η, η' Physics A.Kupsc Introduction $\eta(\eta') \rightarrow 3\pi$ Cusp Experiments

& Deter CBall WASA

Summary

Hadronowe rozpady mezonów η i η' : nowe życie detektorów (WASA, Crystal Ball, KLOE)

A. Kupść

Uniwersytet w Uppsali i Instytut Problemów Jądrowych

- Hadronowe rozpady mezonów η i η'
- Rozpady $\eta, \eta' \to \pi \pi \pi, \eta' \to \eta \pi \pi$
- Jak η i η' są produkowane?
- WASA, Crystal Ball, KLOE

Who needs η and η' ?

• 1957,1959 Sakata model $\Rightarrow \pi', \pi''$ (Okun, Ikeda)

• 1961 Spring: Gell-Mann The Eightfold way:

... The most clear-cut new prediction for the pseudoscalar mesons is the existence of χ^0 , which should decay into 2γ like π^0 , unless it is heavy enough to yield $\pi^+\pi^-\gamma$ with appreciable probability... $\chi^0 \rightarrow 3\pi$ is forbidden by conservation of L and C. For a sufficiently

 $\chi^0 \to 3\pi$ is forbidden by conservation of I and C. For a sufficiently heavy χ^0 the decay $\chi^0 \to 4\pi$ is possible...

A.Kupsc

 $\eta(\eta')
ightarrow 3\tau$

Cusp

Experiments & Detectors CBall WASA KLOE

 $\eta(\eta') \to 3\tau$

Cusp

Experiments & Detectors CBall WASA KLOE

Summary

Unexplained η decay modes...

- 1961 Fall: Apparently unrelated meson was discovered: Pevsner et al: Evidence for a Three-Pion Resonance Near 550 Mev.
- 1962 Gell-Mann et al., PRL, 8, 261:

... The forbidden decay rates into $3\pi^0$ and $\pi^+\pi^-\pi^\circ$ are difficult to estimate, except that $3\pi^0/(\pi^+ + \pi^- + \pi^\circ) \leq \frac{3}{2}$... The remaining decays may be described roughly on the assumption that the important intermediate steps are $\chi \to 2\rho^0$ and $\chi \to 2\omega$.

 \Rightarrow VMD for all η decay modes except for the 3π

η,η' Physics A.Kupsc

Introduction

 $\eta(\eta')
ightarrow 3\pi$

Cusp

Experiments & Detectors CBall WASA KLOE

Summary

- *M* = 547.51 ± 0.18 MeV
- $\Gamma = 1.30 \pm 0.07 \text{ keV}$
- Main decays: $\begin{array}{ccc} \eta \rightarrow \gamma \gamma & 39\% \\ \eta \rightarrow \pi^{0}\pi^{0}\pi^{0} & 32\% \\ \eta \rightarrow \pi^{+}\pi^{-}\pi^{0} & 23\% \\ \eta \rightarrow \pi^{+}\pi^{-}\gamma & 5\% \end{array}$
- $\eta \to \pi^0 \pi^0, \pi^+ \pi^-$ CPV
- $4m_{\pi^0} < m_{\eta} < 4m_{\pi^+}$
- $\eta \to \pi^0 \pi^0 \pi^0 \pi^0$ CPV

- η,η^\prime elementary facts
- $M = 957.78 \pm 0.14 \text{ MeV}$
- $\Gamma=0.203\pm0.016~\text{MeV}$
- Main decays:

 $\begin{array}{ccccccc} \eta' \rightarrow \pi^+ \pi^- \eta & 44\% \\ \eta' \rightarrow \rho^0 \gamma & 29\% \\ \eta' \rightarrow \pi^0 \pi^0 \eta & 21\% \\ \eta' \rightarrow \omega \gamma & 3\% \\ \eta' \rightarrow \gamma \gamma & 2\% \end{array}$

•
$$\eta' \rightarrow \pi^0 \pi^0, \pi^+ \pi^-$$
 CPV

•
$$7m_{\pi^0} < m_{\eta'} < 7m_{\pi^+}$$

 $\mathbf{CPV} \quad \bullet \ \eta' \to \mathbf{2}[n]\pi^0 \qquad \qquad \mathbf{CPV}$

$\eta(\eta') ightarrow 3\pi$

Introduction

 η, η' Physics

A.Kupsc

 $\eta(\eta')
ightarrow 3\pi$

Cusp

Experiments & Detectors CBall WASA KLOE

Summary

Isospin violating decay

 \Rightarrow Considered to be EM transition for long time

• $\Delta I = 1$ transition due to $\eta - \pi^0$ mixing:

⇒ Reduced to elementary low energy QCD process $-\pi\pi$ scattering:

η,η' Physics A.Kupsc

 $\eta(\eta')
ightarrow 3\pi$

Cusp

Experiments & Detectors CBall WASA KLOE

Summary

Chiral Perturbation Theory

Model independent way to study low energy QCD:

- Approximate SU(3)_L × SU(3)_R chiral symmetry spontaneously broken to SU(3)_V
- \Rightarrow 8 pseudo-Goldstone mesons (π, K, η)
 - Expansion in external momenta and quark masses
 - Corrections controlled
 - Electroweak interactions included
 - Each order more new free parameters...

CHPT: extensions

 η, η' Physics A.Kupsc

Introduction

 $\eta(\eta') o 3\pi$

Cusp

Experiments & Detectors CBall WASA KLOE

- Include $\eta' (\eta' \eta \text{ mixing}, \eta' \text{ decays})$:
- \Rightarrow Goldstone boson for $N_C \rightarrow \infty$
- \Rightarrow Can be included as a dynamical degree of freedom

CHPT: extensions

η,η' Physics A.Kupsc

Introduction

 $\eta(\eta')
ightarrow 3\pi$

Cusp

Experiments & Detectors CBall WASA KLOE

Summary

- Include $\eta' (\eta' \eta \text{ mixing}, \eta' \text{ decays})$:
- \Rightarrow Goldstone boson for $N_C \rightarrow \infty$
- ⇒ Can be included as a dynamical degree of freedom
 - Final-state interactions:
- ⇒ Dispersion relations
- ⇒ Bethe-Salpeter equations (Chiral Unitary Approach)

 \Rightarrow Can study contribution of $\pi\pi$, $\pi\eta$ resonances:

$\eta(\eta') \rightarrow 3\pi$ in CHPT

- Isospin violation in strong interactions due to $m_d m_u$ $\Gamma_{\eta(\eta') \to 3\pi} \propto \left(\frac{m_d^2 - m_u^2}{m_s^2 - \hat{m}^2}\right)^2 = Q^{-4}$
 - 1984 CHPT one loop calculations

Gasser, Leutwyler NPB250,539

• precise constraint for m_s/m_d , m_u/m_d Leutwyler PLB378,313(1996)

•
$$\Gamma_{exp} = \left(\frac{Q_D}{Q}\right)^4 \Gamma_{th}$$

• $Q_D = 24.1$
 $(m_{\pi^+}^2 - m_{\pi^0}^2) = (m_{K^+}^2 - m_{K^0}^2)_{EM}$
 \Rightarrow Compare Γ_{exp} and Γ_{th}

Experime & Detecto CBall WASA

 η, η' Physics

A.Kupsc

 $\eta(\eta') \to 3\pi$

η,η' Physics A.Kupsc

Introduction

 $\eta(\eta')
ightarrow 3\pi$

Cusp

Experiments & Detectors CBall WASA KLOE

Summary

- Can Γ_{th} : be calculated reliably?
- Experimental cross checks:
 - Dalitz plot $\eta \to \pi^{\circ} \pi^{+} \pi^{-}$

• Dalitz plot
$$\eta \to \pi^{\circ} \pi^{\circ} \pi^{\circ}$$

•
$$\mathbf{r} = \frac{BR(\eta \to \pi^{\circ} \pi^{+} \pi^{-})}{BR(\eta \to \pi^{\circ} \pi^{\circ} \pi^{\circ})}$$

$\eta \rightarrow \mathbf{3}\pi$

 $\eta(\eta') \rightarrow 3\pi$

Cusp

Experiments & Detectors CBall WASA KLOE

Summary

- Can Γ_{th} : be calculated reliably?
- Experimental cross checks:
 - Dalitz plot $\eta \to \pi^{\circ} \pi^{+} \pi^{-}$
 - Dalitz plot $\eta \to \pi^{\circ} \pi^{\circ} \pi^{\circ}$
 - $r = \frac{BR(\eta \to \pi^{\circ} \pi^{+} \pi^{-})}{BR(\eta \to \pi^{\circ} \pi^{\circ} \pi^{\circ})}$
- Q=22.8±0.4

Dispersion relations + CHPT 1-loop Martemyanov,Sopov PRD71,017501

- Q consistent with Q_D
- ? Convergence?

CHPT 2-loop

Bijnens, Ghobani arXiv:0709.0230

Chiral Unitary Approach Borasov,Nißler EPJA26,383

 $\eta \rightarrow \mathbf{3}\pi$

Variables

Mandelstam variables:

$$s_i \equiv (p_0 - p_i)^2 = (m_0 - m_i)^2 - 2T_i m_0$$

For $m_1 = m_2$:

$$\mathbf{x} \equiv \frac{1}{\sqrt{3}} \frac{T_1 - T_2}{\langle T \rangle}; \ \mathbf{y} \equiv \frac{1}{3} \left(\sum_{i=1}^3 \frac{m_i}{m} \right) \frac{T_3}{\langle T \rangle} - 1.$$

Introduction $\eta(\eta')
ightarrow 3\pi$ Cusp

 η, η' Physics A.Kupsc

Experiments & Detectors CBall WASA KLOE

 η, η' Physics A.Kupsc Introduction $\eta(\eta') \rightarrow 3\pi$ Cusp Experiments & Detectors

& Detec CBall WASA KLOE

Summary

 $\eta \rightarrow 3\pi - variables$

$$|A(x,y)|^2 \propto 1 + ay + by^2 + dx^2 + fy^3 + ...$$

Current Algebra:

$$A(s_1,s_2,s_3)=A(s_3) \propto rac{3s_3-4m_\pi^2}{m_\eta^2-m_\pi^2}$$

 \Rightarrow linear function

 \Rightarrow **a** = -1.052, **b** = **a**²/4

 Parameters calculated in CHPT 1,2 loop and Chiral Unitary Approach η,η' Physics

A.Kupsc

Dalitz plot $\eta \rightarrow \pi^+ \pi^- \pi^0$

$\eta(\eta')$	$\rightarrow 3\pi$				

Experiment & Detectors CBall WASA KLOE

Exp.	KLOE	CBarrel	Layter	Gormley
	2007	1998	1973	1970
Ev.	1.3×10 ⁶	3.2×10 ³	8.1×10^{4}	3×10^4
—a	$1.090 \pm 0.005^{+0.008}_{-0.019}$	1.22 ± 0.07	1.08 ± 0.014	1.17 ± 0.02
b	$0.124 \pm 0.006 \pm 0.010$	$\textbf{0.22} \pm \textbf{0.11}$	$\textbf{0.03} \pm \textbf{0.03}$	0.21 ± 0.03
d	$0.057 \pm 0.006^{+0.007}_{-0.016}$	-	$\textbf{0.05}\pm\textbf{0.03}$	$\textbf{0.06} \pm \textbf{0.04}$
f	$0.14 \pm 0.01 \pm 0.02$	_	_	_

1.34×10^6 events

KLOE arXiv:0707.2355:

 $\eta \rightarrow 3\pi^0 - variables$

Introduction

 $\eta(\eta') \rightarrow 3\pi$

Experiments & Detectors CBall WASA KLOE

- Symetrized Dalitz plot
- $z = \rho^2 / \rho_{max}^2$, $0 < \theta < 60^\circ$

•
$$|\bar{A}(z,\phi)|^2 \propto 1 + 2 \alpha z + ...$$

 $\eta \rightarrow 3\pi^0 - variables$

Introduction

 η, η' Physics

A.Kupsc

 $\eta(\eta') \rightarrow 3\pi$

Experiments & Detectors CBall WASA KLOE

Status of α measurement

• CHPT: In lowest order $\alpha = 0, \alpha \neq 0$ due to $\pi - \pi$ FSI:

Experiment: Crystal Ball not consistent with KLOE

 η, η' Physics A.Kupsc

Introduction

 $\eta(\eta') \to 3\pi$

Cusp

Experiments & Detectors CBall WASA KLOE

 η, η' Physics

A.Kupsc

Introduction

 $\eta(\eta')
ightarrow 3\pi$

Experir

& Detecto CBall WASA

Summary

• CHPT: In lowest order $\alpha = 0$, $\alpha \neq 0$ due to $\pi - \pi$ FSI:

- Experiment: Crystal Ball not consistent with KLOE
- KLOE reanalysis, Data from CB@MAMI, WASA

Status of α measurement

Quark masses from $\eta' \rightarrow 3\pi$

⇒ theory: cancellation of systematics

 $\eta(\eta') \to 3\pi$

Quark masses from $\eta' \rightarrow 3\pi$

⇒ theory: cancellation of systematics

no! Too simplified assumptions:

Borasoy, Nißler, Meißner PLB643,41(2006)

- Missing important CA diagram
- $A(s_1, s_2, s_3) \neq const, \bar{A}(s_1, s_2, s_3) \neq const$

 $\eta(\eta') \to 3\pi$

Quark masses from $\eta' \rightarrow 3\pi$

⇒ theory: cancellation of systematics

no! Too simplified assumptions:

Borasoy, Nißler, Meißner PLB643,41(2006)

- Missing important CA diagram
- $A(s_1, s_2, s_3) \neq const, \bar{A}(s_1, s_2, s_3) \neq const$
- \Rightarrow Difficult to extract quark masses

 η, η' Physics

$$\eta'
ightarrow \mathbf{3}\pi$$

Scalars in $\eta' \rightarrow 2\pi\eta$

 $a_0(980)$

 η, η' Physics A.Kupsc

 $\eta(\eta') \to 3\pi$ Cusp

Experiments & Detectors CBall WASA KLOE

Introduction $\eta(\eta') ightarrow \Im \pi$ Cusp

Experiments & Detectors CBall WASA KLOE

Summary

- Cusp in $K^+ \rightarrow \pi^+ \pi^0 \pi^0$
- NA48/2: 10⁸ events

 $\Rightarrow \pi\pi$ scattering length

What is special in $\eta \rightarrow 3\pi^0$ decays?

 η, η' Physics A.Kupsc Introduction $\eta(\eta') \rightarrow 3\pi$

Experiments & Detectors CBall WASA KLOE

- Not as large effect as in $K^+ \rightarrow \pi^+ \pi^0 \pi^0$
- ⇒ Influence on z distribution: 0.6 < z < 0.9

Pionium

 η, η' Physics A.Kupsc

Introduction $\eta(\eta') o 3\pi$ Cusp

Experiments & Detectors CBall WASA KLOE

A.Kupsc Introduction $\eta(\eta')
ightarrow 3\pi$ Cusp

 η, η' Physics

Experiments & Detectors CBall WASA KLOE

Available data

A.Kupsc Introduction $\eta(\eta') \rightarrow 3\pi$

Experimen & Detector CBall WASA KLOE

- Crystal Ball (2000): $2 \times 10^7 \eta$ AGS $\pi^- p \rightarrow n\eta$
- CELSIUS/WASA (2003): $3 \times 10^6 pp \rightarrow pp\eta$ (neutral)
- CELSIUS/WASA (2003): $5 \times 10^5 \ pd \rightarrow ^3 He\eta$
- KLOE (2001-2006): 10⁸ η, 10⁶ η'
- Crystal Ball (2005): 3×10^7 Mainz $\gamma p \rightarrow \eta p$
- WASA-at-COSY (2007): $1.5 \times 10^7 \eta$ (neutral)

Available data

Introduction $\eta(\eta') \rightarrow 3\pi$

A.Kupsc

Experiment & Detectors CBall WASA KLOE

- Crystal Ball (2000): $2 \times 10^7 \eta \text{ AGS } \pi^- p \rightarrow n\eta$
- CELSIUS/WASA (2003): $3 \times 10^6 pp \rightarrow pp\eta$ (neutral)
- CELSIUS/WASA (2003): $5 \times 10^5 \ pd \rightarrow ^3 He\eta$
- KLOE (2001-2006): 10⁸ η, 10⁶ η'
- Crystal Ball (2005): 3×10^7 Mainz $\gamma p \rightarrow \eta p$
- WASA-at-COSY (2007): $1.5 \times 10^7 \eta$ (neutral)

	ϵ	B/S	Analyzed	Collected
KLOE				
$\eta \to \pi^0 \pi^0 \pi^0$	0.14	0.08 ^c	6×10 ⁵	4×10 ⁶
$\eta ightarrow \pi^+\pi^-\pi^0$	0.33	0.003	1.3×10 ⁶	7×10 ⁶
CBall				
$\eta \to \pi^0 \pi^0 \pi^0$	0.17	0.01 ^c	10 ⁶	
WASA				
$\eta \to \pi^0 \pi^0 \pi^0$	0.1	0.05	-	5×10 ⁵

Sources of η , η'

Introduction $\eta(\eta') \rightarrow 3\pi$

 η, η' Physics

A.Kupsc

Experiments & Detectors CBall WASA KLOE

Summary

Close to threshold photo or hadro production (Crystal Ball, WASA)

	T _b	p_b	β	Q	$\sigma (\sigma_{max})$
$pp \rightarrow pp\eta$	1.253	1.981	0.63	40	10 μ b
$pp ightarrow pp \eta'$	2.404	3.208	0.75	45	300nb
$pd ightarrow {}^{3} ext{He}\eta$	0.891	1.569	0.42	2	400nb
$\pi^- p \rightarrow n\eta$	0.559	0.684	0.42		2.8 mb
$\gamma p \rightarrow p \eta$	0.706	0.706	0.43	58	16 μ b
$\gamma p \rightarrow p \eta'$	1.447	1.447	0.61	27*	1 μ b

• $e^+e^- \phi$ decays (KLOE,KLOE2)

• $\gamma^*\gamma^*$ (KLOE2)

 $\eta(\eta') \to 3$

Experiments & Detectors

CBall WASA KLOE

 $\begin{array}{rcl} \Delta E: & 2.5^{\circ} & <\theta < & 18^{\circ} \ \pi^{\pm}/p: \ 170/300 \text{MeV} \\ p: & 25^{\circ} & <\theta < & 130^{\circ} \\ E: & 20^{\circ} & <\theta < & 140^{\circ} \ 16X_0 \end{array}$

 η, η' Physics A.Kupsc Introduction $\eta(\eta') \rightarrow 3\pi$

Experiments & Detectors CBall WASA KLOE

Summary

- Tagging: trigger/MM resolution
- Signal/Background
- Separation tagging/decay system
- Cross section only 0.4 μb

 $pd \rightarrow {}^{3}He\eta$

SLAC Crystal Ball

 η, η' Physics

A.Kupsc

Experiments & Detectors CBall WASA KLOE

Crystal Ball at Mainz

 η, η' Physics

A.Kupsc

CBall

A.Kupsc Introduction $\eta(\eta')
ightarrow 3\pi$ Cusp

 η, η' Physics

Experiments & Detectors CBall WASA KLOE

Summary

Uppsala (Sweden), CELSIUS 1989-2005

Jülich (Germany), COSY 🕗

nucl-ex/0411038

Introduction $\eta(\eta') o 3\pi$ Cusp

Experiments & Detectors CBall WASA KLOE

Summary

WASA-at-COSY

New DAQ

Introduction $\eta(\eta') \rightarrow 3\pi$ Cusp Experiments

 η, η' Physics A.Kupsc

& Detector CBall WASA KLOE

Summary

QDC modules 16ch each FlashADC with FPGA logic ZEL FZJ and Uppsala University

sQDC - for Csl, 80MHz 12bit
(70 Modules - 1100 channels)

fQDC – for plastics, 160MHz 12bit (36 Modules - 580 channels)

TDC modules (F1,GPX) 64ch each ZEL FZJ F1: resol. 120ps, max. rate/ch 500KHz (F1 - 70 Modules – 3700 channels)

GPX: resol. 90ps, max. rate/ch 10MHz (GPX - 11 Modules – 708 channels)

A.Kupsc

Introduction $\eta(\eta') o 3\pi$ Cusp

Experiments & Detectors CBall WASA KLOE

Summary

- · 16 ADC channels with symetrizing input amplifiers
- 5 FPGA (4 ADC interfaces, 1 System Bus interface
- · 4 ADC channels per FPGA for data retention and feature extraction
- · Local bus (LVDS) for data readout
- · Trigger bus for high-speed serial trigger link

Paweł Marciniewski & ZEL

A.Kupsc Introduction $\eta(\eta') \rightarrow 3\pi$ Cusp Experiments

 η, η' Physics

& Detec CBall WASA

Summary

Feature extraction

P0 - window beginning

Pi - time for the first non-zero value

Pz - pulse start time calculated from slope crossing the pedestal value

Pa - signal amplitude

Pq - signal integral (charge) *

PPi - minimum value before pileup

PPz - pileup pulse start time calculated from slope crossing the momentary pedestal value Ppi

PPa - pileup pulse amplitude

Pe - pileup integral, starting from PPi

* If pileup occurs, the integral Pq is only calculated untill PPi time

Introduction $\eta(\eta') ightarrow 3\pi$ Cusp

Experiments & Detectors CBall WASA KLOE

Summary

DAQ and Pellet performance

November 06

- only 1000 2000 pellets/s
- time "pellet in beam" : 80-100 µs
- DAQ deadtime : 80 µs
- only 1 event per pellet
- ~1500 events/s

February 07

- optimum pellet performance achieved
- 8000 10000 pellets /s, as in Uppsala
- first test of final DAQ, "buffered readout"
- will allow to measure 2-4 events per pellet
- above 10.000 events/s

DA Φ NE the Frascati Φ factory

Introduction $\eta(\eta')
ightarrow 3\pi$ Cusp

Experiments & Detectors CBall WASA KLOE

- e^+e^- collider @ $\sqrt{s} = M_{\phi} = 1019.4 \text{ MeV}$
- 2 interaction regions (KLOE DEAR/FINUDA)
- Separate *e*⁺, *e*[−] rings to minimize beam-beam interactions
- Crossing angle: 12.5 mrad ($p_x(\phi) \cong 13 \text{ MeV}$)

KI OF

Detector performance

* $\sigma_{\rm E}/{\rm E} = 5.7\% / \sqrt{{\rm E}({\rm GeV})}$ * $\sigma_{\rm t} = 54 \text{ ps} / \sqrt{{\rm E}({\rm GeV})} \oplus 50 \text{ ps}$ $\mathbf{*} \sigma_{\mathbf{p}} / \mathbf{p} = 0.4\% \quad (\text{tracks with } \theta > 45^\circ)$ $\mathbf{*} \sigma_{\mathbf{x}/\mathbf{y}} = 150 \,\mu\text{m} \quad , \quad \sigma_{\mathbf{z}} = 2 \,\text{mm}$ $\mathbf{*} \sigma(\mathbf{M}_{\eta + \pi^+ \pi^-}) \quad \sim 3 \,\text{MeV/c}^2$

Introduction $\eta(\eta') ightarrow 3\pi$ Cusp

Experiments & Detectors CBall WASA KLOE

Summary

The KLOE detector

Design driven by the measurement of $\delta \mathbf{R}$ via double ratio: $\mathbf{R} = \Gamma(K_L \rightarrow \pi^*\pi^-) \Gamma(K_S \rightarrow \pi^0\pi^0) / \Gamma(K_S \rightarrow \pi^*\pi^-) \Gamma(K_L \rightarrow \pi^0\pi^0)$

- YOKE S.C. COIL Cryost Barrel EMC nd Cap EMC DRIFT 7 m CHAMBER 6 m
 - Be beam pipe (spherical, 10 cm Ø, 0.5 mm thick) + instrumented permanent magnet quadrupoles (32 PMT's)

Drift chamber (4 m Ø × 3.3 m, CF frame)

- Gas mixture: 90% He + 10% C₄H₁₀
- 12582 stereo-stereo sense wires
- almost squared cells

* Electromagnetic calorimeter

- \bullet lead/scintillating fibers (1 mm Ø), 15 $X^{}_0$
- 4880 PMT's
- 98% solid angle coverage

Superconducting coil (*B* = 0.52 T)

 η, η' Physics A.Kupsc Introduction $\eta(\eta') \rightarrow 3\pi$ Cusp Experiments & Detectors

CBall WASA KLOE

Summary

• ϕ produced nearly at rest

e⁺ 510 MeV • e⁻ 510 MeV

$\phi ightarrow \gamma \eta(\eta')$ decays

 η, η' Physics A.Kupsc Introduction $\eta(\eta') \rightarrow 3\pi$

Experiments & Detectors CBall WASA KLOE

Summary

- ϕ produced nearly at rest
- Signature: monoenergetic photon

$\phi ightarrow \gamma \eta(\eta')$ decays

η,η' Physics A.Kupsc

KLOE

$\phi \rightarrow \gamma \eta(\eta')$ decays

- ϕ produced nearly at rest
- Signature: monoenergetic photon

KLOE2

 η, η' Physics A.Kupsc

- $\eta(\eta')
 ightarrow 3\pi$
- Experime & Detecto
- CBall WASA KLOE

- test crab waist scheme fall 2007 (SuperB factory)
- KLOE2 start 2009 aim for >20fb^{-1} $\sqrt{s} = m_{\phi}$
- Inner tracker

KLOE2

A.Kupsc

- $\eta(\eta') \to 3$
- Cusp

Experiments & Detectors CBall WASA KLOE

- test crab waist scheme fall 2007 (SuperB factory)
- KLOE2 start 2009 aim for >20fb $^{-1}$ \sqrt{s} = m_{ϕ}
- Inner tracker
- $\gamma^*\gamma^*$ physics at $\sqrt{s} \ge m_\phi$ (taggers):

- $e^+e^- \rightarrow e^+e^-\eta(\eta')$:
- Competitive source of η'
- Direct measurement of $\Gamma(\eta(\eta') \rightarrow \gamma\gamma)$ (now $\Gamma_{\gamma\gamma} \times \Gamma_i/\Gamma$)

 η, η' Physics **A.Kupsc** Introduction $\eta(\eta') \rightarrow 3\pi$ Cusp Experiments & Detectors

CBall WASA

Summary

η,η' Physics A.Kupsc

Introduction $\eta(\eta')
ightarrow 3\pi$

Experiments & Detectors CBall WASA KLOE

Summary

Outlook: hadronic decays

- High statistics data (>10⁷ events) for $\eta \to \pi^0 \pi^0 \pi^0$ (CB, WASA)
- KLOE results on $\eta \to \pi^+ \pi^- \pi^0$ will be checked (WASA)
- Data on $\eta' \rightarrow \pi \pi \eta$ 10⁴–10⁵ events (KLOE,CB,WASA)

η,η' Physics A.Kupsc

Introduction $\eta(\eta') o 3\pi$

Experiments & Detectors CBall WASA KLOE

Summary

Outlook: hadronic decays

- High statistics data (>10⁷ events) for $\eta \to \pi^0 \pi^0 \pi^0$ (CB, WASA)
- KLOE results on $\eta \rightarrow \pi^+ \pi^- \pi^0$ will be checked (WASA)
- Data on $\eta' \rightarrow \pi \pi \eta$ 10⁴–10⁵ events (KLOE,CB,WASA)

Decay $\eta' \rightarrow \pi^+ \pi^- \pi^0$:

- Not seen
- Predictions $BR = 10 imes BR(\eta' o \pi^0 \pi^0 \pi^0)$
- Large phase space
- Huge background:
 - \Rightarrow WASA: $pp \rightarrow pp\pi^+\pi^-\pi^0$ 0.4 mb
 - \Rightarrow KLOE: $\phi \rightarrow \pi^+ \pi^- \pi^0$ 15%
 - $\Rightarrow \eta' \rightarrow \omega \gamma, \eta' \rightarrow \pi^+ \pi^- \eta$
- ? High energy experiments e.g. (VES) $\pi^- p$ @40 GeV

 η, η' Physics A.Kupsc Introduction

Cusp

Experiments & Detectors CBall WASA KLOE

Summary

Physics of η and η' decays

Laboratory of low energy QDC and SM:

- $\eta, \eta'
 ightarrow 3\pi$ decays
- $\bullet \ \eta' \to \pi^+\pi^-\gamma$
- η' radiative decays
- Dalitz decays
- $\eta \rightarrow e^+e^-$

•
$$\eta \rightarrow \pi^{\circ} \boldsymbol{e}^{+} \boldsymbol{e}^{-}, \ \pi^{+} \pi^{-} \boldsymbol{e}^{+} \boldsymbol{e}^{-}$$

- $\Rightarrow m_u/m_s, m_d/m_s$
- \Rightarrow QCD anomaly
- $\Rightarrow \eta'$ quark structure
- \Rightarrow formfactors
- \Rightarrow new interactions
- \Rightarrow C, CP tests

Conclusions

A.Kupsc

 η, η' Physics

 $\eta(\eta') \to \Im$

Cusp

Experiments & Detectors CBall WASA KLOE

Summary

• Crystal Ball, WASA, KLOE:

- Better accelerators
- New electronics
- Upgraded detectors

Conclusions

A.Kupsc Introduction $n(n') \rightarrow 3\pi$

 η, η' Physics

- Cusp
- Experiments & Detectors CBall WASA KLOE

- Crystal Ball, WASA, KLOE:
 - Better accelerators
 - New electronics
 - Upgraded detectors
- Extended collaborations
- EtaMesonNet \Rightarrow PrimeNet

Links

η,η' Physic: A.Kupsc

$\eta(\eta') ightarrow 3\pi$

Experiments & Detectors CBall WASA KLOE

Summary

• KLOE: www.Inf.infn.it/kloe/

- Crystal Ball BNL: bmkn8.physics.ucla.edu/Crystalball/crystalball.html
- Crystal Ball MAMI: wwwa2.kph.uni-mainz.de/cb/
- CELSIUS/WASA: www.tsl.uu.se/wasa
- WASA-at-COSY: www.fz-juelich.de/ikp/wasa
- EtaMesonNet: www.isv.uu.se/etamesonnet
- ...more references: arXiv:0709.0603