# Eksperyment LHCb - pierwsze lata zbierania danych i Nowa Fizyka

Marek Szczekowski Instytut Problemów Jądrowych Warszawa

18 kwietnia 2008

1

## Fizyka B w Modelu Standardowym

- Powiązana z sektorem zapachów i łamaniem CP w MS najmniej zrozumianą częścią modelu
- Rozpady i oscylacje B określają 5 z 9 elementów macierzy CKM
- Wyraźna hierarchia przejść między kwarkami → przyczyna nieznana
- (Zbyt) wiele parametrów (stałych przyrody w MS) opisujących masy kwarków i leptonów oraz ich mieszanie (6+3+3+4+6=22) / 28
- Kosmologia → Wielki Wybuch (≈ 13.5 10<sup>9</sup> lat temu) → symetria produkcji materii i antymaterii → anihilacja materii i antymaterii → n<sub>barion</sub>/ n<sub>gamma</sub> ~10<sup>-10</sup>.
   Dlaczego cała materia nie uległa anihilacji ? Do wyjaśnienia potrzebne m.in. łamanie CP.
- MS → łamanie CP → 3 generacje kwarków

Ale stopień łamania CP w MS nie wystarcza do wyjaśnienia bariogenezy  $\rightarrow$  potrzebne są inne źródła łamania CP  $\rightarrow$  Nowa Fizyka

#### Fizyka B – pośrednie poszukiwanie Nowej Fizyki

Z wielu względów Model Standardowy (MS) nie może być ostateczną teorią → efektywna teoria przy niskich energiach, przybliżenie bardziej fundamentalnej Nowej Fizyki oczekiwanej przy E ~ O (1 TeV)

Jak szukać Nowej Fizyki (nowe cząstki, nowe symetrie, nowe oddziaływania)?

- → nowe cząstki mogą być bezpośrednio wyprodukowane, jeśli energia jest wystarczająca
- → nowe cząstki mogą pojawiać się jako cząstki wirtualne w procesach pętlowych → mierzalne odchylenia od przewidywań MS.

dużą precyzją.

Fizyka B jest bogatym źródłem procesów pętlowych mierzonych z bardzo



#### Spektakularne sukcesy podejścia pośredniego

- Γ( K<sub>L</sub><sup>0</sup> → μ<sup>+</sup> μ<sup>-</sup>)/Γ( K<sup>+</sup> → μ<sup>+</sup> v) << 1 → mechanizm GIM (1970) → przewidywanie czwartego kwarka (c) → obserwacja c (1974)</li>
- Pomiar różnic mas  $\Delta m_K \rightarrow przewidywanie masy c$  $\Delta m_K \sim (m_c - m_u)^2 \sin^2\theta_C \cos^2\theta_C$
- Oscylacje B antyB i pomiar  $\Delta m_B (1987) \rightarrow przewidywanie masy t$  $\Delta m_B \sim m_t^2 (V_{tb}^* V_{td})^2$
- Łamanie CP (1964) → mechanizm KM (1973) → przewidywanie trzeciej rodziny kwarków → obserwacja b (1977), obserwacja t (1995)

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix} = \begin{pmatrix} arg(V_{ub}) = -\beta\\arg(V_{ub}) = -\gamma\\b' & arg(V_{ts}) = \beta_s + \pi \end{pmatrix} \begin{pmatrix} \overline{d}'\\\overline{s}'\\\overline{b}' \end{pmatrix} = \begin{pmatrix} V^*_{ud} & V^*_{us} & V^*_{ub}\\V^*_{cd} & V^*_{cs} & V^*_{cb}\\V^*_{ud} & V^*_{ts} & V^*_{tb} \end{pmatrix} \begin{pmatrix} \overline{d}\\\overline{s}\\\overline{b}\\\overline{b} \end{pmatrix}$$

$$\frac{b}{V_{cb}} \begin{pmatrix} W^-\\V_{cb} & C \end{pmatrix} = \begin{pmatrix} V^*_{ud} & V^*_{us} & V^*_{ub}\\V^*_{cd} & V^*_{cs} & V^*_{cb}\\V^*_{ud} & V^*_{ts} & V^*_{tb} \end{pmatrix} \begin{pmatrix} \overline{d}\\\overline{s}\\\overline{b}\\\overline{b} \end{pmatrix}$$

$$\frac{b}{V_{cb}} \begin{pmatrix} W^-\\V_{cb} & C \end{pmatrix} = \begin{pmatrix} V^*_{ud} & V^*_{us} & V^*_{ub}\\V^*_{cd} & V^*_{cs} & V^*_{cb}\\V^*_{ud} & V^*_{ts} & V^*_{tb} \end{pmatrix} \begin{pmatrix} \overline{d}\\\overline{s}\\\overline{b}\\\overline{b} \end{pmatrix}$$

## Obecny stan Modelu Standardowego i poszukiwań Nowej Fizyki

" Im bardziej zaglądali do środka tym bardziej prosiaczka tam nie było… "



## Zagadka zapachów w Nowej Fizyce

Nowa Fizyka  $\rightarrow$  nowe człony w lagranżjanie np.opisujące wkłady do  $\Delta m$  dla neutralnych mezonów K, D, B, B<sub>s</sub>:

$$L_{\Delta F=2} = \frac{g_{sd}}{\Lambda_{NF}^2} \left(\overline{d_L} \gamma_\mu s_L\right)^2 + \frac{g_{cu}}{\Lambda_{NF}^2} \left(\overline{c_L} \gamma_\mu u_L\right)^2 + \frac{g_{bd}}{\Lambda_{NF}^2} \left(\overline{d_L} \gamma_\mu b_L\right)^2 + \frac{g_{bs}}{\Lambda_{NF}^2} \left(\overline{s_L} \gamma_\mu b_L\right)^2$$

Ale te Δm są dobrze pomierzone i zgodne z przewidywaniami Modelu Standardowego:

$$\Delta m_{\rm K}/m_{\rm K} \sim 7.0 \ 10^{-15}$$
  
 $\Delta m_{\rm D}/m_{\rm D} \leq 2 \ 10^{-14}$   
 $\Delta m_{\rm B}/m_{\rm B} \sim 6.3 \ 10^{-14}$   
 $\Delta m_{\rm Bs}/m_{\rm Bs} \sim 2.1 \ 10^{-12}$ 

1. Jeśli  $g_{ii} = O(1)$  to  $\Lambda_{NF} = O(10^3 - 10^4)$  TeV

2. Jeśli  $\Lambda_{NF} = O(1)$  TeV to struktura zapachów NF jest bardzo szczególna:  $g_{ii} \le 10^{-4} - 10^{-7}$ 

Y.Nir, arXiv:hep-ph/07081872

## Przypadki bb

LHC  $\rightarrow$  b. duży przekrój czynny na produkcję kwarków pięknych (~ 0.5 mb)

wierzchołek oddziaływania pp Kwarki b i anty-b produkowane  $B_0$ parami, w większości pod małymi i b-hadron skorelowanymi kątami (PYTHIA)  $\pi^+$ Rozkład kątowy bb Pomiar czasu własnego w rozpadzie B:  $t = m_{\rm B} L / pc$ a więc długości rozpadu L (~ 1 cm w LHCb) i pędów *p* dla produktów rozpadu (~ 1–100 GeV) Należy oznakować stan wyprodukowanego B: had czy było to B czy  $\overline{B}$ Iradi Można użyć ładunku leptonu lub kaonu z rozpadu

*drugiego* hadronu b w przypadku

 $\pi^+$ 

## Produkcja kwarków b w LHCb

- spektrometr jednoramienny dla małych kątów
   1.9 < | η | < 4.9 (15 300 mrad)</li>
- średni pęd B ≈ 80 GeV/c
- tryger dla stosunkowo małych  $p_T$
- typowa zdolność rozdzielcza pomiaru czasu życia :

σ ≈ 40 fs (≈ 3% т)

- typowa zdolność rozdzielcza w masie: 14 – 18 MeV/c<sup>2</sup>
- bardzo dobra identyfikacja cząstek
- 2 fb<sup>-1</sup> rocznie (10<sup>7</sup> sek)





## Świetlność w LHCb

Problem przekrywania się n przypadków (pile-up) z tego samego przecięcia wiązek. Rozkład Poissona:

 $<n> = L \sigma_{inel} / f$ ,  $\sigma_{inel} \approx 80 \text{ mb}$ , f = 30 MHzPrzy  $< L > = 2 \ 10^{32} \text{ cm}^{-2}\text{s}^{-1}$ (maks. 5  $10^{32} \text{ cm}^{-2}\text{s}^{-1}$ )

- $\rightarrow$  czyste przypadki : < n > = 0.5
- → mniejsze uszkodzenia radiacyjne (VELO 8 mm od wiązki)

 $\rightarrow$  N =  $\sigma_{b}^{\int}$  L dt = 10<sup>12</sup> wyprodukowanych przypadków z b rocznie

Scenariusz (optymistyczny ?) dla scałkowanej świetlności:

- 2008 : < 0.1 fb<sup>-1</sup> ?
- − 2009 : ~ 0.5 fb<sup>−1</sup>
- − 2010 : ~ 2 fb<sup>-1</sup> / rok



#### **Detektor LHCb**

VELO: Vertex Locator , detektor wierzchołka TT, T1, T2, T3: detektory śladowe RICH 1 – 2: detektory promieniowania Czerenkowa ECAL, HCAL: kalorymetry M1–M5: stacje komór mionowych



#### Detektor w holu UX85



#### LHCb w holu eksperymentalnym



## LHCb wirtualny



13

#### Detektor Wierzchołka VELO – vertex locator



## RICH-1 + 2











#### Identyfikacja cząstek w licznikach Czerenkowa



## **Detektor Zewnętrzny**

- 3 stacje (2 \* 6 ram C), każda z 4 płaszczyznami modułów
- Każdy moduł  $\rightarrow$  2 warstwy słomek z kaptonu/AI.
- σ (p) / p = 0.35 0.55 % dla p do ~120 GeV/c

Warszawski system monitorowania położeń ram - RASNIK Rozprowadzenie gazu i chłodzenia Rozprowadzenie LV, HV, ECS/TFC, etc. 9+9 modułów 130 modułów (ok.15 000 słomek) wyprodukowanych w Warszawie 17  $2 \times 2 \times 9$  modułów elektroniki Front-End

## Tryger w LHCb



## Początki zbierania danych

Przy jakiej świetlności system zbierania danych w LHCb zostanie wysycony ( → potrzebny tryger) ?

- Całkowity przekrój czynny dla pp σ<sub>MB</sub> ≈ 100 mb
- Szybkość zapisu danych w LHCb R ≈ 2 kHz
- Odpowiadająca świetlność L = R / σ<sub>MB</sub> ≈ 2 10<sup>28</sup> cm<sup>-2</sup>s<sup>-1</sup>
- 10<sup>8</sup> przypadków MB w 14 godzin:
  - 5 milionów przypadków z cząstkami powabnymi (c)
  - 0,5 miliona przypadków z cząstkami pięknymi (b)
- Ustawianie i sprawdzanie trygera
- Kalibracja detektorów: alignment, RICH ( $\pi/K/p$ ), kalorymetry ( $\pi^0$ ) ....
- Efekty systematyczne: symetria azymutalna produkcji cząstek, n<sup>+</sup>/n<sup>-</sup> ....
- Dopasowanie programów Monte Carlo

Analiza fizyczna  $\rightarrow$  nie ma danych przy tych energiach  $\rightarrow$  wszystko jest nowe !

#### Kalibracja identyfikacji cząstek w RICH



## Program badań w fizyce zapachów w LHCb

- Precyzyjne pomiary łamania CP, rzadkich rozpadów B, ...
  - Pośrednie poszukiwania Nowej Fizyki w rozpadach opisywanych przez diagramy pętlowe
    - Pomiar rozpadu  $B_s \rightarrow \mu\mu$
    - Parametry mieszania B , w szczególności faza mieszania dla B<sub>s</sub>
    - Łamanie CP w ekskluzywnych hadronowych rozpadach pingwinowych b  $\rightarrow$  sss
    - Łamanie CP w amplitudach rozpadów B (np. B  $\rightarrow$  K  $\pi$ )
    - Pomiary ekskluzywnych rozpadów  $b \rightarrow s I^+I^-$  and  $b \rightarrow s\gamma$  (tzn. struktury chiralnej)  $\triangleleft$
  - Pomiar różnicy słabych faz między V<sub>ub</sub> i V<sub>cb</sub> ( kąt  $\gamma$  ) z pomiarów rozpadów drzewowych B  $\rightarrow$  DK
  - Poszukiwanie LFV w leptonowych rozpadach B (np.  $B_s \rightarrow \mu e$ )
  - Poszukiwanie NF w sektorze cząstek powabnych (mieszanie D, łamanie CP, rzadkie rozpady)
  - Spectroskopia hadronów b, stany związane ciężkich kwarków, ...
    - Jeśli NF zostanie znaleziona przez ATLAS/CMS, LHCb dostarczy komplementarnych informacji badając strukturę zapachową NF
    - W przeciwnym przypadku, można badać fizykę przy znacznie wyższych energiach niż osiągane w pomiarach bezpośrednich

#### Bardzo rzadkie rozpady : $B_s \rightarrow \mu^+ \mu^-$



## ${\rm B_s} \rightarrow \mu^+ \mu^-$ w LHCb

- "Łatwy" dla trygera i selekcji
   → efektywność rekonstrukcji ≈ 10 %
- Główny problem: odrzucenie tła (MC → ograniczona statystyka)
  - największe tło od b  $\rightarrow \mu$  , b  $\rightarrow \mu$
  - dominujący kanał ekskluzywny  $B_c \rightarrow J/\psi(\mu\mu) \ \mu \ v \ mały$
- Wykorzystanie zalet detektora:
  - dobra identyfikacja mionów,
  - dokładna rekonstrukcja wierzchołka,
  - dobra zdolność rozdzielcza w masie B<sub>s</sub> (18 MeV/c<sup>2</sup>)

 $\begin{array}{l} 0.05\,\text{fb}^{-1} \Rightarrow \text{wynik lepszy od CDF+D0} \\ 0.5\,\,\text{fb}^{-1} \Rightarrow \text{wykluczenie wartości BR aż do MS} \\ 2\,\,\,\text{fb}^{-1} \Rightarrow \,\,3\sigma \,\text{ewidencja sygnału MS} \\ 6\,\,\,\text{fb}^{-1} \Rightarrow \,\,5\sigma \,\text{obserwacja sygnału MS} \end{array}$ 



Najbardziej obiecujący kanał do szybkiego odkrycia NF w LHCb !

## Asymetria CP w $B_s \rightarrow J/\psi \phi$

- Dominacja jednej amplitudy ⇒ nie ma łamania CP w rozpadzie
- Odpowiednik dla B<sub>s</sub> złotego rozpadu  $B^0 \rightarrow J/\psi K_S$

$$A_{CP}(t) = \frac{\Gamma\left(\overline{B_s^0}\left(t\right) \to f\right) - \Gamma\left(B_s^0\left(t\right) \to f\right)}{\Gamma\left(\overline{B_s^0}\left(t\right) \to f\right) + \Gamma\left(B_s^0\left(t\right) \to f\right)}$$

$$A_{CP}(t) = -\frac{\eta_f \sin \phi_S \sin(\Delta m_S t)}{\cosh\left(\frac{\Delta \Gamma_S t}{2}\right) - \eta_f \cos \phi_S \sinh\left(\frac{\Delta \Gamma_S t}{2}\right)}$$

faza  $\phi_s = -2\beta_s$  jest odpowiednikiem  $\phi_d = 2\beta$  dla B : -  $\phi_s$  bardzo mała w Modelu Standardowym  $\phi_s^{SM} = -\arg(V_{ts}^2) = -2\lambda^2\eta = -0.0368 \pm 0.0018$ - może być znacznie większa przy NF







## Faza mieszania $\phi_s$ dla mezonów $B_s$

Ale ponieważ  $B \rightarrow V V$  to potrzebna jest analiza kątowa, żeby oddzielić wkłady od stanów z CP-ujemnym i CP-dodatnim

- Jak dotąd:
  - Nie znaleziono łamania CP
  - Wynik D0 (1.1 fb<sup>-1</sup>, ~1k  $B_s \rightarrow J/\psi \phi$ )
    - φ<sub>s</sub> = -0.79 ± 0.56 + 0.14 0.01 [PRL 98, 121801 (2007)]
- Czułość LHCb z 0.5 fb<sup>-1</sup>:

~33k przypadków B<sub>s</sub>  $\rightarrow$  J/ $\psi(\mu\mu)\phi$  (bez znakowania), B<sub>bb</sub>/S = 0.12,  $\sigma_t$  = 36 fs

$$\sigma_{\text{stat}}(\phi_{\text{s}}) = 0.046$$



- Docelowo:
  - Można dodać (J/ $\psi\eta^{(')}$ ,  $\eta_c\phi$ ,  $D_sD_s$ )
  - Przy 10 fb<sup>-1</sup>, można otrzymać ewidencję >3σ dla łamania CP ( $φ_s ≠ 0$ ), nawet jeśli tylko MS

# Ograniczenia na Nową Fizykę z pomiarów fazy w oscylacjach B<sub>s</sub>





## $A_{FB} (B \rightarrow K^* \mu \mu)$

Efektywność ~ 1%  $\rightarrow$  7300 przyp./ 2 fb <sup>-1</sup> Tło:

B/S → 0.5+0.2 dla 90% CL

bb:  $b \rightarrow \mu, b \rightarrow \mu$ 

bb:  $b \rightarrow \mu, c \ (c \rightarrow \mu)$ 

**Problem:** 

Funkcja akceptancji  $a(\theta_1, m_{uu}^2)$ Czułość:

przy 0.07 fb<sup>-1</sup> konkurencja z BaBar i Belle



|                    | 0.5 fb <sup>-1</sup> | 2 fb <sup>-1</sup>   | 10 fb <sup>-1</sup>  |
|--------------------|----------------------|----------------------|----------------------|
| σ(S <sub>0</sub> ) | 0.8 GeV <sup>2</sup> | 0.5 GeV <sup>2</sup> | 0.3 GeV <sup>2</sup> |

## Przykłady fizyki B w LHCb z 0.5 fb<sup>-1</sup>

| Kanał rozpadu                                                             | Liczba<br>przyp.<br>dla<br>0.5 fb <sup>-1</sup> | Stat. czułość dla 0.5 fb <sup>-1</sup>       | Świetlność potrzebna do<br>zrównania się z<br>konkurencją * |
|---------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|
| B <sub>d</sub> →J/ψ(μμ)K <sub>S</sub>                                     | 59k                                             | σ(sin(2β)) = 0.04                            | 2 fb <sup>-1</sup>                                          |
| $B_s \rightarrow D_s^- \pi^+$                                             | 35k                                             | σ(∆m <sub>s</sub> ) = 0.012 ps <sup>₋1</sup> | 0.2 fb <sup>-1</sup>                                        |
| $B_s \rightarrow D_s^-K^\pm$                                              | 1.6k                                            | σ(γ) = 21 deg                                | -                                                           |
| B <sub>s</sub> → J/ψ(μμ)φ                                                 | 33k                                             | σ(φ <sub>s</sub> ) = 0.046                   | 0.3 fb <sup>-1</sup>                                        |
| $B_d \to \phi K_S$                                                        | 230                                             | $\sigma(\sin(2\beta_{eff})) = 0.46$          | 8 fb <sup>-1</sup>                                          |
| $B_s \rightarrow \phi \phi$                                               | 780                                             | σ(Δφ <sup>NP</sup> ) = 0.22                  | _                                                           |
| $B^+ \rightarrow D(hh)K^{\pm}$<br>$B^+ \rightarrow D(K_S \pi \pi)K^{\pm}$ | 16k<br>1.3k                                     | σ(γ) = 12–14 deg                             | 0.3 fb <sup>-1</sup>                                        |
| $B_d \to \pi^+\pi^-$                                                      | 8.9k                                            | σ(S, C) = 0.074, 0.086                       | 1–2 fb⁻¹                                                    |
| $B_s \rightarrow K^+K^-$                                                  | 9.0k                                            | σ(S, C) = 0.088, 0.084                       | -                                                           |
| $B_d \to \rho \pi \to \pi^+ \pi^- \pi^0$                                  | 3.5k                                            | α                                            | 2 fb <sup>-1</sup>                                          |
| $B_d \rightarrow K^{*0}\gamma$                                            | 15k                                             | A <sub>CP</sub>                              | 0.4 fb <sup>-1</sup>                                        |
| $B_s \to \phi \gamma$                                                     | 2.9k                                            | A <sub>CP</sub> (t)                          | -                                                           |
| $B_d \to K^{*0} \mu^+ \mu^-$                                              | 1.8k                                            | σ(q² <sub>0</sub> ) = 0.9 GeV²               | 0.1 fb <sup>-1</sup>                                        |
| B <sub>s</sub> → µ⁺µ⁻                                                     | 18                                              | BR <sub>sм</sub> at 90%CL                    | 0.05 fb <sup>−1</sup>                                       |

\* Zakładając (zbyt) proste skalowanie  $1/\sqrt{N}$  statystycznych niepewności dla obecnych wyników z Tevatronu ( $\rightarrow$  16 fb<sup>-1</sup>) i fabryk B ( $\rightarrow$  1.75 ab<sup>-1</sup>)

## Podsumowanie

(scenariusz na początek)

- Uruchamienie detektora:
  - − Pierwsza wiązka (<sup>(U)</sup>) i pierwsze zderzenia bez pola magnetycznego:
    - → ustalenie procedury zbierania danych,
    - → sprawdzenie synchronizacji czasowej poszczególnych detektorów,
    - → sprawdzenie programów rekonstrukcji przypadków dla rzeczywistych danych,
    - → określenie wzajemnych położeń detektorów (alignment)
  - Pierwsze zderzenia z włączonym magnesem (obie polaryzacje):
    - → Kalibracja pędu, energii, identyfikacji cząstek, … oraz sprawdzenie alignment'u,
    - → analiza podstawowych rozkładów (zdolności rozdzielcze, …) i uruchomienie trygera,
    - → przetestowanie modelu obliczeniowego z rzeczywistymi danymi (użycie centrum Tier1 i analizy w GRID),
    - $\rightarrow$  jak najszybsze przejście do wiązek 25ns i świetlności 2×10<sup>32</sup> cm<sup>-2</sup>s<sup>-1</sup>

## Podsumowanie

(scenariusz na początek c.d.)

- Fizyka:
  - Podstawowe pomiary (np. produkcja J/ $\psi$  ,  $\sigma_{\text{bb}}$  , …)
  - Zasadniczy program badań (fizyka B, poszukiwanie NF) może zacząć się bardzo wcześnie już od 0.1 0.5 fb<sup>-1</sup> z konkurencyjnymi wynikami np. dla Bs  $\rightarrow \mu\mu$ ,  $\phi_s z Bs \rightarrow J/\psi\phi$ .

Wyniki z eksperymentów CDF i D0, a w przyszłości z LHCb oraz CMS i ATLAS, dowodzą, że zderzacze hadronowe określane często jako "discovery machines" są również miejscem bardzo dokładnych pomiarów.

## Dodatkowe

