

A search for neutrinoless double beta decay with NEMO-3 and SuperNEMO experiments

Karol Lang The University of Texas at Austin

Warszawa, 15 maja 2009

Outline:

- **D** Physics motivation for $0\nu\beta\beta$
- Practical factors
- □ The NEMO-3 experiment
- SuperNEMO
- Outlook

Credits:

✓ Most images from NEMO colleagues

UT group:

✓ so far has worked primarily on SuperNEMO
 ✓ joined NEMO-3 work-force recently

Neutrino mass and mass ordering

Karol Lang (University of Texas at Austin): A search for neutrinoless double beta decay with NEMO-3 and SuperNEMO experiments

- What is the absolute mass scale?
- What is the mass ordering ("mass hierarchy")?
- How strong is the subdominant mixing (angle θ_{13} in the PMNS matrix)?
- **Do neutrinos violate CP symmetry (angle** δ in the PMNS matrix)?
- □ Are neutrinos Majorana ($v \equiv v$) or Dirac ($v \neq v$) particles?
- Are there sterile neutrinos?
- **.**...

- What is the absolute mass scale?
- ✓ What is the mass ordering ("mass hierarchy")?
- **u** How strong is the subdominant mixing (angle θ_{13} in the PMNS matrix) ?
- **Do neutrinos violate CP symmetry (angle** δ in the PMNS matrix)?
- ✓ Are neutrinos Majorana ($v \equiv v$) or Dirac ($v \neq v$) particles?

Are there sterile neutrinos?

With massive neutrinos, we need to add a right-handed neutrino field

$$e_R \qquad \begin{pmatrix} \nu \\ e \end{pmatrix}_L \qquad \nu_R$$

$$L_{m_\nu} = m_D \phi \bar{\nu}_R \nu_L + M_R \phi \bar{\nu}_R^c \nu_R^c + m_D \phi \bar{\nu}_L^c \nu_R^c \qquad [\bar{\nu}_L^c, \bar{\nu}_R] \begin{bmatrix} 0 & m_D \\ m_D & M_R \end{bmatrix} \begin{bmatrix} \nu_L \\ \nu_R^c \end{bmatrix} + \text{h.c.}$$

$$D_\nu = \begin{bmatrix} \frac{m_D^2}{M_R} & 0 \\ 0 & M_R \end{bmatrix} \qquad m_1 \simeq \frac{m_D^2}{M_R} \qquad \text{and} \qquad m_2 \simeq M_R$$

 $L_{m_{\nu}} = m_1 \bar{\nu}_1 \nu_1 + M_R \bar{\nu}_2 \nu_2$

1

 $u_1 = -i(1-rac{1}{2}
ho^2)(
u_Lu_L^c) + i
ho(
u_R^cu_R)$

$$u_2 =
ho(
u_L + -
u_L^c) + (1 - rac{1}{2}
ho^2)(
u_R +
u_R^c)$$

Pontecorvo – Maki – Nakagawa - Sakata (PMNS) matrix

Karol Lang (University of Texas at Austin): A search for neutrinoless double beta decay with NEMO-3 and SuperNEMO experiments

- pairing interaction between nucleons (even-even nuclei more bound than the odd-odd nuclei)
- e.g. ¹³⁶Xe and ¹³⁶Ce are stable against β decay, but unstable against $\beta\beta$ decay ($\beta^{-}\beta^{-}$ for ¹³⁶Xe and $\beta^{+}\beta^{+}$ for ¹³⁶Ce)

 α^*, β^* = linear combinations of α and β

Shell Model (*Poves et al.*) vs QRPA

Different QRPA calculations

FIG. 1: Average nuclear matrix elements $\langle M'^{0\nu} \rangle$ and their variance (including the uncertainty coming from the experimental error in $M^{2\nu}$) for both methods and for all considered nuclei. For ¹³⁶Xe the error bars encompass the whole interval related to the unknown rate of the $2\nu\beta\beta$ decay.

Large uncertainties for the extraction of $\langle m_v \rangle$

QRPA = quasi random phase approximation

Practical matters

	Q _{ββ} (MeV)	Natural abundance (%
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8
⁸² Se→ ⁸² Kr	2.995	9.2
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.6
$^{110}\text{Pd} \rightarrow ^{110}\text{Cd}$	2.013	11.8
$^{116}Cd \rightarrow ^{116}Sn$	2.802	7.5
¹²⁴ Sn→ ¹²⁴ Te	2.228	5.64
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9
$^{150}\text{Nd} \rightarrow ^{150}\text{Sm}$	3.367	5.6

(11) $\beta\beta$ emiters with $Q_{\beta\beta}$ > 2 MeV

Borrowed from:

F. T. Avignone, S. R. Elliott and J. Engel,

``Double Beta Decay, Majorana Neutrinos, and Neutrino Mass,'' Rev.\ Mod.\ Phys.\ {\bf 80}, 481 (2008) [arXiv:0708.1033 [nucl-ex]].

◆Natural radioactivity and cosmic rays dominate the source of backgrounds → need to go underground + lots of local shielding

²³⁸U and ²³²Th decay chains produce the most troubling gammas (highest energies):

• ²¹⁴Bi

• 208TI

Experimental techniques

Calorimeter Source=detector

Resolution, efficiency

TPC (Xe)

Efficiency, Mass

Tracking and calorimeter Source ≠ detector

Background, isotope choice

Main features: High energy resolution Modest background rejection

Choice of an isotope

Figure 21. A demonstration of the impact of energy resolution of $|Q_{\beta\beta}|$ on the interference from $2\nu\beta\beta$ -decay events.

F. T. Avignone, G. S. King and Yu. G. Zdesenko, ``Next generation double-beta decay experiments: Metrics for their evaluation," New J. Phys. 7, 6 (2005).

- 1935 Rate of $2\nu\beta\beta$ first calculated by Maria Goeppert-Mayer (suggested by E. Wigner) 1937 Majorana proposes his theory of two-component neutrino ($\nu \equiv \nu$)
- 1937-9,1952 G. Racah, W.H. Furry, Primakoff discuss $0\nu\beta\beta$
- 1949, 1955 Half-life limits (Fireman, Fremlin, R.Davis)
- **1967** Geochemical evidence for $2\nu\beta\beta$
- 1987 Laboratory evidence for $2\nu\beta\beta$ for (S. Elliot, A. Hahn, M. Moe, ⁸²Se)

Phys. Rev. Lett. 59, 2020 - 2023 (1987)

Direct evidence for two-neutrino double-beta decay in 82Se

2001-2006 Controversial claim of observation of $0\nu\beta\beta$ (Klapdor-Kleingrothaus *et al.*)

- Ονββ peak
 2039 keV peak has 4.2σ significance <m_v> =~ 0.3-0.6 eV
 Weak ²¹⁴Bi lines
 2010.7, 2016.7, 2021.8, 2052.9 keV
- **Ω** ? Electron conversion of 2118keV γ line 2030keV
- **□** ?

First evidence for neutrinoless double beta decay, with enriched ^{76}Ge in Gran Sasso 1990-2003.

H.V. Klapdor-Kleingrothaus^a *

 $^{\mathrm{a}}\mathrm{Max}\text{-}\mathrm{Planck}\text{-}\mathrm{Institut}$ für Kernphysik, PO 10 39 80, D-69029 Heidelberg, Germany

Figure 1. The total sum spectrum of all five detectors (in total 10.96 kg enriched in ^{76}Ge), in the range 2000 - 2060 keV and its fit, for the period: August 1990 to May 2003 (71.7 kg y) (see [3]).

NEMO-3 detector

Fréjus Underground Laboratory : 4800 m.w.e.

20 sectors

Source: 10 kg of $\beta\beta$ isotopic foils area = 20 m², thickness ~ 60 mg/cm²

Tracking detector:

drift wire chamber operating (9 layers) in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>: 1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: Gamma shield: Neutron shield:

25 Gauss pure iron (d = 18cm) 30 cm Water (ext. wall) 40 cm Wood (top and bottom) (since March 2004: water + boron)

NEMO-3 detector

Fréjus Underground Laboratory : 4800 m.w.e.

Source: 10 kg of $\beta\beta$ isotopic foils area = 20 m², thickness ~ 60 mg/cm²

Tracking detector:

drift wire chamber operating (9 layers) in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

Calorimeter: 1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: Gamma shield: Neutron shield:

25 Gauss pure iron (d = 18cm) 30 cm Water (ext. wall) 40 cm Wood (top and bottom) (since March 2004: water + boron)

$\beta\beta$ decay isotopes NEMO-3

Karol Lang (University of Texas at Austin): A search for neutrinoless double beta decay with NEMO-3 and SuperNEMO experiments

During installation AUGUST 2001

Finished detector

P

INSTITUT NATIONAL DE PHYSIQUE NUCLÉAIRE ET DE PHYSIQUE DES PARTICULES

3

Laboratoire Souterrain de Modane

Built for Taup experiment (proton decay) in 1981-1982

Typical $\beta\beta2\nu$ event observed in ¹⁰⁰Mo

Internal background (in addition to a potential 2νββ tail)
 (due to radio-impurities of the isotopic source foil)

External background

(due to radio-impurities of the detector)

Signal and background signatures

Cadmium Foil Activity and Hot Spots

Background: control channels

- [2] M.Kortelainen and J.Suhonen, Phys.Rev. C 76 (2007) 024315.

Other results from NEMO-3: $2\nu\beta\beta$

Karol Lang (University of Texas at Austin): A search for neutrinoless double beta decay with NEMO-3 and SuperNEMO experiments

From NEMO-3 to SuperNEMO: challenges

$$T_{1/2}(0\nu\beta\beta) > \ln 2 \times \frac{N_A}{A} \times \frac{M \times \varepsilon \times T_{obs}}{N_{90}(\Delta E/E)}$$
 No background

NEMO-3		SuperNEMO
¹⁰⁰ Mo	isotope	⁸² Se
7 kg	isotope mass M	100-200 kg
8 %	efficiency ε	~ 30 %
²⁰⁸ TI: < 20 μBq/kg ²¹⁴ Bi: < 300 μBq/kg	internal contaminations ^{208}Tl and ^{214}Bi in the $\beta\beta$ foil	²⁰⁸ Tl < 2 μBq/kg <i>if ⁸²Se</i> : ²¹⁴ Bi < 10 μBq/kg
8% @ 3MeV	energy resolution (FWHM)	4% @ 3 MeV
T _{1/2} (0vββ) > 2 x 10 ²⁴ y <m<sub>v> < 0.3 – 1.3 eV</m<sub>		$T_{1/2}(0v\beta\beta) > 2 \times 10^{26} y$ $< m_v > < 50 meV$

Karol Lang (University of Texas at Austin): A search for neutrinoless double beta decay with NEMO-3 and SuperNEMO experiments

F. T. Avignone, S. R. Elliott and J. Engel,
``Double Beta Decay, Majorana Neutrinos, and Neutrino Mass,''
Rev. Mod. Phys. 80, 481 (2008) [arXiv:0708.1033 [nucl-ex]].

NEMO-3

$$T_{1/2}^{0\nu}(n_{\sigma}) = \frac{4.16 \times 10^{26} \, y}{n_{\sigma}} \left(\frac{\varepsilon a}{W}\right) \sqrt{\frac{Mt}{b\Delta E}}$$

- n_{σ} number of std. dev. for a given C.L.
- a isotopic abundance
- ε detection efficiency
- W molecular weight of the source
- M total mass of the source (kg)
- t time of data collection (y)
- b background rate in counts (keV · kg · y)
- ΔE energy resolution (keV)

SuperNEMO

¹⁰⁰ Mo	isotope	⁸² Se
7 kg	isotope mass M	100-200 kg
8 %	efficiency ε	~ 30 %
²⁰⁸ TI: < 20 μBq/kg ²¹⁴ Bi: < 300 μBq/kg	internal contaminations ^{208}Tl and ^{214}Bi in the $\beta\beta$ foil	²⁰⁸ Tl < 2 μBq/kg <i>if ⁸²Se</i> : ²¹⁴ Bi < 10 μBq/kg
8% @ 3MeV	energy resolution (FWHM)	4% @ 3 MeV
T _{1/2} (0vββ) > 2 x 10 ²⁴ y <m<sub>v> < 0.3 – 1.3 eV</m<sub>		$T_{1/2}(0v\beta\beta) > 2 \times 10^{26} y$ $< m_v > < 50 meV$

SuperNEMO - conceptually

LABORATOIRE DE L'ACCÉLÉRATEURLINÉAIRE

IN2P3-CNRS et Université PARIS-SUD Centre Scientifique d'Orsay - Bât 200 - B.P. 34 91898 ORSAY Cedex (Fra

LABORATOIRE DE L'ACCÉLÉRATEURLINÉAIRE

IN2P3-CNRS et Université PARIS-SUD Centre Scientifique d'Orsay - Bât 200 - B.P. 34 91898 ORSAY Cedex (Fran

ULISSE project

MODANE UNDERGROUND LABORATORY 60'000 m³ EXTENSION

LABORATOIRE SOUTERRAINE DE MODANE AGRANDISSEMENT 60'000 m³

Future LSM Hall A

SuperNEMO : Calorimeter R&D

$\Delta E/E \sim 7.2$ % at 1 MeV (corrected)

8" Hamamatsu R5912-MOD Super-Bialkali 8 Dynodes

Or

8" Photonis "35% QE"

Similar to BC408

(now unlikely)

2m-long scintillator bars (a cheaper option)

Optimize length, wire material and diameter, read-out, gas mixture etc
 Several 1-cell and two 9-cell prototypes built and tested
 90-cell prototype being built

9-cell prototype in Manchester

- □ ~500,000 wires to be strung, crimped, terminated
- □ Wiring robot being developed in collaboration with Mullard Space Science Lab (UCL)

BiPo R&D (for measuring foil radio-purity)

Karol Lang (University of Texas at Austin): A search for neutrinoless double beta decay with NEMO-3 and SuperNEMO experiments

Sensitivity

⁸² Se:	$T_{1/2}(0v) = (1-2) \ 10^{26} \ yr$	depending on final mass, background and efficiency	
	$< m_v > \le 0.060 - 0.100 \text{ eV}$	includes uncertainty in T _{1/2} + MEDEX'07 NME	

¹⁵⁰Nd: $T_{1/2}(0v) = 5 \ 10^{25} \text{ yr}$ $< m_{y} > \le 0.045 \text{ eV}$

(but deformation not taken into account)

¹⁵⁰Nd enrichment

- ✓ (practically) large amounts can only be produced through the atomic vapor laser ionization separation (AVLIS)
- ✓ developed for U enrichment by CEA-MENPHIS (France) facility recently mothballed
- ✓ SuperNEMO / SNO++ consortium is working towards a trial run with ¹⁵⁰Nd

CUORICINO

 62 bolometers
 Bolometers of TeO2 (Q_{ββ} = 2.528 MeV)

 40.7 kg active mass
 Exposure: 11.83 kg y of ¹³⁰Te

Energy resolution 5-7 keV (FWHM)
 Natural abundance for ¹³⁰Te: 34%
 High efficiency: 86%

But no electron vs γ discrimination
 Background from internal and surface contamination in α emitters

Operated at Gran Sasso 2003 - 2008.

CUORICINO results

Expected final sensitivity ~2009: $T_{1/2} > 6.10^{24} \text{ yr} < m_{y} > < 0.1 - 0.7 \text{ eV}$

GERDA

(Germany, Italy, Belgium, Russia, Poland)

Use of liquid nitrogen or argon for active shielding Segmentation

Improvement of Pulse Shape Analysis

SNO++

 ✓ SNO+ (1000 tons of LAB)
 ✓ 0.1% ^{nat}Nd - 56kg of ¹⁵⁰Nd (doped with NdCl₃)
 ✓ Sensitivity <m>~150 meV
 ✓ With enriched Nd: <m>~40 meV
 ✓ Energy resolution 6.4% at Q_{ββ}
 ✓ In situ purification!
 ✓ Start filling in 2010

✓ (Interest in KamLAND)

"The gauge"

A. Strumia and F. Vissani, ``Neutrino masses and mixings.'' arXiv:hep-ph/0606054.

F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo,

``Theory of the Neutrino Mass," arXiv:0808.0812 [hep-ph].

$$\Delta m_{sol}^2 = (7.66 \pm 0.35) \times 10^{-5} \text{ eV}^2$$

$$\Delta m_{atm}^2 = (2.38 \pm 0.27) \times 10^{-3} \text{ eV}^2$$

$$\sin^2 \theta_{13} < 0.032 \quad (\theta_{13} < 10.3^0) \quad (2\sigma)$$

$$\sin^2 \theta_{23} = 0.45^{+0.16}_{-0.09} \quad (\theta_{23} = (42.1^{+9.2}_{-5.3})^0) \quad (2\sigma)$$

$$\sin^2 \theta_{12} = 0.326^{+0.05}_{-0.04} \quad (\theta_{12} = (34.8^{+3.0}_{-2.5})^0) \quad (2\sigma)$$

Projections

Karol Lang (University of Texas at Austin): A search for neutrinoless double beta decay with NEMO-3 and SuperNEMO experiments **51**

- Neutrinoless double beta decay provides a unique tool to some of the main questions in particle physics:
 - Are neutrinos Majorana particles?
 - What are neutrino masses?
 - What is the neutrino mass ordering?
- Active experimental and theoretical field
 - ✓ many techniques
 - v backgrounds always challenging
 - (projections rely on background expectations!)
 - will need a confirmation
 - reed further improvement in theory (NME)
- D NEMO-3 is a particle physics-like approach
 - (attractive to "traditional" particle physicists)
 - \checkmark has produced many best results in $0\nu\beta\beta$ and $2\nu\beta\beta$

"Nobody goes there anymore; it's too crowded."

Yogi Berra, a famous baseball player

Backup slides

(USA, Canada, Switzerland, Russia)

Liquid Xe TPC

Energy measurement by ionization + scintillation Tagging of Baryum ion ($^{136}Xe \rightarrow {}^{136}Ba^{++} + 2 e^{-}$)

Large mass of Xe Identification of final state \rightarrow background rejection

But no e⁻ identification Poor background rejection without Ba ion tagging **R&D** for Ba ion tagging in progress

Prototype EXO-200 200 kg of ¹³⁶Xe, no Ba ion tagging Installation in progress in WIPP underground lab 2007 Could measure $\beta\beta(2\nu)$ of ¹³⁶Xe

EXO 200 (2 years) T_{γ} > 6.4 10²⁵ yr (90% CL) <m > < 0.27- 0.38 eV

NEMO-3: $\beta\beta$ of ¹⁰⁰Mo to excited states

SuperNEMO Collaboration

~ 60 physicists, 12 countries, 27 laboratories

$0\nu\beta\beta$ search is a very dynamic field

Experiment	Isotope(s)	Technique	Main characteristics
NEMO3	¹⁰⁰ Mo, ⁸² Se	Tracking + calorimeter	Bckg rejection, isotope choice
SuperNEMO	⁸² Se, ¹⁵⁰ Nd	Tracking + calorimeter	Bckg rejection, isotope choice
Cuoricino	¹³⁰ Te	Bolometers	Energy resolution, efficiency
CUORE	¹³⁰ Te	Bolometers	Energy resolution, efficiency
GERDA	⁷⁶ Ge	Ge diodes	Energy resolution, eficiency
Majorana	⁷⁶ Ge	Ge diodes	Energy resolution, efficiency
COBRA	¹³⁰ Te, ¹¹⁶ Cd	ZnCdTe semi-conductors	Energy resolution, efficiency
EXO	¹³⁶ Xe	TPC ionisation + scintillation	Mass, efficiency, final state signature
MOON	¹⁰⁰ Mo	Tracking + calorimeter	Compactness, Bckg rejection
CANDLES	⁴⁸ Ca	CaF ₂ scintillating crystals	Efficiency, Background
SNO++	¹⁵⁰ Nd	Nd loaded liquid scintillator	Mass, efficiency
XMASS	¹³⁶ Xe	Liquid Xe	Mass, efficiency
CARVEL	⁴⁸ Ca	CaWO4 scintillating crystals	Mass, efficiency
Yangyang	¹²⁴ Sn	Sn loaded liquid scintillator	Mass, efficiency
DCBA	¹⁵⁰ Nd	Gazeous TPC	Bckg rejection, efficiency

Summary of NEMO-3 results

lsotope	Data	T _½ (ββ2ν) - years
¹⁰⁰ Mo *	389 days - Phase 1	7.11 ± 0.02 (stat) ± 0.54 (syst) × 10 ¹⁸
⁸² Se *	389 days - Phase 1	9.6 ± 0.3 (stat) ± 1.0 (syst) × 10 ¹⁸
⁹⁶ Zr	925 days - Phase 1	2.3 ± 0.2 (stat) ± 0.3 (syst) $\times 10^{19}$
⁴⁸ Ca	948 days - Phase 1	4.4 $^{+0.5}_{-0.4}$ (stat) ± 0.4 (syst) × 10 ¹⁹
¹³⁰ Te	534 days – Phases 1 + 2	7.6 ± 1.5 (stat) ± 0.8 (syst) × 10 ²⁰
¹⁵⁰ Nd	925 days – Phases 1 + 2	9.11 ^{+0.25} -0.22 (stat) ± 0.63 (syst) × 10 ¹⁸

* R. Arnold et al., Phys. Rev. Lett. 95 182302 (2005)

Isotope	Data	Τ _½ (ββ0ν) - years	<m,></m,>
¹⁰⁰ Mo	693 days - Phases 1 + 2	> 5.8 x 10 ²³	< 0.6 – 1.3 eV
⁸² Se	693 days - Phases 1 + 2	> 2.1 x 10 ²³	< 1.2 – 2.2 eV

More backup slides

Background origins

Laboratoire Souterrain de Modane

Muon Flux	
0.17	μ m ⁻² h ⁻¹

Neutron Flux	
1.6 10 ⁻⁶ n cm ⁻² s ⁻¹	(0-0.63 eV)
4 10 ⁻⁶ n cm ⁻² s ⁻¹	(2-6 MeV)

Primordial Radionuclides		
²³⁸ U	0.84 ppm	Rock
	1.9 ppm	Concrete
²³² Th	2.45 ppm	Rock
	1.4 ppm	Concrete
K	213 Bq/kg	Rock
	77 Bq/kg	Concrete

Low counting facility at LSM

13 HPGe from 6 different laboratories of CNRS and CEA are available at LSM

- Material selection for astroparticle physics,
- Environnemental measurements
- D- Applications (wine dating, salt origin,...)
- Developments of Ge detector

LABORATOIRE DE L'ACCÉLÉRATEURLINÉAIRE

IN2P3-CNRS et Université PARIS-SUD Centre Scientifique d'Orsay - Bât 200 - B.P. 34 91898 ORSAY Cedex (Fra

J.FORGET & C.BOURGEOIS – Split fullsize SuperNEMO module in LSM april 2009

Practical matters

	Q _{ββ} (MeV)	Natura abundance	al e (%)
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187	
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8	
⁸² Se→ ⁸² Kr	2.995	9.2	
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8	
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.6	
$^{110}\text{Pd} \rightarrow ^{110}\text{Cd}$	2.013	11.8	
$^{116}Cd \rightarrow ^{116}Sn$	2.802	7.5	
¹²⁴ Sn→ ¹²⁴ Te	2.228	5.64	
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5	
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9	
¹⁵⁰ Nd→ ¹⁵⁰ Sm	3.367	5.6	

(11) $\beta\beta$ emiters with $Q_{\beta\beta}$ > 2 MeV

Borrowed from:

F. T. Avignone, S. R. Elliott and J. Engel,

``Double Beta Decay, Majorana Neutrinos, and Neutrino Mass,"

Rev.\ Mod.\ Phys.\ {\bf 80}, 481 (2008) [arXiv:0708.1033 [nucl-ex]].

Karol Lang (University of Texas at Austin): A search for neutrinoless double beta decay with NEMO-3 and SuperNEMO experiments

Poszukiwania bezneutrinowego podwójnego rozpadu beta w detektorach NEMO-3 i SuperNEMO

Karol Lang The University of Texas at Austin

Streszczenie

Z obserwacji oscylacji neutrin wynika, że cząstki te posiadają masę. Odkrycie to odnowiło i pogłębiło zainteresowanie procesem bezneutrinowego podwójnego rozpadu beta, który oferuje jedyną praktyczną drogę do określenia czy neutrina są cząstkami typu Majorany czy typu Diraca. Eksperyment NEMO-3, usytuowany w podziemnym laboratorium w Modane (Francja) w tunelu Fréjus, wykorzystuje technikę dryfowej komory śladowej, plastikowego kalorymetru scyntylacyjnego i czasu przelotu do pomiaru energii, topologii oraz identyfikacji dwóch elektronów w stanie końcowym podwójnego rozpadu. W referacie przedstawimy ostatnie wyniki z NEMO-3 i przedyskutujemy stan planowanego eksperymentu SuperNEMO, który będzie bardziej czułym detektorem "nowej generacji".

A search for neutrinoless double beta decay with NEMO-3 and SuperNEMO detectors

Abstract

The observation of neutrino oscillations has proved that neutrinos have mass. This discovery has renewed and strengthened the interest in neutrinoless double beta decay experiments which provide the only practical way to determine whether neutrinos are Majorana or Dirac particles. NEMO-3, located in the Modane Underground Laboratory in the Frejus Tunnel under the French-Italian Alps, is an ongoing experiment looking for neutrinoless double beta decays using a powerful technique for detecting a two-electron final state by employing an apparatus combining tracking, calorimetry, and the time-of-flight measurements. We will present results from NEMO-3 and will discuss the status of SuperNEMO, the next generation experiment that will exploit the same experimental technique to extend the sensitivity of the current search.

SuperNEMO design study

SuperNEMO simulations and physics reach

CEA-MENPHIS

Laser-vapor interaction SILVA / AVLIS

(Atomic Vapor Laser Ionization Separation)

2 Isotopes ²³⁵U and ²³⁸U **5** energy levels and 4 transitions

1973 : Atomic isotope separation by laser : initial patent 1980 : Basic research at CEA (spectroscopy, evaporation) 1985 : SILVA/AVLIS selected as advanced process : USA, France, Japan 1994 : Tens of grams produced at the industrial assay 1994-1998 : Technological demonstrations (by parts) Mid 1999 : AVLIS shut down in US ; early 2003 in Japan 2000 : Decision for a conclusive 4 years program 2000 - 2003 : MENPHIS construction and preliminary R&D. 2003 : Demonstrations on MENPHIS

150 Nd possible

(from Alain Petit)

SuperNEMO schedule summary

Bar and Block Scintillator Simulation

2 m x 2 cm x 10 cm bar with light guides. 1 MeV electrons simulated at various distances

along the length of the bar. Current measurements (~10% FWHM) agree well with simulation.

Simulation of large (18 cm tall) hexagonal scintillator for SuperNEMO. Simulations show that resolution is linearly dependent on block size; an important SuperNEMO design parameter.

- Radon trapping facility installed in September 2004.
- The trapping time in activated charcoal longer than ²²²Rn half-life of 3.8 days.
- Radon level reduced by almost factor of 10 in the detector by installing radon trapping facility

Adsorption unit @-50°C

Input: A(²²²Rn) 15 Bq/m³

Output: A(²²²Rn) < 15 mBq/m³ !! reduction factor of 1000

R&D phase 30-60 kg of 86% enriched ⁷⁶Ge crystals

Some of the crystal segmented

Bckg goal ~ ≤1 count/ROI/t-y (after analysis cuts)

30 kg of enriched Ge, running 3 yr . Data taking schedule for 2011

 $T_{1/2} > 1.10^{26} \text{ yr} \quad \langle m_v \rangle \langle 140 \text{ meV} \rangle$ (could confirme or refute Klapdor)

Collaboration with Gerda for 1 ton detector

$0\nu\beta\beta$ observables

V+A current

Perennial problem – natural radioactivity

Thorium and radon are diffusive radioactive out-gased into the air from the rock.

Karol Lang (University of Texas at Austin): A search for neutrinoless double beta decay with NEMO-3 and SuperNEMO experiments

The $\beta\beta 2\nu$ half-life of ¹³⁰Te has been a long-standing mystery:

Geochemical (130 Te $\rightarrow ^{130}$ Xe): - (25 ± 2) x 10²⁰ years (Kirsten 83) - (27 ± 2) x 10²⁰ years (Bernatowicz 93) - (7.9 ± 1) x 10²⁰ years (Takaoka 96) - ~8 x 10²⁰ years (Manuel 91)

- 6 X 10⁻⁵ years (Manuel 91)

Difference between 'old' and 'young' ores due to time dependence of G_{F} ..?

Direct measurements: (6.1 ± 3.5) x 10^{20} years (Arnaboldi 2003) (7.6 ± 1.7) x 10^{20} years (NEMO-3)

~1 billion years

~100 million years

- 1935 rate of $2\nu\beta\beta$ first calculated by Maria Goeppert-Mayer
- 1937 Majorana proposes a two-component neutrino
- 1937-1939 G. Racah, W.H. Furry discuss $0\nu\beta\beta$
- 1949 Half-life limits (Fireman, Fremlin)
- **1967** Geochemical evidence for $2\nu\beta\beta$
- 1987 Laboratory evidence for $2\nu\beta\beta$ for (S. Elliot, A. Hahn, M. Moe, ⁸²Se)

Phys. Rev. Lett. 59, 2020 - 2023 (1987)

Direct evidence for two-neutrino double-beta decay in 82Se

2001-2006 Controversial claim of observation of $0_{V\beta\beta}$ (Klapdor-Kleingrothaus)

H.V. Klapdor-Kleingrothaus^a *

 $^{\mathrm{a}}\mathrm{Max}\text{-}\mathrm{Planck}\text{-}\mathrm{Institut}$ für Kernphysik, PO 10 39 80, D-69029 Heidelberg, Germany

$\beta\beta$ events selection in NEMO-3

Impact Corrections for NEMO-3

NEMO-3 "external" type

scintillator / PMT

Comparison of optical simulations with measured NEMO-3 data shows agreement to within 2% over the block surface. Geometry and input files are key to reproducing measurements.

Cadmium backgrounds Total 1e: Model 3

- External: Victor's Model F
- Bismuth on surface of wires: Vera's Model
- Radon on surface of wires: Vera's Model

K-40	A = 8.23 mBq
TI-207	A = 0.38 mBq
Pb-211	A = 0.38 mBq
Bi-214	A = 0.79 mBq
Pb-214	A = 0.79 mBq
Ac-228	A = 1.51 mBq
Bi-212	A = 1.51 mBq
TI-208	A = 0.33 mBq
Cs-137	A = 1.47 mBq
Pa-234m A = 17.51 mBq	

Preliminary Cd-116 Results

Cd-116 double beta events for Phase I NEMO-3 data (SSD hypothesis). Plots show the energy sum of both electrons, smallest energy of the two electrons, cosine of the angle, and TOF probability.

NEMO-3 detector

Fréjus Underground Laboratory : 4800 m.w.e.

Source: 10 kg of $\beta\beta$ isotopic foils area = 20 m², thickness ~ 60 mg/cm²

Tracking detector:

drift wire chamber operating (9 layers) in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>: 1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: Gamma shield: Neutron shield:

25 Gauss pure iron (d = 18cm) 30 cm Water (ext. wall) 40 cm Wood (top and bottom) (since March 2004: water + boron)

