Perspektywy fizyki jądrowej spojrzenie uczestnika i obserwatora **Tomasz Matulewicz ZFJAt IFD UW**

Seminarium FWE 19 X 2007

- Wprowadzenie
- Struktura jądra
- Własności jąder
- Materia jądrowa
- Przyszłe narzędzia
- Zastosowania

Wprowadzenie

Materiasjądrowa

nascria

Chromodynamika kwantowa dla dużych i małych przekazów czteropędu (E,p)

 $\alpha_{s}(\mu) \rightarrow 1 \text{ dla } \mu \rightarrow 1 \text{ GeV}$

Chromodynamika kwantowa dla dużych i małych odległości

Zjawiska poza rachunkiem zaburzeń: uwięzienie, łamanie symetrii chiralnej

wyzwanie: badanie QCD w obszarze niezaburzeniowym

Struktura jądra

lasnøser jader

Materia jądrowa

Zasada działania spektrometru germanowego czułego na pozycję

Struktura hiperjąder DAØNE, MAMI-C, PANDA, JPAR, JLab

Fig. 1. Λ hypernuclear chart. The experimentally identified Λ hypernuclei and the experimental methods used to study them (reaction spectroscopies of (K^-, π^-) , (π^+, K^+) , $(e, e'K^+)$, etc., γ spectroscopy, and the emulsion method) are shown.

- Struktura jada
 Własności jąder
 - wiashosti jąuei

Rozpowszechnienie pierwiastków w układzie słonecznym

Gdzie, kiedy i jak tworzone są pierwiastki?

Ilościowy opis procesów astrofizycznych wymaga znajomości przekrojów czynnych wychwytu neutronów i czasów życia jąder. Czasy życia są powiązane z wartościami masy jąder.

Symulacja

Intensywność radioaktywnych wiązek izotopów Kr

Obecne i przyszłe ośrodki badań z wiązkami radioaktywnymi (RIB – Rare Isotope Beam)

Wykonane pomiary mas jąder

Nowe i planowane pomiary <2010

Perspektywy pomiarowe 2012+

- Materia jądrowa

Silnie oddziałująca materia w gwieździe neutronowej

Ściśliwość materii jądrowej? Zanik uwięzienia przy dużych gęstościach barionowych?

Porównanie mikroskopowych obliczeń *ab initio* wykorzystujących realistyczne potencjały NN

C. Fuchs, Prog. Part. Nucl. Phys. 56 (2006) 1

Współczynnik ściśliwości materii jądrowej: $\kappa = 9\rho^2 \delta^2 (E/A) / \delta \rho^2$

kondensat kwarkowy w zależności od gęstości ρ_B i temperatury T

<u>Reguły sum QCD:</u> związek między obserwablami i kondensatem $\frac{Q^2}{24\pi^2} \int ds \frac{R(s)}{(s+Q^2)^2} = \frac{1}{16\pi^2} \left(1 + \frac{\alpha_s}{\pi} \right) + \frac{1}{Q^4} \left[m_q \langle \overline{q} q \rangle + \frac{1}{24} \langle \frac{\alpha_s}{\pi} G^2 \rangle \right] + \text{człony wyższego rzędu}$ **hadronowa funkcja** $R(s) \sim F^2 \frac{1}{\pi} \frac{\sqrt{s} \Gamma(s)}{(s-M_\rho^2)^2 + s(\Gamma(s))^2}$

Przewidywania teoretyczne dotyczące masy mezonów w materii jądrowej (przykład mezonu ω)

w materii o gęstości "normalnej"

refined analysis requiring recoil proton and p-ω coplanarity

D. Trnka (Gießen) priv. com.

- \Rightarrow difference in ω line shape for proton and nuclear target confirmed; no upward mass shift of ω meson!
- ⇒ additional structure at ≈ 600 MeV!! (also seen for heavier targets) fragmentation of ω strength or background ??? under investigation

Produkcja mezonów w centralnych zderzeniach Au+Au

- Struktura jadie
- Własności jąder
- Materia=jądrowa
- Przyszłe narzędzia
- Zastosowania
- 12
- Chine Section

Koszt projektu FAIR: ~ 1.2 miliarda € (25% spoza Niemiec). Jest 940M

14 krajów członkowskich FAIR:

Austria+Finlandia (1%), Chiny, Francja, Grecja, Hiszpania(2-4%), Indie(3%), Niemcy(<75%), Polska(1-3%), Rumunia(1%), Rosja(5%), Słowenia (1%?), Szwecja, Wielka Brytania(1,26%...6%), Włochy Niemiecki rząd federalny zatwierdził budżet FAIR na 10 lat Oficjalna inauguracja FAIR: 7 listopada. 2007 Pierwsze wiązki planowane na 2014 - 2016

SPIRAL2 GENERAL LAYOUT

The facility consists of a linac driver able to accelerate a 5mA deuteron beam up to 20A.MeV as well as light ion (q/A=1/3) 1 mA beams up to 14.5 A.MeV. The 200 kW deuteron beam impinges on a carbon converter to produce neutrons, used via the fission process of uranium carbide for the production of radioactive ion beams (RIBs). All these fission products, extracted from a source, are sent through a 2-exit separator, which allows us to send two simultaneous radioactive beams through two different lines. One beam is sent to a low energy experimental cave, and another beam is transported towards a charge breeder, and accelerated by the existing CIME cyclotron to maximum energies between 5 and 10 A.MeV, according to the ion q/A ratio. The driver's stable ion beams can be used also for the production of RIBS on different target types, or sent directly towards an experimental cave, for nuclear physics experiments. Fig. 1 shows a schematic layout of the planned facility.

CBM Collaboration: 52 institutions, ~ 400 Members Romania: India: Croatia: Germany: NIPNE Bucharest DRT Zagreb Univ. Aligarh Univ. Heidelberg, P Russia: Univ. Heidelberg, KP **IOP** Bhubaneswar Univ. IHEP Protvino Univ Chandiebar Univ Enankfurt Bbu kosi In ech LPP, JINR Dubna CAS, B SAHA Kolkata Poland: LIT, JINR Dubna Techi niv Prague Univ. Kolkata Jag. Univ. Makow **MEPHI Moscow** Warsaw Univ. Univ. Varanasi France: Obninsk State Univ. **IRes** Strasbourg Silesia Univ. Katowice Korea: **PNPI** Gatchina Korea Univ. Seoul AGH Krakow Hungaria: SINP MSU, Moscow Pusan National Univ. **KFKI** Budapest Portugal: St. Petersburg P. Univ. Norway: LIP Coimbra Budapest Univ. Ukraine: Univ. Bergen Shevshenko Univ., Kiev

- Struktura jadia
- Własności jąder
- Materiasjądrowa
- Zastosowania

Terapia hadronowa Energetyka

Naświetlanie ¹²C i promieniami X

Udana terapia

Energetyka jądrowa w Polsce

POLITYKA ENERGETYCZNA POLSKI DO 2030 ROKU

Zgodnie z tym kierunkiem działań zostaną podjęte przygotowania do uruchomienia po 2020 roku pierwszej w Polsce elektrowni jadrowej. W kontekście prognozowanego wzrostu zapotrzebowania na energię, energetyka jądrowa przyczyni się zarówno do zwiększenia bezpieczeństwa energetycznego państwa, jak i do zmniejszenia negatywnego oddziaływania sektora na środowisko. Wdrożenie energetyki jądrowej zostanie poprzedzone przeprowadzeniem rzetelnych analiz ekonomicznych, ekologicznych i społecznych.

Nośnik	2005	2010	2015	2020	2025	2030
Węgiel brunatny [Mtoe]	12,7	11,7	12,6	12,2	12,9	12,
Węgiel brunatny [mln ton]**)	61,61	56,56	60,88	58,91	62,44	62,3
Węgiel kamienny [Mtoe]	42,2	40,9	41,2	43,9	44,7	42,
Węgiel kamienny [mln ton] **)	70,67	68,42	69,01	73,44	74,88	71,7
Ropa naftowa [Mtoe]	22,1	26,0	27,6	28,9	30,0	31
Ropa naftowa [mln ton] **)	22,1	26,0	27,6	28,9	30,0	31,
Gaz ziemny [Mtoe]	12,2	13,5	14,5	15,4	17,8	19
Gaz ziemny [mld m3] **)	14,63	16,09	17,38	18,41	21,25	23,0
Energia jądrowa	0,0	0,0	0,0	0,0	5,1	12
Energia odnawialna	4,5	7,1	7,8	8,8	9,9	10
Pozostale paliwa ^{*)}	0,6	0,7	0,9	1,1	1,2	1
Saldo energii elektrycznej	-1,0	0,0	0,0	0,0	0,0	0
Energia pierwotna	93,3	99,8	104,6	110,2	121,6	131

Wybór był subiektywny, szereg innych ciekawych kierunków:

- Dokładniejsze wyznaczenie V_{ud} w macierzy CKM poprzez ulepszone pomiary rozpadów beta $0^+ \rightarrow 0^+$
- Obliczenia teoretyczne wpływu struktury jądrowej na prawdopodobieństwo procesu 2β0v
- Obserwacja doświadczalna 2β0v ?!
- Synteza najcięższych pierwiastków
- ALICE!
- ...

Podsumowanie

Kilka problemów o charakterze podstawowym może być rozwiązanych przez fizykę jądrową (nowe narzędzia badawcze będą pomocne).

Perspektywy fizyki jądrowej są obiecujące*: TAK NIE *zaznaczyć właściwą odpowiedź

Poza artykułami i stronami www, niektóre rysunki i transparencje od:

- Bruce Barrett
- Peter Butler
- Jacek Dobaczewski
- Volker Metag
- Witek Nazarewicz
- Piotr Salabura
- Christoph Scheidenberger
- Peter Senger