Pikselowy detektor wierzchołka dla ILC

Łukasz Mączewski

Seminarium Fizyki Wielkich Energii Warszawa, 30.05.2008

(Ł. Mączewski/Uniwersytet Warszawski)

30.05.2008 1 / 53

Plan seminarium

Wprowadzenie

- Projekt International Linear Collider (ILC)
- Detektor wierzchołka dla ILC
- Detektory typu MAPS (Monolithic Active Pixel Sensors)

Pomiary charakterystyk detektorów MAPS

- Układ eksperymentalny
- Wyniki pomiarów
- Wyniki symulacji

Plany na przyszłość oraz podsumowanie

Warszawsko-łódzka grupa eksperymentalna ILC

- Instytut Fizyki Doświadczalnej UW:
 - Jacek Ciborowski
 - Grzegorz Grzelak
 - Piotr Nieżurawski
 - Łukasz Mączewski
 - Aleksander Filip Żarnecki
- Instytut Problemów Jądrowych, Warszawa: Marek Adamus
- Uniwersytet Łódzki: Paweł Łużniak

Projekt International Linear Collider

- Akcelerator liniowy e⁺e⁻ o długości 33 km oparty na technologii nadprzewodzących wnęk rezonansowych
- Energia w środku masy 200-500 GeV docelowo 1 TeV
- Polaryzacja elektronów przekraczająca 80%, a pozytronów ~ 60%

Projekt International Linear Collider Struktura wiązek

- Rozmiary poprzeczne wiązki ~650 nm × 5 nm
- Świetlność 2 ·10³⁴ cm⁻²s⁻¹

< 🗇 🕨 < 🖃 >

Projekty detektorów dla ILC

Detektor LDC

Detektor SiD

Detektor GLD

4th - czwarty

• • • • • • • • • • • • •

э

Detektor wierzchołka dla ILC

• Dwie koncepcje detektora wierzchołka, dla których $\cos \theta \approx 0.96$

Długi cylinder

Krótki cylinder plus zewnętrzne dyski

	LDC	GLD	SiD	4th
liczba warstw	5	6	5	5
liczba dysków	0	2	4	4
wewnętrzny promień (cm)	1.6	2.0	1.4	1.5
zewnętrzny promień (cm)	6.0	5.0	6.1	6.1

Wymagania stojące przed macierzami pikselowymi dla detektora wierzchołka przy ILC:

- Wysoka przestrzenna zdolność rozdzielcza < 5 μm
- Niewielka grubość detektora

 0.1%X₀ zmniejszenie wpływu
 wielokrotnego rozpraszania
 kulombowskiego

- 4 ∃ →

- Wysoka efektywność rejestracji cząstek naładowanych ~ 99% w pojedynczej warstwie
- Duża granularność oraz szybki odczyt detektora ~ 40 MHz
- Odporność na zniszczenia radiacyjne

Detektory pikselowe - CCD Charge Coupled Devices

- Przestrzenna zdolność rozdzielcza ograniczona rozmiarem piksela (piksele 20×20 μm² → σ ~ 3 μm)
- Możliwość redukcji grubości do 20 μm (poniżej 0.1%X₀)

- Powolny odczyt
- Podatność na zniszczenia radiacyjne

イロト イ団ト イヨト イヨト

Koniecznośc chłodzenia

Koncepcje modernizacji CCD dla ILC

- Column Parallel CCD równoległy odczyt kolumn detektora w celu przyspieszenia jego działania
- Short Column CCD zwiększenie prędkości odczytu detektora
- Fine Pixel CCD układ wyposażony w piksele o rozmiarach 5 \times 5 μm
- In-situ Storage Image Sensor każdy piksel wyposażony w pamięć umożliwiającą zapisanie kilku przypadków

(4) (5) (4) (5)

Detektory pikselowe DEPFET DEPleted P-channel Field Effect Transistors

- Przestrzenna zdolność rozdzielcza ~ 5 μm - brak dokładnych pomiarów
- Wysoki stosunek sygnału do szumu ${\rm S/N}\sim95$
- Niski pobór mocy nie wymagane chłodzenie
- Możliwość redukcji grubości detektora do 50 μm
- Niekomercyjny proces technologiczny - wysoki koszt produkcji

Detektory pikselowe MAPS Monolithic Active Pixel Sensor

- Wysoka przestrzenna zdolność rozdzielcza - piksele
 20×20 μm² → σ < 2 μm
- Zintegrowana elektronika odczytu umieszczona na powierzchni detektora
- Niski poziom szumów wysoka efektywność rejestracji cząstek
- Odporność na zniszczenia radiacyjne
- Tani i dobrze znany proces produkcji układów - CMOS

Brak pola *E* w obszarze warstwy epitaksjalnej swobodny dryf ładunków

- MIMOSA-5 to pierwszy makro układ typu MAPS
- 4 podmacierze po 510×512 pikseli każda (17×17 μ m²)
- Grubość detektora wynosi 120μm, a warstwy epitaksjalnej 14μm
- Częstotliwość odczytu 10 MHz
- Każdy piksel wyposażony jest w układ odczytowy zbudowany z 3 tranzystorów

Detektor MIMOSA-18 Minimum Ionizing particles MOS Active pixel sensors

- 4 podmacierze po 256×256 pikseli o rozmiarach 10×10 μm²
- Grubość warstwy epitaksjalnej 14 μm
- Grubość detektora 700 μm możliwa redukcja grubości do 50 μm
- Piksele odczytywane przy użyciu tzw. układów Self-bias odcięcie piedestału na poziomie elektroniki

Pomiary charakterystyk detektorów MIMOSA-5 i MIMOSA-18

- Wyznaczenie charakterystyk szumowych detektora
- Kalibracja detektora przy użyciu źródła ⁵⁵Fe
- Test na elektronowej wiązce testowej w DESY (6 GeV)
 - Wyznaczenie efektywności i przestrzennej zdolności rozdzielczej detektora
 - Wyznaczenie charakterystyk ładunkowych
 - Wyznaczenie charakterystyk detektorów dla nachylonych torów cząstek naładowanych

.

Układ pomiarowy System odczytu detektora MIMOSA-5

Układ pomiarowy Stanowisko testowe w DESY

- Wiązka elektronowa (pozytronowa) o energii od 1 do 6 GeV
- Częstotliwość wiązki ~1Hz
- Teleskop pozycji 6 płaszczyzn krzemowych detektorów paskowych

Piedestał i szum w detektorze MIMOSA-5

 Piedestał (P - Pedestal) - sygnał, którego źródłem jest sam detektor (prąd upływności) oraz elektronika odczytu

$$P = \frac{1}{n} \sum_{i=1}^{n} S_i \tag{1}$$

• Szum (N - Noise) - fluktuacje piedestału

$$N^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (S_{i} - P)^{2}$$
⁽²⁾

 Szumy powstają we wszystkich etapach działania detektora reset, integracja ładunku, odczyt

Piedestał i szum w detektorze MIMOSA-5

- Piedestał na poziomie 90 e⁻
- Szum na poziomie 30 e⁻
- Poniżej 1% martwych pikseli równomiernie rozłożonych na powierzchni detektora

< 🗇 🕨

Kalibracja detektora MIMOSA-5 Testy ze źródłem Fe⁵⁵

- Źródło ⁵⁵ Fe fotony o energii
 5.9 keV oraz 6.49 keV
- Energia potrzebna na wytworzenie pary eh w krzemie to ~ 3.6 eV
 - 5.9 keV \rightarrow 1460 par eh
 - 6.49 keV \rightarrow 1800 par eh
- W obszarze zubożonym 100% efektywność zbierania ładunków
- Wzmocnienie detektora
 9.87 e/ADC
- Dobra rozdzielczość energetyczna detektora

Pomiary MIMOSA-5 - elektrony (6GeV) Rekonstrukcja klastrów

- Klaster grupa pikseli, w których został zebrany ładunek powstały w wyniku przejścia cząstki
- Klastryzacaja:
 - Znalezienie ziarna klastra (seed pixel) - S/N > 5, największy w klastrze
 - Piksele sąsiadujące z ziarnem muszą wykazywać znaczący sygnał
 - S/N > 0.5

 Rekonstrukcja pozycji przejścia cząstki przez warstwę - algorytm środka ciężkości Center of Gravity

Pomiary MIMOSA-5 - elektrony (6GeV)

Pozycjonowanie detektora - alignment

• Poszukiwanie parametrów - minimalizacja χ^2

$$\chi^{2} = \sum_{i} \frac{(x_{i} - x_{Tele})^{2} + (y_{i} - y_{Tele})^{2}}{\sigma^{2}}$$
(4)

・ 何 ト ・ ヨ ト ・ ヨ

Pomiary MIMOSA-5 - elektrony (6GeV) Efektywność

• Efektywność rejestracji cząstek

$$Eff = \frac{N_{DUT}}{N_{Tele}}$$
(5)

Dla R > 100 μm i S/N_{seed} < 5.0 efektywność przekracza 98.5%

∢ ≣ ≯

Pomiary MIMOSA-5 - elektrony (6GeV)

Przestrzenna zdolność rozdzielcza

Szerokość residuum σ_{Res}:

$$\sigma_{Res}^2 = \sigma_{DUT}^2 + \sigma_{Tele}^2 \tag{6}$$

• Dla
$$\sigma_{Tele} = 7.5 \mu m \rightarrow \sigma_{DUT} = 3.5 \mu m$$

Pomiary MIMOSA-5 - elektrony (6GeV) Charakterystyki ładunkowe

- Średnia wartość ładunku zdeponowanego w ziarnie klastra wynosi 550 elektronów
- Średnia wartość stosunku sygnału do szumu w ziarnie klastra wynosi S/N~18

Pomiary MIMOSA-5 - elektrony (6GeV) Charakterystyki ładunkowe

- Średnia wartość ładunku zdeponowanego w klastrze 3×3 wynosi 1130 elektronów
- Średnia wartość stosunku sygnału do szumu w klastrze 3×3 wynosi S/N~13

Pomiary dla różnych kątów natarcia wiązki elektronów

Motywacja fizyczna - redukcja tła beamstrahlung

- Tło eksperymentalne stanowią pary e⁺e⁻ o niskim P_T beamstrahlung
- Interesujące procesy fizyczne cząstki o wysokim P_T
- Eliminacja tła eksperymentalnego na podstawie orientacji klastrów względem siatki pikseli

Pomiary dla różnych kątów natarcia wiązki elektronów Kształty klastrów w układzie MIMOSA-5

- Wraz z nachyleniem toru rośnie wydłużenie klastrów
- W przypadku nachylonych torów rośnie sygnał w detektorze - od 900 e dla $\theta = 0^{\circ}$ do 4900 e dla $\theta = 78^{\circ}$

Kształty klastrów w układzie MIMOSA-5 Rekonstrukcja kątów 🖲 i 🍐

 $\theta = 78^{\circ}, \, \phi = -38^{\circ}$

Macierz rozkładu ładunku w klastrze

$$\begin{pmatrix} \sum_{i=1}^{n} \frac{q_{i}}{Q} (x_{i} - \overline{x_{i}})^{2} & \sum_{i=1}^{n} \frac{q_{i}}{Q} (x_{i} - \overline{x_{i}}) (y_{i} - \overline{y_{i}}) \\ \sum_{i=1}^{n} \frac{q_{i}}{Q} (x_{i} - \overline{x_{i}}) (y_{i} - \overline{y_{i}}) & \sum_{i=1}^{n} \frac{q_{i}}{Q} (y_{i} - \overline{y_{i}})^{2} \end{pmatrix}$$
(7)

W wyniku diagonalizacji macierzy (7):

- Wartości własne λ_1 i $\lambda_2 \longrightarrow$ wydłużenie klastra
- Wektory własne v_1 i $v_2 \rightarrow$ orientacja klastra

Kształty klastrów w układzie MIMOSA-5 Rekonstrukcja kątów # i ø

 $\theta = 78^{\circ}, \phi = -38^{\circ}$

- Dla znaczącego wydłużenia klastrów ($\theta > 60^\circ$) istnieje możliwość zrekonstruowania kąta ϕ z precyzją $\sigma_{\phi} < 15^\circ$
- Dla detektora wyposażonego w mniejsze piksele (MIMOSA-18) precyzja rekonstrukcji kąta φ powinna być wyższa

★御▶★臣▶★臣▶

Kształty klastrów w układzie MIMOSA-5 Rekonstrukcja kątów Ø i ø

 Zależność wydłużenia od kąta θ:

$$\sqrt{\lambda_1} = p\mathbf{0} + p\mathbf{1} \cdot \tan \theta$$

 p1 ~ głębokość warstwy epitaksjalnej

Pomiar charakterystyk MIMOSA-18

- Detektor MIMOSA-18 prezentuje bardzo niski szum < N >~ 11e (MIMOSA-5 < N >~ 30e)
- Bardzo dobra rozdzielczość energetyczna MIMOSA-18

Pomiar charakterystyk MIMOSA-18

MIMOSA-18

MIMOSA-5

< 17 ▶

(4) (5) (4) (5)

 W przypadku detektora MIMOSA-18 średnia wartość S/N jest 2 razy większa niż dla detektora MIMOSA-5

Pomiar charakterystyk MIMOSA-18 Rekonstrukcja kątów # i ø

- W przypadku detektora o mniejszych pikselach osiągnięta została wyższa precyzja rekonstrukcji kąta φ
- Precyzja pomiaru kąta φ przekroczyła 15° dla torów nachylonych pod kątem θ > 40°

MIMOSA-5

(Ł. Mączewski/Uniwersytet Warszawski)

Prosty model rozpływu ładunku w detektorach typu MAPS

- Izotropowa dyfuzja ładunku w obszarze aktywnym detektora
- Ładunek rozpływa się pomiędzy sąsiadujące ze sobą piksele powstaje klaster

 Ładunek powstały w wyniku jonizacji jest rozmieszczany w pikselach zgodnie ze wzorem

$$q(R) = \frac{d\Omega}{4\pi} \cdot \exp\left(-\frac{R}{\lambda}\right)$$
(8)

• Współczynnik atenuacji λ - jedyny swobodny parametr w modelu

Wynik symulacji odpowiedzi detektora MIMOSA-5

- Parametr atenuacji λ otrzymany w wyniku dopasowania Monte Carlo do danych wyniósł ~45 μ m
- Zaproponowany model bardzo dobrze opisuje wyniki eksperymentalne

Plany na przyszłość

• Planowane są kolejne pomiary detektorów MAPS:

- MIMOSA-5 i MIMOSA-18 pomiary z użyciem niskoenergetycznych elektronów Frascati (10 - 100 MeV) i DESY (1 GeV)
- MIMOSA-18 precyzyjne pomiary charakterystyk detektora na wysokoenergetycznej wiązce hadronowej w CERN
- Symulacje Monte Carlo w celu weryfikacji możliwości redukcji tła eksperymentalnego (beamstrahlung)
 - Parametryzacja odpowiedzi detektorów typu MAPS w trakcie przygotowania
 - Studia dotyczące aktywności detektora w obecności cząstek tła eksperymentalnego
 - Wpływ cząstek beamstrahlungu na rekonstrukcję zapachów ciężkich kwarków

・ロト ・ 四ト ・ ヨト ・ ヨト

- Przeprowadzone pomiary pokazują, iż układy typu MAPS są dobrymi kandydatami na elementy aktywne w detektorze wierzchołka dla ILC
- Parametryzacja odpowiedzi macierzy pikselowych typu MAPS jest kluczowa dla przygotowania realistycznych symulacji Monte Carlo detektora wierzchołka
 - Zaprezentowany model jest pierwszą próbą parametryzacji odpowiedzi MAPS-ów
 - Prezentuje on zgodność z wynikami eksperymentu
- Wyniki pomiarów z pochylonymi torami cząstek naładowanych wskazują możliwość redukcji tła eksperymentalnego beamstrahlung (P. Łużniak)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Zniszczenia radiacyjne w detektorach krzemowych Promieniowanie jonizujące

- Źródłem zniszczeń są cząstki naładowane oraz fotony
- Zniszczenia spowodowane przez cząstki jonizujące w głównej mierze koncentrują się na granicy Si-SiO₂
- W obszarze granicznym pojawia się przestrzenny rozkład ładunku
 centra pułapkowania i modyfikacja poziomów energetycznych na granicy Si-SiO₂
- Efektem tych zniszczeń radiacyjnych są utrata sygnału i wzrost prądu upływności

Zniszczenia radiacyjne w detektorach krzemowych Uszkodzenia sieci krystalicznej - Non-ronising Energy Loss

creation of disordered regions, "Cluster"

- Źródłem zniszczeń są cząstki o energii wystarczającej do wybicia atomu z sieci krystalicznej
- Zniszczenia w sieci krystalicznej powodują m.in. pojawienie się dodatkowych poziomów energetycznych
- Efektem tego typu zniszczeń radiacyjnych są wzrost prądu upływności oraz utrata części sygnału

Wpływ zniszczeń radiacyjnych na układ MIMOSA-5 Infrastruktura wykorzystana do naświetleń (D. Contarato)

- Naświetlenia przeprowadzone w ośrodku GSI w Darmstadt
- Do naświetleń użyta została wiązka elektronów o energii 9.4 MeV:
 - Macierz B02 3 · 10¹² e/cm² (70 Gy)
 - Macierz T02 10¹³ e/cm² (230 Gy)
- Słaba znajomość profilu wiązki niska precyzja pomiaru

Wpływ zniszczeń radiacyjnych na układ MIMOSA-5 Charakterystyki piedestałowe i szumowe

- W wyniku napromieniowania detektora MIMOSA-5 nastąpił dramatyczny wzrost piedestału i szumu
- Detektor MIMOSA-5 nie jest projektowany jako układ odporny na zniszczenia radiacyjne

- 3 →

Wpływ zniszczeń radiacyjnych na układ MIMOSA-5 Testy ze źródłem Fe^{ss}

- Widoczne przesunięcie piku dla fotonów 5.9 keV w kierunku mniejszych wartości ADC spowodowane wychwytem części ładunku przez centra pułapkowania
- Wzrost szumów pogarsza rozdzielczość energetyczną detektora

Wpływ zniszczeń radiacyjnych na układ MIMOSA-5 Testy z elektronami 6 GeV

- Zniszczenia radiacyjne wywołane przez cząstki jonizujące nie wpłynęły na przestrzenną zdolność rozdzielczą detektora
- Nie zaobserwowano dużych strat sygnału spowodowanych zniszczeniami radiacyjnymi wywołanymi przez cząstki jonizujące

 Spadek efektywności detektora z 98.5% do 90% - wzrost liczby martwych pikseli oraz spadek S/N

Koncepcje detektorów dla ILC Detektor LDC - Large Detector Concept

- Pikselowy detektor wierzchołka VXD
- Gazowy detektor śladowy -Time Projection Chamber o wysokiej rozdzielczości pędowej
- Kalorymetry o wysokiej granularności w polu magnetycznym solenoidu -4 Tesle
- We wnętrzu stalowego jarzma zamykającego pole magnetyczne detektory mionowe

Detektor LDC - Particle Flow Algorithm

Koncepcje detektorów dla ILC Detektor GLD - Gaseous Large Detector

- Pikselowy detektor wierzchołka VXD
- Gazowy detektor śladowy -Time Projection Chamber o wysokiej rozdzielczości pędowej
- Kalorymetry o wysokiej granularności w polu magnetycznym solenoidu -3 Tesle
- We wnętrzu stalowego jarzma zamykającego pole magnetyczne detektory mionowe

Detektor GLD - Particle Flow Algorithm

A .

Koncepcje detektorów dla ILC Detektor SiD - Slicon Detector

- Pikselowy detektor wierzchołka VXD
- Krzemowy detektor śladowy o wysokiej rozdzielczości pędowej
- Kalorymetry o wysokiej granularności w polu magnetycznym solenoidu -5 Tesli
- We wnętrzu stalowego jarzma zamykającego pole magnetyczne detektory mionowe

Detektor SiD - Particle Flow Algorithm

Koncepcje detektorów dla ILC Detektor 4th

- Pikselowy detektor wierzchołka VXD
- Gazowy detektor śladowy -Time Projection Chamber o wysokiej rozdzielczości pędowej
- Kalorymetry kompensujące w polu magnetycznym solenoidu
 - 3.5 Tesli
- Zamiast stalowego jarzma drugi nadprzewodzący solenoid
- Pomiędzy solenoidami detektory mionowe

Wymagania stojące przed macierzami pikselowymi dla detektora wierzchołka przy ILC:

- Wysoka przestrzenna zdolność rozdzielcza < 5 μm
- Niewielka grubość detektora

 0.1%X₀ zmniejszenie wpływu
 wielokrotnego rozpraszania
 kulombowskiego

- Wysoka efektywność rejestracji cząstek naładowanych ~ 99% w pojedynczej warstwie
- Duża granularność oraz szybki odczyt detektora \sim 40 MHz
- Odporność na zniszczenia radiacyjne:
 - $\Phi_{neutrony} = 10^{10}_{(1MeV)} \cdot n \cdot yr^{-1} \cdot cm^{-2}$
 - D_{jonizacja} = 20 krad/yr

Detektory pikselowe CP-CCDs, FP-CCDs, SC-CCD, ISIS

- Column Parallel CCD
- Fine Pixel CCD o rozmiarach pikseli $5 \times 5 \ \mu m$
- Short Column CCD

In-situ Storage Image Sensor

< ロ > < 同 > < 回 > < 回 >

- MIMOSA-5 to pierwszy makro układ typu MAPS
- 4 podmacierze po 510×512 pikseli każda (17×17 μ m²)
- Grubość detektora wynosi 120μm a warstwy epitaksjalnej 14μm
- Częstotliwość odczytu 10 MHz

Prototypowe układy typu MAPS ^{Układ odczytu}

- Każdy piksel detektora MIMOSA-5 wyposażony jest w układ składający się z 3 tranzystorów - architektura 3T
 - Tranzystora M1 reset detektora
 - Ładunek zgromadzony w pikselu moduluje prąd płynący przez tranzystor M2, którego wartość jest odczytywana
 - Tranzystor M3 wybór wiersza w odczytywanej kolumnie
- W przypadku detektora MIMOSA-18 układ 3T został zastąpiony przez tzw. układ Self-bias

Pomiary dla różnych kątów natarcia wiązki elektronów Motywacja fizyczna - wyniki symulacji Monte Carlo

- Symulacje P. Łużniak, e⁺e⁻ → Zh
 (• Pythia) i tło beamstrahlung
 (• Guinea Pig)
- Energia w środku masy 500 GeV, świetlność 500 fb⁻¹
- Prezentowane wyniki dotyczą pierwszej warstwy VXD

4 A 1

