones break it.

Breaking of R-parity drastically alters phenomenology of SUSY models!

Most importance consequence: SUSY particles do not need to be pro-

duced in pairs - lightest SUSY particle not stable. No CDM candidate,

but non-vanishing neutrino masses instead!

Is R-parity breaking phenomenologically feasible? With limitations, yes.

J. Rosiek, Neutrino Masses and Supersymmetry



Simultaneous presence of both B and L violating terms excluded - fast

proton decay mediated by squarks:

p





d

u

u
D̃

λ′′ λ′ l+

ū

u



π0

Most realistic models assume only lepton flavour violation, i.e. λ′′
IJK = 0.

Without λ′′, new terms break R-parity (Z2), but preserve some other Z3

global symmetry - Lepton Number Violating, or LFV MSSM.

Bounds on λ, λ′ mostly from various rare processes. General conclusion

- R-parity breaking constrained in magnitude, but certainly possible in

the view of current data.
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Consequences for neutrino masses

R-parity breaking leads to mixing of standard and supersymmetric fermions.

Neutralinos take the role of right neutrinos - mixing of neutralinos and

neutrinos gives neutrino masses. Simple idea but precise calculation quite

sophisticated due to the complexity of R-parity violating MSSM - several

papers published on the subject, but based on major simplifications and

approximations.

Complete analysis: - complicated and interesting problem. This seminar

based on:

Dedes, Rimmer, JR, Schmidt-Sommerfeld, Phys. Lett. B 2005

Dedes, Rimmer, JR - JHEP 2006.
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How to attack the problem? Very numerous input parameters, compli-

cated vaccum (VEV) structure, large size mass matrices etc. Kind of

nightmare...

Do it step by step:

1. Scalar sector. Neutral scalar complicated and quite tricky, charged

sleptons and squarks not different from the RPC MSSM.

2. Neutral and charged fermion sector - simplified with extensive use of

see-saw mechanism.

3. Parameter initialisation - another tricky point, careful approach re-

quired.
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I. Neutral scalar sector.

5 complex neutral fields: 2 Higgs bosons, 3 sneutrinos. LFV: Hd and lep-

ton superfields can mix! Define: L = (L0,L1,L2,L3) ≡ (Hd, L1, L2, L3).

Neutral scalar potential, including soft terms:

Vneutral =
(
M2

L̃
)
αβ

ν̃∗Lαν̃Lβ + m2
2 h0∗

2 h0
2 − (bαν̃Lαh0

2 + H.c)

+
1

8
(g2 + g2

2)[h
0∗
2 h0

2 − ν̃∗Lαν̃Lα]2 .

First step - gauge symmetry breaking. Calculations of VEV require find-

ing minimum of Vneutral - quartic polynomial of 10 real variables! Previ-

ously sold only approximately or numerically.

Our paper in PLB267: strict analytical analysis. Convenient field basis

choice, effective procedure of finding VEV’s, proof of CP-conservation,

stability analysis etc.
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II. Fermion sector

General form of superpotential:

W = ǫab

[
1

2
λαβk La

α Lb
β Ēk + λ′

αjk La
α Qb

j D̄k − µα La
α Hb

2 + (Yu)ij Qa
i Hb

2 Ūij

]

Quark superfield rotation can diagonalize (Yu)ij and (Yd)ij = λ′
0ij, but

not lepton Yukawa (Yl)ij = λ0ij - here rotation freedom fixed already in

simplifying the scalar sector. At best, Yl can be chosen to be hermitian.

Problems with parameter initialization - only lepton masses, i.e. Yl eigen-

values, known!

Start from block diagonalization of neutrino-neutralino and charged

lepton-chargino mass matrices.
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Neutral fermions

Neutrinos and neutralinos mix via bi-linear R-parity violating terms - 7×7

mass matrix:

MN =




M1 0 gvu
2 −gvd

2 0 0 0

0 M2 −g2vu
2

g2vd
2 0 0 0

gvu
2 −g2vu

2 0 −µ0 −µ1 −µ2 −µ3

−gvd
2

g2vd
2 −µ0 0 0 0 0

0 0 −µ1 0 0 0 0

0 0 −µ2 0 0 0 0

0 0 −µ3 0 0 0 0




≡

 MN 4×4 dN 4×3

dT
N 3×4 03×3




Diagonalization matrix

ZN =


 1 −M−1

N dN

d
†
NM

†−1
N 1




 ZN 0

0 Zν
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ZN ,Zν diagonalize effective “neutralino” and “neutrino” mass matrices:

ZT
ν meff

ν Zν = meff−diag
ν ZT

NMNZN = M
diag
N

Notation: physical “neutralinos” - 4 heavy states

physical “neutrinos” - 3 light states

See-saw corrections to “neutralino” mass matrix negligible, standard

analyses hold.

Effective neutrino mass matrix:

meff
ν = −dT

NM−1
N dN =

v2
d(M1g2

2 + M2g2)

4Det[MN ]




µ2
1 µ1µ2 µ1µ3

µ1µ2 µ2
2 µ2µ3

µ1µ3 µ2µ3 µ2
3
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Charged fermions

Charged leptons, gauginos and Higgsinos mix - 5 × 5 mass matrix

MC =




M2
g2vu√

2
0 0 0

g2vd√
2

µ0 0 0 0

0 µ1

0 µ2
vd√
2
Yl

0 µ3




≡

 MC 2×2 0

dC 3×2 mC 3×3




Diagonalized by:

Z− ≈

 1 −M

†−1
C d

†
C

dCM−1
C 1




 Z− 0

0 Zl−




Z+ ≈

 Z+ 0

0 Zl+
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M̂C = Z
†
−MCZ+ ≈


 Z†

−MCZ+ 0

0 Z†
l−mCZl+




mC hermitian (lepton Yukawa), so Zl+ = Zl− ≡ Zl.

Finally, UMNS matrix:

UMNS = Z†
νZ∗

l + O
(

dcdN

MCMN

)
,

Unitarity violation in UMNS: O
(

dcdN
MCMN

)
∼ mtree

ν MSUSY

M2
Z

tan2 β ∼ 10−12 tan2 β,

well below sensitivity of current (or planned) experiments.

Technical problem: neutrino mixing matrix, Zν defined at tree level up

to a U(2) rotation - complete definition of Zν and thus also Zl requires a

one-loop corrected neutrino mixing matrix. Then, lepton Yukawa matrix

Yl can be found iteratively, such that physical (i.e. loop corrected) Zν

and Zl produce the correct experimentally measured UMNS matrix.
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Neutrino mass generation and possible hierarchies

Many papers on the subject, starting from Hempfling 1996. Many of

them misleading or even wrong - problems with correct parameter ini-

tialization and with incorrect expansions/approximations used.

Tree level masses simple:

mν1 = mν2 = 0

mν3 ≈
∣∣∣∣∣∣
v2
d(M1g2

2 + M2g2)

4Det[MN4×4
]

∣∣∣∣∣∣
(|µ1|2 + |µ2|2 + |µ3|2)

Massless neutrino states degenerate at tree level, mixing matrix Zν not

well defined - loop corrections necessary.

Dominant contributions: neutralino-neutral Higgs, chargino-charged Higgs

and/or down quark/down squark in loop; other vanishing or small.
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Higgs-neutralino diagram - proportional to bilinear soft LFV breaking

parameters Bi. Other diagrams proportional to trilinear LFV breaking

parameters:

Chargino-charged Higgs diagram - driven by λ2

Down quark-down squark diagram - driven by (λ′)2

At loop level, the correct neutrino mass hierarchy can be always gen-

erated by the proper choice of just two of the LFV parameters – one

sets the scale of the atmospheric mass2 difference, the second the solar

mass2 difference.

General choices of RPV parameters lead to non-diagonal lepton Yukawa,

problems with leptonic FCNC (µ → eγ etc.)

Can one keep diagonal Yl and still obtain correct pattern of neutrino

masses and mixings? Yes, assuming special scenario: hierarchy of LFV

parameters chosen to set the neutrino mass scale must match the hier-

archy of two different UMNS rows!
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Two scenarios:

• Tree level dominance: the atmospheric mass2 difference originates

from tree level contributions to neutrino masses.
3

2

1

2

1

Solar

Atm

1 − loop corrections

3

• Loop level dominance: The atmospheric mass2 difference originates

from one-loop contributions to neutrino masses.
3

2

1

1

Solar

Atm

1 − loop corrections

2

3

In either case, the solar mass2 difference originates from loop effects.
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In further numerical examples we fix neutrino mixing angles to reproduce
the “tri-bimaximal mixing”

sin2 θ12 =
1

3
, sin2 θ23 =

1

2
, sin2 θ13 = 0

Tree level dominance.

Fix atmospheric mass difference by setting µ1 = 1.47 MeV = µ2√
2

= µ3√
3
.

Single other LFV parameter initialized - loop effects approximately pro-
portional to tree level masses - UMNS structure preserved after rediag-
onalization (so also lepton Yukawa remains diagonal).

Correct mass hierarchies e.g. for

B1 ∼ 0.21GeV2 ∼
[
300µ1

]2
,

λ133 ∼ 3.4 × 10−5 ∼ Ye ,

λ′
133 ∼ 3.2 × 10−5 ∼ 0.1Yd ,
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Red curve - full result. a) Only µ1 is varied. Other figures, µi fixed as

explained and b) B1, or c) λ133, or d) λ′
133, is varied respectively.
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Loop level dominance: µi ≈ 0, mass scales set by λ’s.

Diagrams dominated by trilinear couplings - the flavour of the external

legs of the loop can be “swapped independently” of the flavour of the

particles in the loop, just changing the appropriate indices of the λ, λ′

matrices in the loop vertices.

Setting the λ and λ′ entries which control the couplings of the external

legs in certain hierarchies, one can ensure that also the ratios of the

various entries in the one loop corrected neutrino mass matrix are such

that they give rise to the correct UMNS rotation matrix.

Three hierarchies allowed:

Hierarchy (B) : λ′
1jj =

λ′
2jj√
2

=
λ′
3jj√
3

Hierarchy (C) : λ′
1jj =

λ′
2jj√
2

= −λ′
3jj√
3

Hierarchy (D) : λ1jj = −
√

2λ2jj , λ3jj = 0 .
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d)

a) λi33 varied in hierarchy (D). For b,c,d), λi33 fixed to a value consistent

with the atmospheric mass2 difference and b) only λ′
i11 is varied in

hierarchy (B) or c) only λ′
i22 in hierarchy (B) or d) only λ′

i33 in hierarchy

(B) in order to accommodate the solar mass2 difference.

J. Rosiek, Neutrino Masses and Supersymmetry



4. Conclusions

• SUSY has important influence on neutrino masses and mixings

• heavy right neutral scalar sector can significantly modify neutrino

masses via radiative corrections. Interesting effects also in the light

sneutrino sector - mass splitting between CP-even and CP-odd states,

possible sneutrino oscillations, modifications to selectron-sneutrino

mass relation.

• SUSY can explain neutrino masses even in the absence of super-

heavy right sector. Masses can be entirely set by LFV parameters,

keeping simultaneously correct UMNS structure and diagonal lepton

Yukawa couplings. Special hierarchies of LFV parameters required.
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