Odkrywanie supersymetrii - przypadek ciężkich sfermionów

Krzysztof Rolbiecki (IFT UW) we współpracy z: K. Desch, J. Kalinowski, G. Moortgat-Pick, J. Stirling JHEP 0612, 007 (2006)

Warszawa, 9/03/2007

- 1. Wstęp ogólne uwagi o supersymetrii
- 2. Supersymetria z ciężkimi sfermionami
- 3. Przykładowy scenariusz
- 4. Wyznaczanie parametrów modelu
- 5. Rola korelacji spinowych i asymetrii przód-tył
- 6. Wyniki analizy numerycznej
- 7. Zakończenie i wnioski

Problem hierarchii

- aby złamać symetrię elektrosłabą i nadać masy cząstkom Modelu Standardowego, pewna cząstka skalarna musi otrzymać niezerową próżniową wartość oczekiwaną (VEV)
- w Modelu Standardowym rolę tę pełni elementarny skalar cząstka Higgsa
- ale poprawki kwantowe do masy bozonu Higgs
a m_{H} są kwadratowo rozbieżne

Problem hierarchii

Ponieważ Λ_{UV} może w ogólności być $\mathcal{O}(m_{\text{Pl}})$, prowadzi to do dużych poprawek do m_H . Tak duże poprawki w Modelu Standardowym do masy bozonu Higgsa, która powinna być $m_H = \mathcal{O}(m_W)$, prowadzą do dwóch problemów:

- jak otrzymać m_H tak, żeby była ona wiele rzędów wielkości mniejsza niż inne fundamentalne skale w fizyce, jak skala unifikacji albo skala Plancka problem hierarchii
- jak uniknąć poprawek δm_{H}^{2} , które są znacznie większe niż m_{H}^{2} problem naturalności

Rozwiązanie tych dwóch problemów może nam dać supersymetria (SUSY)

Supersymetryczne rozwiązanie problemu hierarchii

Możemy zauważyć, że poprawki pętlowe z fermionami i bozonami są przeciwnych znaków. Jeśli w teorii występuje taka sama liczba fermionowych i bozonowych stopni swobody oraz dodatkowo jeśli mają one identyczne sprzężenia, to rozbieżności kwadratowe się kasują

pozostają człony proporcjonalne do

$$m_f^2 \log\left(\frac{\Lambda_{\rm UV}}{m_f}\right)$$
 i $m_S^2 \log\left(\frac{\Lambda_{\rm UV}}{m_S}\right)$

Supersymetria

• symetria pomiędzy bozonami i fermionami

 $Q|\text{fermion}\rangle = |\text{bozon}\rangle; \qquad Q|\text{bozon}\rangle = |\text{fermion}\rangle$

- łączy symetrię czasoprzestrzeni ze spinem cząstek unikalne rozszerzenie symetrii Lorentza
- łączy cząstki w "supermultiplety" w obrębie jednego supermultipletu cząstki mają te same liczby kwantowe i masy
- doświadczalnie nie obserwujemy superpartnerów cząstek z Modelu Standardowego ⇒ supersymetria musi być spontanicznie złamana
- łamanie supersymetrii zachodzi w "sektorze ukrytym" i jest przenoszone do sektora widzialnego np. przez grawitację

Inne zalety supersymetrii

- naturalny kandydat na ciemną materię najlżejsza cząstka supersymetryczna (LSP)
- nowe źródła łamania symetrii CP możliwość wyjaśnienia asymetrii barionowej Wszechświata
- jest zgodna z danymi doświadczalnymi

Minimalny Supersymetryczny Model Standardowy

cząstki		spin 0	spin 1/2	$SU(3)_c, SU(2)_L, U(1)_Y$
<mark>skwarki</mark> i kwarki	Q	$\left(egin{array}{c} ilde{u}_L \ ilde{d}_L \end{array} ight)$	$\left(\begin{array}{c} u\\ d\end{array}\right)_L$	$({\bf 3},{f 2},rac{1}{6})$
(3 generacje)	U	$ ilde{u}_R^*$	u_R^\dagger	$({f \bar 3},{f 1},-{2\over 3})$
	D	$ ilde{d}_R^*$	d_R^\dagger	$(ar{3},f{1},rac{1}{3})$
sleptony i leptony	L	$\left(egin{array}{c} ilde{ u} \ ilde{e}_L \end{array} ight)$	$\left(\begin{array}{c} \nu\\ e\end{array}\right)_L$	$(1,2,- frac{1}{2})$
(3 generacje)	E	$ ilde{e}_R^*$	e_R^\dagger	$({f 1},{f 1},1)$
bozony Higgsa i	H_u	$\left(\begin{array}{c}H_u^+\\H_u^0\end{array}\right)$	$\left(\begin{array}{c} \tilde{H}_{u}^{+} \\ \tilde{H}_{u}^{0} \end{array}\right)$	$({f 1},{f 2},{f 1\over 2})$
higgsina	H_d	$\left(\begin{array}{c}H_d^0\\H_d^-\end{array}\right)$	$\left(egin{array}{c} ilde{H}^0_d \ ilde{H}^d \end{array} ight)$	$(1,2,- frac{1}{2})$

cząstki	spin $\frac{1}{2}$	spin 1	$SU(3)_c, SU(2)_L, U(1)_Y$
gluino, gluon	\widetilde{g}	g	(8,1 ,0)
wina, bozony W	$ ilde W^\pm \; ilde W^0$	$W^{\pm} W^{0}$	(1 , 3 , 0)
bino, bozon B	$ ilde{B}^0$	B^0	(1, 1, 0)

Gdzie szukać supersymetrii?

Focus Point Supersymmetry

- najważniejsza cecha: masy sleptonów, skwarków i bozonów Higgsa (oprócz jednego) powyżej 1 TeV
- masy gaugin i higgsin rzędu skali elektrosłabej
- masy miękko łamiące supersymetrię spełniają relację przy skali unifikacji $(m_{H_u}^2, m_{\tilde{t}_R}^2, m_{\tilde{t}_L}^2) \propto (1, 1 + x, 1 x)$
- linie ewolucji $m_{H_u}^2$ "skupiają" się w jednym punkcie, zapewniając w naturalny sposób łamanie symetrii elektrosłabej przy odpowiedniej energii
- ta własność jest niezależna od parametrów łamiących supersymetrię

Sektor chargin

• macierz masy chargin w bazie $(\tilde{W}^-, \tilde{H}^-)$

$$M_{\tilde{\chi}^{\pm}} = \begin{pmatrix} M_2 & \sqrt{2}m_W \cos\beta \\ \sqrt{2}m_W \sin\beta & \mu \end{pmatrix}$$

 \bullet diagonalizujemy ją za pomocą dwóch unitarnych macierzy U i V

$$V^* M_{\tilde{\chi}^{\pm}} U^{\dagger} = \begin{pmatrix} m_{\tilde{\chi}^{\pm}_1} & 0 \\ 0 & m_{\tilde{\chi}^{\pm}_2} \end{pmatrix}$$

• stany własne macierzy masy w reprezentacji Weyla

$$U\begin{pmatrix}\tilde{W}_L^-\\\tilde{H}_d^-\end{pmatrix} = \begin{pmatrix}\chi_{1L}^-\\\chi_{2L}^-\end{pmatrix} \quad V\begin{pmatrix}\tilde{W}_R^+\\\tilde{H}_u^+\end{pmatrix} = \begin{pmatrix}\chi_{1R}^+\\\chi_{2R}^+\end{pmatrix}$$

• i jako spinory Diraca

$$\tilde{\chi}_1^- = \begin{pmatrix} \chi_{1L}^- \\ \chi_{1R}^- \end{pmatrix}, \quad \tilde{\chi}_2^- = \begin{pmatrix} \chi_{2L}^- \\ \chi_{2R}^- \end{pmatrix}$$

Sektor neutralin

• macierz masy neutralin w bazie $(\tilde{B}, \tilde{W}^0, \tilde{H}^0_d, \tilde{H}^0_u)$

$$M_{\tilde{\chi}^{0}} = \begin{pmatrix} M_{1} & 0 & -m_{Z}c_{\beta}s_{W} & m_{Z}s_{\beta}s_{W} \\ 0 & M_{2} & m_{Z}c_{\beta}c_{W} & -m_{Z}s_{\beta}c_{W} \\ -m_{Z}c_{\beta}s_{W} & m_{Z}c_{\beta}c_{W} & 0 & -\mu \\ m_{Z}s_{\beta}s_{W} & -m_{Z}s_{\beta}c_{W} & -\mu & 0 \end{pmatrix}$$

diagonalizacja macierzy masy

$$diag(m_{\tilde{\chi}^{0}_{1}}, m_{\tilde{\chi}^{0}_{2}}, m_{\tilde{\chi}^{0}_{3}}, m_{\tilde{\chi}^{0}_{4}}) = N^{*} M_{\tilde{\chi}^{0}} N^{-1}$$

- stany własne macierzy masy – spinory Weyla χ^0_i i spinory Majorany $\tilde{\chi}^0_i$ (i=1,2,3,4)

$$\begin{pmatrix} \chi_1^0 \\ \chi_2^0 \\ \chi_3^0 \\ \chi_4^0 \end{pmatrix} = N \begin{pmatrix} \tilde{B} \\ \tilde{W}^0 \\ \tilde{H}_d^0 \\ \tilde{H}_u^0 \end{pmatrix} \qquad \tilde{\chi}_i^0 = \begin{pmatrix} \chi_i^0 \\ \bar{\chi}_i^0 \end{pmatrix}$$

Wybrany scenariusz

• focus point w modelu mSUGRA:

 $M_0 = 2000 \text{ GeV}, M_{1/2} = 144 \text{ GeV}, \tan \beta = 20, A_0 = 0, \operatorname{sign} \mu = +$ \Rightarrow UWAGA: w naszej analizie nie wykorzystujemy założeń mSUGRA

- parametry przy skali elektrosłabej obliczone przez SPheno: $M_1 = 60 \text{ GeV}, M_2 = 121 \text{ GeV}, M_3 = 322 \text{ GeV}, \mu = 540 \text{ GeV}$
- masy chargin, neutralin i gluina:

$$\begin{split} m_{\tilde{\chi}_{1}^{\pm}} &= 117 \text{ GeV}, \ m_{\tilde{\chi}_{2}^{\pm}} = 552 \text{ GeV}, \ m_{\tilde{\chi}_{1}^{0}} = 59 \text{ GeV}, \ m_{\tilde{\chi}_{2}^{0}} = 117 \text{ GeV}, \\ m_{\tilde{\chi}_{3}^{0}} &= 545 \text{ GeV}, \ m_{\tilde{\chi}_{4}^{0}} = 550 \text{ GeV}, \ m_{\tilde{g}} = 416 \text{ GeV} \end{split}$$

- skwarki stop: $m_{\tilde{t}_1} = 1093 \,{\rm GeV}, \ m_{\tilde{t}_2} = 1584 \,{\rm GeV}$ inne skwarki i sleptony ~ 2 TeV
- sektor Higgsa: $m_h = 119 \text{ GeV}$, $m_{H,H^\pm,A} = 1935 \text{ GeV}$
- co możemy wykorzystać? LHC \Rightarrow gluina: $\tilde{g} \rightarrow \tilde{\chi}_2^0 b \bar{b}$, skwarki (oprócz $\tilde{t}_{1,2}$) $\sigma \sim 1 \text{ pb}$ ILC₅₀₀ \Rightarrow lekkie chargina: $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-) \sim 2 \text{ pb}$, neutralina $\tilde{\chi}_{1,2}^0$ również dostępne kinematycznie, ale $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0) < 1 \text{ fb}$

Dane eksperymentalne z LHC

• wszystkie kwarki znajdują się w zasięgu kinematycznym

 \Rightarrow stop: $BR(\tilde{t}_{1,2} \rightarrow \tilde{g}t) \sim 66\%$

duże tło od produkcji kwarków t, trudne do wyeliminowania

- ⇒ inne skwarki rozpadają się głównie na gluino i kwark, rekonstrukcja masy może okazać się trudna
- \Rightarrow zakładamy, że można wyznaczyć masy z dokładnością 50 GeV
- produkcja gluina: duży przekrój czynny, kilka kanałów rozpadu

Mode	$ ilde{g} ightarrow ilde{\chi}_2^0 b \overline{b}$	$ ilde{g} ightarrow ilde{\chi}_1^- q_u \overline{q}_d$	$\tilde{\chi}_1^+ \to \tilde{\chi}_1^0 \bar{q}_d q_u$	$ ilde{\chi}^0_2 ightarrow ilde{\chi}^0_1 \ell^+ \ell^-$	$ ilde{t}_{1,2} ightarrow ilde{g}t$	$ ilde{\chi_1^-} ightarrow ilde{\chi_1^0} \ell^- \overline{ u}_\ell$
BR	14.4%	10.8%	33.5%	3.0%	66%	11.0%

• rozkład masy pary leptonów z rozpadu $\tilde{\chi}^0_2$ pozwala wyznaczyć różnicę mas neutralin:

$$\delta(m_{\tilde{\chi}^0_2} - m_{\tilde{\chi}^0_1}) \sim 0.5 \text{ GeV}$$

Dane eksperymentalne z ILC

- w ILC₅₀₀ jedynie $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-, \, \tilde{\chi}_1^0 \tilde{\chi}_1^0, \, \tilde{\chi}_1^0 \tilde{\chi}_2^0, \, \tilde{\chi}_2^0 \tilde{\chi}_2^0$ dostępne
- ale przekroje czynne dla neutralin < 1 fb \Rightarrow zbyt małe?
- wiązki e^+ , e^- spolaryzowane względny błąd 0.5%
- zakładamy efektywność $e_{slc} = 50\%$
- $BR = 2 \times BR(\tilde{\chi}_1^+ \to \tilde{\chi}_1^0 q_u \bar{q}_d) \times BR(\tilde{\chi}_1^- \to \tilde{\chi}_1^0 \ell \bar{\nu}_\ell) + BR(\tilde{\chi}_1^- \to \tilde{\chi}_1^0 \ell \bar{\nu}_\ell)^2 \simeq 0.34$ gdzie $\ell = e, \mu$
- scałkowana świetlność przy 350 i 500 GeV $\mathcal{L} = 200 \, \text{fb}^{-1}$ na polaryzację

\sqrt{s}/GeV	(P_{e^-},P_{e^+})	$\sigma(ilde{\chi}_1^+ ilde{\chi}_1^-)/{ m fb}$	$\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-) imes BR imes e_{slc}/fb$
350	(-90%,+60%)	6195.5	1062.5±4.0
	(0,0)	2039.1	350.1±2.1
	(+90%,-60%)	85.0	14.6±0.7
500	(-90%,+60%)	3041.5	521.6±2.3
	(0,0)	1000.6	171.9±1.4
	(+90%,-60%)	40.3	6.9±0.4

Dane z ILC

• masy $\tilde{\chi}_1^{\pm}$ i $\tilde{\chi}_{1,2}^0$ z rozkładów energii leptonów i mas niezmienniczych par dżetów oraz skanowania progu produkcji

• razem z informacją z LHC otrzymujemy: $\delta(m_{\tilde{\chi}_1^0}) = 0.2 \text{ GeV}, \ \delta(m_{\tilde{\chi}_2^0}) = 0.5 \text{ GeV}, \ \delta(m_{\tilde{\chi}_1^\pm}) = 0.1 \text{ GeV}$

 wiedząc, że masy skalarów są duże, możemy przyjąć, że BR na poszczególne rozpady chargin są od nich niezależne

Produkcja chargin

• od jakich parametrów MSSM zależy proces produkcji?

- parametry z sektorów higgsin i gaugin: M_1 , M_2 , μ , tan β
- masy ciężkich (wirtualnych) cząstek pośrednich: $m_{\tilde{\nu}}$, $m_{\tilde{\ell}}$, $m_{\tilde{q}_L}$, $m_{\tilde{q}_R}$

Wyznaczanie parametrów modelu – krok pierwszy

- wykorzystujemy masy i przekroje czynne na produkcję chargin przy spolaryzowanych wiązkach e^+ , e^-
- za pomocą testu χ^2 wyznaczamy parametry MSSM razem z niepewnościami
 - \Rightarrow okazuje się, że między parametrami występują bardzo silne korelacje
 - \Rightarrow aby uzyskać zbieżność procedury fitowania trzeba ją wykonywać dla ustalonych wartości tan β
 - \Rightarrow wyznaczamy M_1 , M_2 , μ , $m_{\widetilde{
 u}}$
- wyniki:
 - \Rightarrow dla tan $\beta < 1.7$ dane są sprzeczne z obliczeniami teoretycznymi
 - $\Rightarrow 59.4 \le M_1 \le 62.2 \text{ GeV}, \quad 118.7 \le M_2 \le 127.5 \text{ GeV}$ $450 \le \mu \le 750 \text{ GeV}, \quad 1800 \le m_{\tilde{\nu}_e} \le 2210 \text{ GeV}$
 - \Rightarrow $M_1,~M_2$ wyznaczone z precyzją 5%, ograniczenia na μ i $m_{\tilde{\nu}}$ dość słabe \sim 15%

Wyznaczanie parametrów modelu – krok pierwszy

- masy i przekroje czynne nie dostarczają wystarczającej informacji aby wyznaczyć wszystkie pięć parametrów
- dozwolone obszary migrują wraz ze zmianą tan β stąd duże niepewności

potrzebna jest dodatkowa informacja...

Wyznaczanie parametrów modelu – krok drugi

- jaka inna obserwabla może być jeszcze wykorzystana?
 - ⇒ asymetria przód-tył kąt między osią wiązki a leptonem/kwarkiem w stanie końcowym
- silnie zależy od korelacji spinowych rozpadającego się chargina
- rozdzielamy pełny proces na produkcję i rozpad, korzystając z przybliżenia wąskiego rezonansu $(m_{\tilde{\chi}} \gg \Gamma_{\tilde{\chi}})$

•
$$|T|^2 = |\Delta_{f_1}|^2 |\Delta_{f_2}|^2 \sum_{fin.sp.} \underbrace{(P^{\lambda_{f_1}\lambda_{f_2}}P^{*\lambda'_{f_1}\lambda'_{f_2}})}_{(P^{\lambda_{f_1}\lambda_{f_2}}P^{*\lambda'_{f_1}\lambda'_{f_2}})} \times \underbrace{(Z_{\lambda_{f_1}}Z^*_{\lambda'_{f_1}})}_{(Z_{\lambda_{f_2}}Z^*_{\lambda'_{f_2}})} \times \underbrace{(Z_{\lambda_{f_2}}Z^*_{\lambda'_{f_2}})}_{(Z_{\lambda_{f_2}}Z^*_{\lambda'_{f_2}})}$$

⇒ procesy produkcji i rozpadu sprzęgają się przez człony interferencyjne pomiędzy różnymi stanami polaryzacji chargin

Asymetrie przód-tył

- wymiana sneutrina w kanale t: źródło A_{FB} w produkcji chargin w zderzeniach e^+e^-
- polaryzacja chargin zależy od polaryzacji wiązek

• w naszym przypadku 3-ciałowe rozpady: $\tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 e^- \nu_e$ i $\tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 s \bar{c} \Rightarrow$ korelacje spinowe istotne

Wyznaczanie parametrów – krok drugi

- wykorzystujemy zmierzone masy, przekroje czynne i ${\cal A}_{FB}$ z leptonowych rozpadów chargin
- ponieważ rozpad zależy również od nieznanej masy selektronu, przyjmujemy relację SU(2) między masą selektronu i sneutrina

$$m_{\tilde{e}_{\perp}}^2 = m_{\tilde{\nu}_e}^2 + m_Z^2 \cos(2\beta)(-1 + \sin^2\theta_W)$$

• wartości asymetrii z błędami statystycznymi i z błędami od polaryzacji

\sqrt{s}/GeV	$(P_{e^{-}}, P_{e^{+}})$	$A_{FB}(\ell^{-})/\%$	$A_{FB}(\bar{c})/\%$
350	(-90%,+60%)	4.42±0.29	4.18±0.74
500	(-90%,+60%)	4.62±0.41	4.48±1.05

 dane dla polaryzacji (+90%, -60%) ze względu na małą liczbę przypadków obciążone zbyt dużym błędem – nie wykorzystujemy ich

Wyznaczanie parametrów – krok drugi

- dołączamy do testu χ^2 wyniki dla asymetrii leptonowych
- nie ma konieczności ustalania tan β możemy fitować wszystkie 5 parametrów
- otrzymujemy następujące wartości:

 $\begin{array}{ll} 59.7 \leq M_1 \leq 60.35 \ {\rm GeV}, & 119.9 \leq M_2 \leq 122.0 \ {\rm GeV} \\ 500 \leq \mu \leq 610 \ {\rm GeV}, & 1900 \leq m_{\widetilde{\nu}_e} \leq 2100 \ {\rm GeV}, & 14 \leq \tan\beta \leq 31 \end{array}$

- co zyskaliśmy:
 - ⇒ masa ciężkiego, wirtualnego sneutrina wyznaczona z dokładnością 5% – dwukrotna poprawa
 - \Rightarrow dokładność wyznaczenia M_1 i M_2 poprawiona o czynnik 5
 - \Rightarrow dokładność wyznaczenia μ poprawiona o czynnik 3
 - \Rightarrow ograniczenia na tan β

Przewidywanie mas innych cząstek

 dzięki precyzyjnemu wyznaczeniu parametrów możemy przewidzieć w jakim zakresie energetycznym znajdują się kolejne cząstki z sektora chargin i neutralin:

 $\begin{array}{l} 506 \leq m_{\tilde{\chi}_3^0} \leq 615 \hspace{0.1cm} \mathrm{GeV} \\ 512 \leq m_{\tilde{\chi}_4^0} \leq 619 \hspace{0.1cm} \mathrm{GeV} \\ 514 \leq m_{\tilde{\chi}_2^\pm} \leq 621 \hspace{0.1cm} \mathrm{GeV} \end{array}$

- taka informacja może okazać się przydatna przy planowaniu kolejnych eksperymentów, np. czy jest sens rozbudować ILC do 800 GeV albo 1 TeV
- ich odkrycie będzie testem na konsystentność modelu

Asymetrie przód-tył dla hadronów

Wyznaczanie parametrów – krok trzeci

- dodajemy do funkcji χ^2 asymetrie przód-tył dla kwarków c
 - \Rightarrow masy skwarków wyznaczone w LHC z dokładnością $\pm 50~{\rm GeV}$
 - \Rightarrow konieczna identyfikacja dżetów pochodzących z kwarków c
 - zakładamy efektywność 40%
 - \Rightarrow efektywność wyboru przypadków na poziomie 50%, jak wcześniej
- wartości asymetrii:

\sqrt{s}/GeV	$(P_{e^{-}}, P_{e^{+}})$	$A_{FB}(\ell^{-})/\%$	$A_{FB}(\bar{c})/\%$
350	(-90%,+60%)	4.42±0.29	4.18±0.74
500	(-90%,+60%)	4.62±0.41	4.48±1.05

- otrzymujemy:
 - $\begin{array}{ll} 59.45 \leq M_1 \leq 60.80 \,\, {\rm GeV}, & 118.6 \leq M_2 \leq 124.2 \,\, {\rm GeV}, & m_{\widetilde{e}_{\sf L}} \geq 1500 \,\, {\rm GeV} \\ 1900 \leq m_{\widetilde{\nu}_e} \leq 2120 \,\, {\rm GeV}, & 420 \leq \mu \leq 770 \,\, {\rm GeV}, & 11 \leq \tan\beta \leq 60 \end{array}$
- ograniczenia mniej precyzyjne, ale mamy dodatkowy parametr

Podsumowanie i wnioski

- jeśli niskoenergetyczna supersymetria zostanie odkryta w LHC, na pewno pozostaną wątpliwości i pytania, szczególnie w trudnych scenariuszach typu focus point – potrzebujemy ILC
- trudny obszar przestrzeni parametrów SUSY: ciężkie sfermiony
 ⇒ mało cząstek dostępnych kinematycznie mało danych eksperymentalnych
- asymetrie przód-tył dostarczają użytecznych informacji o ciężkich cząstkach wirtualnych
 - \Rightarrow dobre ograniczenia na ich masy
 - \Rightarrow precyzyjne wyznaczenie innych parametrów modelu
 - \Rightarrow bez założeń o schemacie łamania supersymetrii
- konieczne są informacje zarówno z LHC jak i z ILC wszystkie dostępne dane muszą być wykorzystane w tego typu trudnych modelach