Expectations for beyond-SM physics @ LHC

Slava Rychkov (SNS Pisa)

Warsaw, 13 March 2008

LHC versus SppS, TeVatron

Similarities:		prior indirect information	discovery
SppS		$G_F, \sin^2\theta \Rightarrow M_W \approx 80 \mathrm{GeV} \pm 10\%$	W(1983)
	TeVatro	n LEP: m_{top} =150±50 GeV(1990) 170±20 GeV (1995)	top (1995)
	LHC	<i>m_H</i> >114 GeV <i>m_H</i> <144 GeV (95% CL)	Higgs 2010 ?
Difforences		e <mark>Ecclose // Pecnery]</mark> 30 100 300 m _x [GeV]	

- 1. How many Higgs bosons and where is uncertain:
 - a) there are infinitely many theoretically allowed Higgs sectors
 - b) indirect limits do not apply to extended models

2. It's not only about Higgs:

Differences

- a) All known scalar particles are composites.
 - Naturally light fundamental scalars require supersymmetry.
- b) We are going beyond a new physical *scale*. Surprises?

=> LHC potentially much more exciting!

Indirect Higgs boson limits caveat emptor

1. Tree level unitarity in longitudinal WW scattering

2. Loop effects in Electroweak observables

Direct Higgs boson limits

 m_s

Q&A about Higgs boson

Question	Answer	Explanation
Can it be significantly heavier than expected?	Yes	New particles contributing to T,S
Could it have escaped detection?	Yes	New particles dominating Higgs decays
Can one make it without Higgs particle?	Yes	Unitarity can instead be restored by new heavy vectors (see below)

Where is new physics?

New physics (NP) at short distances: $\Lambda_{NP} = ..., M_{SUSY}, M_{DM}, M_{seesaw}, M_{GUT}, M_{Planck}$

How to keep beautiful consistency of SM with experimental tests?

No problem at all, even without knowing what this NP is, provided:

- 1. SU(3)xSU(2)xU(1) is kept intact
- 2. Low energy spectrum is that of the SM, with the inclusion of the Higgs boson

 $3.\Lambda_{NP} >> G_F^{-1/2}$

Why "a problem"?

1. To address it at all, need a "calculable" Higgs mass

2. In the SM

 $\delta m_h^2 = \alpha_t \Lambda_t^2 + \alpha_g \Lambda_g^2 + \alpha_h \Lambda_h^2 \quad (*)$

with known coeff.s for a given cut-off $\overset{H}{-}$

3. Even though $\Lambda \rightarrow \infty$, $\underline{H}_{\underline{A}} \stackrel{\checkmark}{\underline{A}} \stackrel{H}{\underline{A}} \stackrel{\downarrow}{\underline{A}} \stackrel{H}{\underline{A}} \stackrel{\mu}{\underline{A}} \stackrel{H}{\underline{A}} \stackrel{\mu}{\underline{A}} \stackrel{\mu}{\underline$

4. Using the naive estimate of (*) and <u>barring accidental cancellations</u> \Rightarrow

5. Especially Λ_t low enough that one might have already seen its (indirect)signs

$$\Lambda_t \approx 3.5 m_h$$

 $\Lambda_g \approx 9 m_h > \Lambda_t$
 $\Lambda_h \approx 1.3 \text{ TeV}$

W,Z

Н

Higgsless models

Strong coupling @ TeV, Electroweak Chiral Lagrangian, Technicolor, etc

 $\Rightarrow Electroweak breaking via$ $SU(2)_L xSU(2)_R \rightarrow SU(2)_V breaking:$

Unitarization by new massive vector bosons with mass < 2 TeV:</p>

Narrow resonances, even when heavy: I

$$\Gamma_{\hat{V}} \approx 4\% M_{\hat{V}} \left(M_{\hat{V}} / 1 \,\mathrm{TeV} \right)^2$$

50% for Higgs boson

→ Unobserved effects expected from $\hat{\mathbf{V}} - \mathbf{V}$ mixing unless $\hat{\mathbf{V}}$ is heavy WWZ vertex => $M_{\hat{V}}$ > 400 GeV S,T fit => $M_{\hat{V}} = 1 - 2 \text{ TeV}$ (see below)

SO(5) sector strongly interacting => Higgs boson is "composite"

ightarrow Top loop corrections to m_h^2 cut off by states with the same spin and gauge quantum numbers (new heavy quarks)

 \rightarrow hVV coupling suppressed, relative to the SM, by a factor $(1-v^2/f^2)^{1/2}$

Still need heavy vectors to restore unitarity (may be factor 2-3 heavier than in Higgsless case)

Electroweak Precision Tests

A problem unless something missing...

Main phenomenology

V - W,Z
$$\hat{\mathbf{V}}$$
 - new heavy vectors

	Higgs-less	pGB Higgs
$A(V_L V_L \rightarrow V_L V_L)$ below $\hat{\mathbf{V}}$	s/v^2	s/f^2
$oldsymbol{M}_{\hat{V}}$	$g_s v < 2 \mathrm{TeV}$	$g_s f < 2 \operatorname{TeV}(f/v)$
ŶVV coupling	g_s st	rong
Ŷſſ	g (g)	(\boldsymbol{g}_s)
Û <i>tt</i>	?	strongish
new heavy quarks $T^{2/3}, B^{-1/3}, X^{5/3}$	8	🌏 m~TeV

Signals of heavy vectors $\hat{\mathbf{V}}$ $qq \rightarrow qq \hat{V} \qquad qq \rightarrow \hat{V} \qquad \hat{V} \rightarrow VV, t\bar{t}, (hV)$ (t or b, depending on the charge) $\hat{V} \rightarrow f\bar{f}$ probably not useful, because of small BR

$$pp \rightarrow \hat{W}qq \rightarrow WZqq \rightarrow qq3l \nu$$

$$pp \rightarrow \hat{Z} \rightarrow W^+W^- \rightarrow 2l 2\nu$$

Signals of heavy quarks $Q \equiv (T^{2/3}, B^{-1/3}, X^{5/3})$

$$qq \rightarrow Q\bar{Q}$$
 $Q \rightarrow tV, th$
(t or b, depending on the charge)

If they exist, easier to catch than heavy vectors (like squarks, but without $I\!\!E_T$)

Contino, Servant

(if you care of the prediction!)

Pros

 \Rightarrow Neatly solves the naturalness problem of the Fermi scale \Rightarrow Gauge coupling unification \Rightarrow Alternatives in worse shape (EWPT) Contras (none decisive) \checkmark \Rightarrow No Higgs boson \checkmark \Rightarrow No flavour effects (but follow $\mu \rightarrow e + \gamma$ at PSI) \Rightarrow No superpartners

mSUGRA discovery potential: Easy (?)

cascade decays of gluinos/squarks into lighter neutralinos/charginos/sleptons

Where is the supersymmetric Higgs boson?

 \Rightarrow Swallow, e.g. in SUGRA, $\Delta M_Z^2 \approx (2 \div 3) m_{\tilde{t}}^2 \ge 100 M_Z^2$

 \Rightarrow *h just around the corner and quasi-standard*

Where is the supersymmetric Higgs boson?

View $n^{o}2$

1. Even assuming, for good reasons, that supersymmetry is relevant to nature, <u>NO theorem</u> that requires it to be visible at the LHC

2. For supersymmetry to be visible at the LHC, need a <u>maximally natural</u> solution of the hierarchy problem

3. Since the top, and so the stop, are the particles with the strongest coupling to the Higgs boson, insist on <u>a moderate stop mass</u>

 \Rightarrow *Motivates search of (reasonably simple) alternatives*

 \Rightarrow h not standard and not even light?

Two examples, based on the NMSSM (others have been considered)

$$\Delta V = \lambda^2 |H_1 H_2|^2$$

$$CP^+: h_1 < h_2 < h_3 \qquad CP^-: A_1 < A_2 \qquad H^{\pm}$$

(1) $\lambda(G_F^{-1/2}) \approx 2$ (not obviously consistent with unification)

$$m(h_1) = 150 \div 300 \ GeV$$
 and \approx standard
 $h_2 \rightarrow h_1 h_1 \rightarrow 4V \rightarrow l^+ l^- 6j$
 $A_1 \rightarrow h_1 Z \rightarrow VV \ Z \rightarrow l^+ l^- 4j$

(but very much NON-susy-like)

2) $\lambda(G_F^{-1/2}) \leq 0.7$ (consistent with unification) $m(h_2) = 115 \div 125 \ GeV$ or $m(h_2) = 95 - 100 \ GeV$ $h_2 \rightarrow A_1A_1 \rightarrow 4b$ or $h_2 \rightarrow A_1A_1 \rightarrow 4\tau$

$$H \rightarrow hh \rightarrow 4V \rightarrow 2l \ 6jets$$

$$A \rightarrow Zh \rightarrow Z \ 2V \rightarrow 2l \ 4jets$$

Cavicchia, Franceschini, R.

 $pp \rightarrow V h \rightarrow lv A_1A_1 \rightarrow lv 4b$

Carena, Han, Huang, Wagner

Summary of signals

Some mutually excluding

1. Gluino/squark cascade decays, stable R-hadrons, light gravitino...)

$$\int Ldt = 1 \div 30 f b^{-1}$$

2. SM-like Higgs boson

3. Heavy quarks

$$\int Ldt \ge 30 f b^{-1}$$

4. Heavy vectors

5. Non-standard SUSY Higgs bosons

6. EW gauge/higgsino decays

Conclusions

	Higgs boson	BSM @ TeV	My likelihood estimate
1	8	8	—
1.	experimenta	list's nothing	(theoretically inconsistent)
2.		8	10% 🙁
	theoriist's	s nothing	
3.	8		10% (Higgsless)
Л			40% pseudo-Goldstone Higgs
4.			40% SUSY
			Σ=100%

Expectations are high. Experiment will decide. Physics in its normal way of operation.