

COMPASS

Asymetrie

Pary hadronów z dużym p_T

Podsumowanie

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Pomiar polaryzacji gluonów z przypadków z dwoma hadronami o dużym pT w eksperymencie COMPASS

Konrad Klimaszewski

Warszawa, 27.03.1009

COMPASS

Asymetrie

Pary hadronów z dużym p_T

Podsumowanie 000000

Motywacja Fizyczna

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma$$

Nucl. Phys. B 328
 (1989) 1
 PLB 647 (2007) 8-17

COMPASS

Asymetrie

Pary hadronów z dużym p_T

Podsumowanie

Motywacja Fizyczna

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G$$

Nucl. Phys. B 328
 (1989) 1
 PLB 647 (2007) 8-17

COMPASS

Asymetrie

Pary hadronów z dużym p_T

Podsumowanie

Motywacja Fizyczna

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

Nucl. Phys. B 328
 (1989) 1
 PLB 647 (2007) 8-17

COMPASS

Asymetrie

Podsumowanie

Motywacja Fizyczna

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

"Kryzys Spinowy"

- W oparciu o naiwny Model Kwarkowo Partonowym oczekujemy: $\Delta \Sigma = 1$ (Uwzględniając efekty relatywistyczne: $\Delta \Sigma \approx 0.6$)
- Eksperyment EMC zmierzył jako pierwszy wkład od kwarków: $\Delta\Sigma=0.12\pm0.17~[1]$
- Dopasowanie NLO QCD COMPASSa do danych światowych:

 $\Delta\Sigma=0.30\pm0.01(\text{stat.})\pm0.02(\text{evol.})\text{ [2]}$

- Obecne dopasowania QCD mają małą czułość na ΔG : [1] Nucl. Phys. B 328 $\Delta G \approx |0.2 - 0.3|$ [2] PLB 647 (2007) 8-17
- Bezpośredni pomiar może odpowiedzieć na pytanie jaki jest wkład pochodzący od gluonów ...

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のへぐ

COMPASS •000000 Asymetrie 0000 Podsumowanie

Eksperyment COMPASS

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

- ~250 fizyków
- 28 instytutów
- 12 państw

Program mionowy

Wiązka:

- Polaryzacja μ^+ -80%
- Intensywność: $2 \cdot 10^8 \mu^+/\text{spill}$
- Pęd: 160 GeV

Tarcza:

- Spolaryzowana zarówno podłużnie jak i poprzecznie
- Materiał: ⁶LiD, (NH₃)
- Polaryzacja: ~50%, (90%)

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のへぐ

COMPASS

Asymetrie 0000 Podsumowanie

Eksperyment COMPASS

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

- ~250 fizyków
- 28 instytutów
- 12 państw

Program mionowy

Cele:

- Wkład gluonów do spiny nukleonu
- Polaryzacja kwarków

 $(g_1, \Delta \Sigma, \Delta q,$ rozdział zapachów)

- Transversity
- Produkcja ρ , Φ , J/Ψ , Λ , ...

Zbieranie danych

• 2002-2004, 2006-2007, ...

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

COMPASS •000000 Asymetrie 0000 Podsumowanie

Eksperyment COMPASS

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

Program hadronowy Wiązka:

- p, K, π
- Intensywność: 5 · 10⁷/spill

◆□> <畳> <目> <目> <目> <目> <<=>

• Pęd: 100 - 250 GeV

Tarcza:

• Pb, C, Cu, (H)

- ~250 fizyków
- 28 instytutów
- 12 państw

COMPASS •000000 Asymetrie 0000 Pary hadronów z dużym p_T 0000000000000000 Podsumowanie

Eksperyment COMPASS

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

Program hadronowy

Cele:

- Reakcja Primakowa →π, K polarisabilities
- Egzotyczne stany kwarkowe, glueballs

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

• Spektroskopia mezonów powabnych

Zbieranie danych

• 2004, 2008, 2009, ...

- ~250 fizyków
- 28 instytutów
- 12 państw

Asymetrie

Podsumowanie

Polaryzacja wiązki

- $\pi^+
 ightarrow \mu^+
 u_\mu$ jest rozpadem łamiącym parzystość
- W układzie spoczynkowym π , miony są w 100% spolaryzowane
- W układzie laboratorium polaryzacja μ zależy od kąta rozpadu oraz od pędu pionu w układzie laboratoryjnym

COMPASS

0000000

Pary hadronów z dużym p+

Dynamicza Polaryzacja Jądrowa (DNP)

- Materiał tarczy utrzymywany jest niskiej temperaturze (0.4K) oraz w silnym polu magnetycznym (2.5T)
 - Wysoka polaryzacja elektronów (duży moment magnetyczny)
- Materiał jest naświetlany promieniowaniem mikrofalowym

Asymetrie

- Jednoczesna zmiana kierunku spinu elektronu i nukleonu
- Dobór częstości mikrofal zależny od różnicy między poziomami energetycznymi układu elektron - nukleon
- Dwie interesujące wartości ω dwa ustawienia spinu nukleonu
- Po zmianie kierunku spinu elektron powraca natychmiast do stanu o niższej energii.
- Czas relaksacji nukleonu jest długi (mały moment magnetyczny)
- Oddzielny układ mikrofalowy dla każdej z komór tarczy
- Pomiędzy komorami tarczy znajduje się przegroda mikrofal
- Polaryzacja mierzona za pomoca cewek NMR

Asymetrie

Pary hadronów z dużym p_T

Podsumowanie 000000

Tarcza

Tarcza

- Dwie komory (od roku 2006 trzy)
- Materiał ⁶LiD (od roku 2007: NH₃)
- Dilution factor: ~ 0.4 (~ 0.15 dla NH₃)
- Akceptancja: ±70 mrad (od roku 2006: ±180 mrad)
- System chłodzący: 50 mK
- Materiał w komorach spolaryzowane przeciwnie ~50% (~90% dla NH₃)
- Wiązka przechodzi przez obie komory

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

COMPASS

Asymetrie

Pary hadronów z dużym p_T

Podsumowanie

Tarcza

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣国 のへぐ

COMPASS

Asymetrie

Pary hadronów z dużym p_T

Podsumowanie

Spektrometr

Rozpraszanie głęboko nieelastyczne - DIS

Zmienne

$$Q^2 = -q^2 = -(k - k')^2$$

$$y = \frac{P \cdot q}{P \cdot k} \stackrel{lab}{=} \frac{E - E'}{E} = \frac{\nu}{E}$$

$$x = \frac{Q^2}{2P \cdot q} \stackrel{lab}{=} \frac{Q^2}{2M\nu}$$

ヨョーのへの

COMPAS 0000000

PASS

Asymetrie ○●○○ Podsumowanie

Asymetria zliczeń

$$A_{exp} = \frac{N_U - N_D}{N_U + N_D}$$

- Materiał w jednej komorze jest spolaryzowany równolegle a w drugiej anty-równolegle do kierunku polaryzacji wiązki.
- Obie komory wystawione są na ten sam strumień mionów. Pomiar następuje jednocześnie dla obu konfiguracji spinowych.
- Dokładny pomiar strumienia padających mionów nie jest konieczny - ulega skróceniu w wyrażeniu na asymetrię.
- Akceptacja spektrometru nie jest identyczna dla obu komór tarczy.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のへぐ

Asymetrie

0000

Pary hadronów z dużym p_T

Podsumowanie

Asymetria zliczeń

 Rozwiązanie: polaryzacja jest odwracana co 8 godzin.

$$A_{exp} = 1/2 \left(rac{N_U - N_D}{N_U + N_D} + rac{N'_D - N'_U}{N'_D + N'_U}
ight)$$

 Asymmetria zliczeń jest powiązana z asymetrią przekrojów czynnych:

$$A_{exp} = P_T P_B f A_{||}$$

gdzie:

- *P_T* polaryzacja tarczy (mierzona z użyciem cewek NMR)
- *P_B* polaryzacja wiązki (parametryzacja)
- f dilution factor (parametryzacja)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Asymetrie 000● Pary hadronów z dużym p_T

Podsumowanie

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Poszukiwanie gluonu ...

Fuzja fotonowo-gluonowa (Photon Gluon Fusion)

OMPASS

Asymetrie 000● Podsumowanie

Poszukiwanie gluonu ... • Open Charm

Fuzja fotonowo-gluonowa (Photon Gluon Fusion)

- Szukamy mezonów D⁰ w stanie końcowym
- Brak kwarków powabnych w nukleonie
- Produkcja powabu jedynie z PGF (LO)
- Obszar perturbacyjny zapewniony poprzez masę kwarka powabnego

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のへぐ

- Słaba zależność od symulacji MC
- Mała statystyka

0MPASS

Asymetrie 000● Podsumowanie

Poszukiwanie gluonu ... • Open Charm

Fuzja fotonowo-gluonowa (Photon Gluon Fusion)

- Szukamy mezonów D^0 w stanie końcowym
- Brak kwarków powabnych w nukleonie
- Produkcja powabu jedynie z PGF (LO)
- Obszar perturbacyjny zapewniony poprzez masę kwarka powabnego
- Słaba zależność od symulacji MC
- Mała statystyka
- Para hadronów z dużym $p_T (Q^2 > 1 (\text{GeV/c})^2)$
 - Szukamy dwóch hadronów z dużym pędem poprzecznym w stanie końcowym
 - Duża statystyka
 - Obszar perturbacyjny $Q^2 > 1 \, (\text{GeV}/\text{c})^2$
 - Znaczący wkład procesów tła
 - Niezbędne są symulacje MC
- Para hadronów z dużym $p_T (Q^2 < 1 \, (\text{GeV}/\text{c})^2)$
 - 2002-2003 wynik opublikowany [PLB 633 (2006) 25-32]
 - 2002-2004 wynik przedstawiany na konferencjach se

VVstęp

Pary hadronów z dużym p_T ●○○○○○○○○○○○○○○ Podsumowanie 000000

Asymetrie dla par hadronów z dużym p_T

$$A_{||} = \frac{\Delta\sigma}{\sigma} \approx \frac{\Delta G}{G} a_{LL}^{PGF} R_{PGF} + A_1^{LP} (x_{QCDC}) a_{LL}^{QCDC} R_{QCDC} + A_1^{LP} (x_{Bj}) a_{LL}^{LP} R_{LP}$$

gdzie:

$$A_{||} = A_{exp} / P_t P_b f$$

$$R_n - ułamek procesu "n" (MC)$$

$$a_{LL}^n - asymetrie partonowe (QCD)$$

$$A_1^{LP} = \frac{\sum_i e_i^2 \Delta q_i}{\sum_i e_i^2 q_i}$$

VVstęp

Asymetrie

Pary hadronów z dużym p_T

Podsumowanie

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣国 のへぐ

Asymetrie dla par hadronów z dużym p_T

$$A_{||} = \frac{\Delta\sigma}{\sigma} \approx \frac{\Delta G}{G} a_{LL}^{PGF} R_{PGF} + A_1^{LP} (x_{QCDC}) a_{LL}^{QCDC} R_{QCDC} + A_1^{LP} (x_{Bj}) a_{LL}^{LP} R_{LP}$$

$$gdzie:$$

$$A_{||} = A_{exp} / P_t P_b f$$

$$R_n - utamek \text{ procesu "n" (MC)} a_{LL}^n - asymetrie \text{ partonowe (QCD)}$$

$$A_1^{LP} = \frac{\sum_i e_i^2 \Delta q_i}{\sum_i e_i^2 q_i} - wy \text{korzystamy asymetrie } A_1$$

$$(znaną z \text{ innych pomiarów})$$

$$A_1 \approx \frac{\Delta G}{G} a_{LL}^{PGF, inc} R_{PGF}^{inc} + A_1^{LP} (x_{QCDC}) a_{LL}^{QCDC, inc} R_{QCDC}^{inc} + A_1^{LP} (x_{Bj}) a_{LL}^{LP, inc} R_{LP}^{inc}$$

DMPASS

Asymetrie

Pary hadronów z dużym p_T ⊙●○○○○○○○○○○○○ Podsumowanie

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Wyznaczanie $\Delta G/G$

Rozwiązując układ dwóch równań z dwiema niewiadomymi otrzymujemy wyrażenie na $\Delta G/G$:

$$\frac{\Delta G}{G}(x_{G}^{avg}) = \frac{A_{||} + A_{corr}}{\beta}; \quad \beta \sim a_{LL}^{PGF} R_{PGF} + \alpha$$
$$A_{corr} = -A_{1}(x_{Bi})\gamma + A_{1}(x_{QCDC})\delta$$

- α, β, γ, δ zależą od ułamków *R* oraz od a_{LL} dla próbek "inkluzywnej" oraz "dużych p_T"
- *R_i*, *aⁱ_{LL}*, *x_{QCDC}* oraz *x_G* są parametryzowane w uparciu o symulacje MC

OMPASS 000000 Asymetrie

Pary hadronów z dużym p_T ⊙●○○○○○○○○○○○○ Podsumowanie

Wyznaczanie $\Delta G/G$

Rozwiązując układ dwóch równań z dwiema niewiadomymi otrzymujemy wyrażenie na $\Delta G/G$:

$$\frac{\Delta G}{G}(x_{G}^{avg}) = \frac{A_{||} + A_{corr}}{\beta}; \quad \beta \sim a_{LL}^{PGF} R_{PGF} + \alpha$$

 $A_{corr} = -A_1(x_{Bj})\gamma + A_1(x_{QCDC})\delta$

Metoda standardowa

- α, β, γ, δ zależą od ułamków *R* oraz od a_{LL} dla próbek "inkluzywnej" oraz "dużych p_T"
- *R_i*, *aⁱ_{LL}*, *x_{QCDC}* oraz *x_G* są parametryzowane w uparciu o symulacje MC
- Za $A_{||}$, A_{corr} oraz β bierzemy ich wartości średnie $\langle A_{||} \rangle$, $\langle A_{corr} \rangle$ oraz $\langle \beta \rangle$.
- < A_{||} > w analizach wykonywanych przez COMPASS oraz SMC jest średnią ważoną.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

OMPASS 000000 Asymetrie

Pary hadronów z dużym p_T ⊙●○○○○○○○○○○○○ Podsumowanie

Wyznaczanie $\Delta G/G$

Rozwiązując układ dwóch równań z dwiema niewiadomymi otrzymujemy wyrażenie na $\Delta G/G$:

$$\frac{\Delta G}{G}(x_{G}^{avg}) = \frac{A_{||} + A_{corr}}{\beta}; \quad \beta \sim a_{LL}^{PGF} R_{PGF} + \alpha$$

 $A_{corr} = -A_1(x_{Bj})\gamma + A_1(x_{QCDC})\delta$

Metoda z użuciem wag

- α, β, γ, δ zależą od ułamków *R* oraz od a_{LL} dla próbek "inkluzywnej" oraz "dużych p_T"
- *R_i*, *aⁱ_{LL}*, *x_{QCDC}* oraz *x_G* są parametryzowane w uparciu o symulacje MC
- Wyznaczamy bezpośrednio ΔG/G z liczby zliczeń dla dwóch konfiguracji spinowych
- Dla każdego z przypadków konstruowana jest waga zależna od: f, D, P_b, β, α, γ, δ
- Do parametryzacji zostały użyte Sztuczne Sieci Neuronowe

COMPASS

Asymetrie

Pary hadronów z dużym p_T

Podsumowanie

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Selekcja próbki danych

Cięcia kinematyczne

- $Q^2 > 1 (GeV/c)^2$ przypadki pochodzą z obszaru perturbacyjnego
- p_{T1} > 0.7 GeV/c; p_{T2} > 0.7 GeV/c zwiększa frakcję przypadków pochodzacych z PGF

Zebrana próbka danych

2002-2004: \sim 500k przypadków

COMPASS

Asymetrie

Pary hadronów z dużym p_T

Podsumowanie

Selekcja próbki danych

Cięcia kinematyczne

• $Q^2 > 1 (GeV/c)^2$ przypadki pochodzą z obszaru perturbacyjnego

 p_{T1} > 0.7 GeV/c; p_{T2} > 0.7 GeV/c zwiększa frakcję przypadków pochodzacych z PGF

Zebrana próbka danych

2002-2004: \sim 500k przypadków

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のへぐ

VVstęp

COMPASS

Asymetrie

Pary hadronów z dużym p_T

Podsumowanie

Identyfikacja Hadronów

- Dwa kalorymetry hadronowe
 - $\frac{E}{p} > 0.3$
- Miony identyfikowane przy wykorzystaniu filtrów mionowych

Vstęp

0MPASS

Asymetrie 0000 Pary hadronów z dużym PT

Podsumowanie

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のへぐ

Monte Carlo

- W analizie wykorzystano 2 próbki MC: "inkluzywną" oraz "duże pτ"
- MC oparte na generatorze LEPTO z pełną symukacją spektrometru
- Rozkłady Partonów: parametryzacja MRST2004 LO
- Parton Shower (PS) : emisje gluonów w stanie początkowym oraz końcowym
 - symuluje część poprawek NLO
 - PS ON wykorzystane do wyznaczania $\Delta G/G$
 - PS OFF uwzględnione w błędzie systematycznym
- Do uzyskania poprawnego opisu danych niezbędna była modyfikacja parametrów fragmentacji JETSET
 - Wartości standardowe parametrów fragmentacji uwzględnione w estymacji niepewności systematycznej

COMPASS

Asymetrie 0000 Pary hadronów z dużym PT

Podsumowanie

Monte Carlo

- W analizie wykorzystano 2 próbki MC: "inkluzywną" oraz "duże p_T"
- MC oparte na generatorze LEPTO z pełną symukacją spektrometru
- Rozkłady Partonów: parametryzacja MRST2004 LO
- Parton Shower (PS) : emisje gluonów w stanie początkowym oraz końcowym
 - symuluje część poprawek NLO
 - PS ON wykorzystane do wyznaczania $\Delta G/G$
 - PS OFF uwzględnione w błędzie systematycznym
- Do uzyskania poprawnego opisu danych niezbędna była modyfikacja parametrów fragmentacji JETSET
 - Wartości standardowe parametrów fragmentacji uwzględnione w estymacji niepewności systematycznej

Wpływ modyfikacji parametrów fragmentacji

Wstęp	COMPASS	Asymetrie	Pary hadronów z dużym <i>p</i> _T	Podsumowani
⊙	0000000	0000	○○○○○○○●○○○○○○○	000000

Dane/MC

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

COMPASS

Asymetrie

Podsumowanie

Sztuczne Sieci Neuronowe

- Jako model sztucznej sieci neuronowej użyty został wielowarstwowy perceptron
 - Dwie warstwy ukryte
 - Funkcja aktywacji sigmoidalna
 - Dynamiczna struktura sieci

 Następujące zmienne muszą być znane przypadek po przypadku

 $\begin{array}{l} R_{PGF}, R_{QCDC}, R_{LP}, R_{PGF}^{inc}, R_{QCDC}^{inc}, R_{LP}^{inc}, \\ a_{LL}^{PGF}, a_{LL}^{QCDC}, a_{LL}^{PGF,inc}, a_{LL}^{QCDC,inc}, \\ \times_{QCDC}, \times_{G}, f, D, P_{b} \end{array}$

- f, D, P_b wyznaczone bezpośrednio z danych
- Pozostałe wielkości wyznaczane są na podstawie symulacji MC
- Sieć neuronowa jest uczona na próbkach MC i wykorzystywana jako parametryzacja tych wielkości
- Dane wejściowe dla sieci neuronowej:
 - Przypadek inkluzywny: x_{Bj} oraz Q^2
 - Przypadek hadronowy:
 x_{Bj}, Q², p_{L1}, p_{L2}, p_{T1} oraz p_{T2}
- Dobry opis danych przez symulację MC jest kluczowy dla tej analizy

COMPASS

Asymetrie 0000 Pary hadronów z dużym p_T

Podsumowanie

Parametryzacja ułamków R

Użyto sieci neuronowej o dwóch wyjściach o₁ i o₂ R sumują się do 1 (mają sens prawdopodobieństwa)

$$R_{PGF} = 1 - o_1 - \frac{1}{\sqrt{3}}o_2; \ R_{QCDC} = o_1 - \frac{1}{\sqrt{3}}o_2; \ R_{LP} = \frac{2}{\sqrt{3}}o_2$$

Asymetrie 0000 Pary hadronów z dużym p_T

Podsumowanie

Sprawdzian poprawności parametryzacji

Ułamki trzech procesów w funkcji Σp_T^2

Wstęp

- Punkty puste bezpośrednio otrzymane z MC
- Punkty pełne otrzymane z sieci neuronowej

COMPA 000000 Asymetrie

Pary hadronów z dużym p_T

Podsumowanie

Otrzymujemy wynik ...

Podsumowując:

- Symulacja MC daje nam dostęp do zmiennych nie obserwowanych w eksperymencie: ułamki procesów, kinematyczne zmienne partonów
- Sieci neuronowe pozwalają na sparametryzowanie tychże wielkości jako zależnych od wielkości obserwowanych: Q², x, p_L, p_T
- Pozwala to na określenie ich przypadek po przypadku
- Kazdemu przypadkowi przypisujemy wagę
- $\bullet\,$ Budujemy estymator $<\Delta G/G>$ w oparciu o wagi przypisane przypadkom
- Wyznaczamy ΔG/G bezpośrednio (brak pośredniego kroku gdzie wyznaczamy A_{||})

Wstęp

COMPASS

Asymetrie

Pary hadronów z dużym p_T

Podsumowanie 000000

Wstępny wynik dla par hadronów o dużym p_T , $Q^2 > 1(\text{GeV}/c)^2$

$$\frac{\Delta G}{G} = 0.08 \pm 0.10 (stat.) \pm 0.05 (syst.)$$

$$x_{G} = 0.082^{+0.041}_{-0.027} \quad @ \quad \mu^{2} \approx 3 (\text{GeV/c})^{2}$$

◆□>
◆□>
●>
●>

COMPASS

Asymetrie

Pary hadronów z dużym p_T ○○○○○○○○○○●○ Podsumowanie

Studia błędów systematycznych

- fałszywe asymetrie
- stabilność sieci neuronowych
- parametry symulacji MC
- $\delta f, \, \delta P_B, \, \delta P_T$
- parametryzacja A_1^d
- założenia w wyrażeniu na $\Delta G/G$

$\delta(\Delta G/G)_{NN}$	0.006
$\delta(\Delta G/G)_{MC}$	0.040
$\delta(\Delta G/G)_{f,P_{\boldsymbol{B}},P_{\boldsymbol{T}}}$	0.006
$\delta(\Delta G/G)_{false}$	0.011
$\delta(\Delta G/G)_{A1}$	0.008
$\delta(\Delta G/G)_{\it formula}$	0.013
Suma	0.045

Systematyka związana z MC

- Użyto cztery różne próbki MC
 - Parametryzacja Fragmentacji (PF) COMPASSa + PS on
 - PF COMPASSa + PS off
 - PF standardowa + PS on
 - PF standardowa + PS off

・ロト ・ 日本 ・ 日本 ・ 日本 ・ クタマ

 Dla każdej z próbek wyznaczono wartośćΔG/G

COMPASS

Asymetrie

Pary hadronów z dużym p_T ○○○○○○○○○○○● Podsumowanie 000000

Wstępny wynik dla Open Charm

$$\frac{\Delta G}{G} = -0.49 \pm 0.27 (stat.) \pm 0.11 (sys.)$$
$$x_G = 0.11^{+0.11}_{-0.05} \quad @ \quad \mu^2 \approx 13 (\text{GeV/c})^2$$

Niepewności systematyczne

Źródło	Fałszywe asymetrie	S/(S+B)	aLL	f	Рь	P _t
$\delta(\Delta G/G) \ D^0(D^*)$	0.05 (0.05)	0.07 (0.01)	0.05 (0.03)	0.02	0.02	0.02

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

Asymetrie

Pary hadronów z dużym pr

Podsumowanie 00000

Podsumowanie pomiarów bezpośrednich

Krzywe niebieskie

- GRSV $\Delta G = 2.5$
- GRSV $\Delta G = 0.6$
- GRSV $\Delta G = 0.2$
- [Glueck et al., PRD 63] (2001)]

Krzywe przerywane

- Dopasowanie COMPASSa NLO QCD do danych światowych
- Dwa równorzędne rozwiązania $\Delta G < 0$ oraz $\Delta G > 0$
- [PLB 647 (2007) 8-17]

Asymetrie 0000 Pary hadronów z dużym p_T

Podsumowanie

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Pomiar ΔG w **RHICu**

Badane jest rozpraszanie spolaryzowanych wiązek proton-proton, np:

$$p + p \rightarrow \pi^0 + X$$

COMPASS 0000000 Asymetrie 0000 Pary hadronów z dużym p_T

Podsumowanie

Pomiar ΔG w RHICu

Dostęp do polaryzacji gluonów poprzez asymetrię przekrojów czynnych

$$\begin{array}{l} A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} \sim \propto a_{gg} \cdot \Delta G^2 + a_{qg} \cdot \Delta q \cdot \Delta G + a_{qq} \cdot \Delta q^2 \\ \text{Pomiar} \quad p\text{QCD} \quad parametryzacja oparta na pomiarach DIS \end{array}$$

wyznaczana przez "beam-beam counters" <a>counters" <a>counters

COMPASS

Asymetrie

Pary hadronów z dużym p_T

Podsumowanie

STAR - jety

Run 5 (2005): PRL 100, 23 (2008)

Wykluczone: $\Delta G = G, -G$

GRSV-std - wykluczone z poziomem ufności 99%

GRSV-std

GRSV AG = 0

p_ (GeV/c)

0.03 - Run6 (40% scaling error)

Scaling errors not included

Online Polarization values used in Run6

3 4 5 6

0.02

0.01

-0.01

-0.02

-0.03

2

Podsumowanie

PHENIX - π^0

Run 5 (2005): Phys.Rev.D76:051106, 2007

Wykluczone: $\Delta G = G$, -GGRSV-std - wykluczone na poziomie 3 sigma: $\chi^2(std) - \chi^2_{min} > 9$

Pary hadronów z dużym p_T

Podsumowanie

Podsumowanie

- Podsumowanie
 - Zostały zaprezentowane ostatnie wyniki pomiarów $\Delta G/G$ otrzymanych przez COMPASS
 - Błędy pomiarów zostały znacząco zmnieszone dzięki wykorzystaniu dodatkowych danych oraz nowych metod analizy.
 - Obecne pomiary wskazują że $\Delta G/G$ jest konsystentne z zerem dla $x_g pprox 0.1$
- Przyszłe prace dla kanału z hadronami od dużymp_T
 - Przygotowywana jest publikacja
 - Trwają prace nad dołączeniem danych zebranych w latach 2006 oraz 2007
 - Obecnie pracujemy nad opisem danych 2006 przez symulacje MC
 - Rozważane jest uwzględnienie w analizie obszaru $0.4 < p_T < 0.7 \text{ GeV/c}$
 - Analiza 1-hadronowa

Backup Slides

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣国 のへぐ

 $\frac{1}{2}=\frac{1}{2}\Delta\Sigma$

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G$$

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

where (in LO):

- $\Delta \Sigma = \int_0^1 \Delta \Sigma(x) dx$ $\Delta \Sigma(x)$ - polarized quark distribution
- $\Delta \Sigma(x) = \sum_{f} [\Delta q_{f}(x) + \Delta \overline{q_{f}}(x);] f$ flavors (u,d,s)
- $\Delta q_f(x) = q_f^+(x) q_f^-(x)$; f flavors (u,d,s) $q_f^{+/-}(x)$ - quarks polarized parallel / antiparallel to nucleon spin
- $\Delta G = \int_0^1 \Delta g(x) dx$

 $\Delta g(x)$ - polarized gluon distribution

L_{q/g}—orbital momentum of quarks / gluons

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

"Spin Crisis"

- Only a small fraction of nucleon spin is carried by quarks $\Delta \Sigma = 0.30 \pm 0.01 (\text{stat.}) \pm 0.02 (\text{evol.}) \\ (\text{QCD NLO fits})$
- How big is the contribution of gluons and orbital momentum?
- Solution: measure polarization of the gluons and orbital momentum of partons (see talk by Etienne Burtin).

High p_T asymmetries

$$A_{||} \approx \frac{\Delta G}{G} a_{LL}^{PGF} R_{PGF} + A_1^{LP} (x_{QCDC}) a_{LL}^{QCDC} R_{QCDC} + A_1^{LP} (x_{Bj}) a_{LL}^{LP} R_{LP}$$

where:

$$\begin{array}{l} A_{||} = A_{exp} / P_t P_b f \\ R_n \text{ - fraction of process "n" (MC)} \\ a_{LL}^n \text{ - partonic asymmetries (QCD)} \\ A_1^{LP} = \frac{\sum_i e_i^2 \Delta q_i}{\sum_i e_i^2 q_i} \text{ - taken from } A_1 \text{ measurement} \end{array}$$

High p_T asymmetries

$$A_{||} \approx \frac{\Delta G}{G} a_{LL}^{PGF} R_{PGF} + A_1^{LP} (x_{QCDC}) a_{LL}^{QCDC} R_{QCDC} + A_1^{LP} (x_{Bj}) a_{LL}^{LP} R_{LP}$$

where:

$$\begin{split} A_{||} &= A_{exp}/P_t P_b f\\ R_n - \text{fraction of process "n" (MC)}\\ a_{LL}^n - \text{partonic asymmetries (QCD)}\\ A_1^{LP} &= \frac{\sum_i e_i^2 \Delta q_i}{\sum_i e_i^2 q_i} - \text{taken from } A_1 \text{ measurement}\\ \text{Also to } A_1 \text{ all } 3 \text{ processes contribute:}\\ &= A_{III}^{ind} \approx \frac{\Delta G}{C} a_{LL}^{PGF, incl} R_{PGF}^{incl} \end{split}$$

$$+A_{1}^{LP}(\times_{QCDC})a_{LL}^{QCDC,incl}R_{QCDC}^{incl}+A_{1}^{LP}(\times_{Bj})a_{LL}^{LP,incl}R_{LP}^{incl}$$

where:

$$A_{||}^{incl} \approx DA_1$$
 - inclusive asymmetry
 $D(y) = a_{II}^{LP,incl}$ - depolarisation factor

$\Delta G/G$ High p_T formula

Solving this set of two equations we obtain expression for $\Delta G/G$:

$$\frac{\Delta G}{G}(x_{G}^{\text{avg}}) = \frac{A_{||} + A_{corr}}{\beta}; \quad \beta = a_{LL}^{PGF} R_{PGF} - a_{LL}^{PGF, incl} \frac{R_{PGF}^{incl}}{R_{LP}^{incl}} \left(R_{LP} + a_{LL}^{QCDC} R_{QCDC} \right)$$
$$A_{corr} = -A_1(x_{Bjk}) \frac{R_{LP}}{R_{LP}^{incl}} - A_1(x_{QCDC})\alpha_1 + A_1(x_{QCDC}')\alpha_2$$
$$\alpha_1 = \frac{1}{R_{LP}^{incl}} \left(a_{LL}^{QCDC} R_{QCDC} - a_{LL}^{QCDC, incl} R_{QCDC}^{incl} \frac{R_{LP}^{incl}}{R_{LP}^{incl}} \right)$$
$$\alpha_2 = a_{LL}^{QCDC, incl} \frac{R_{QCDC}^{incl}}{R_{LP}^{incl}} \frac{R_{QCDC}}{R_{LD}^{incl}} a_{LL}^{QCDC}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣国 のへぐ

$\Delta G/G$ High p_T formula

Solving this set of two equations we obtain expression for $\Delta G/G$:

$$\frac{\Delta G}{G}(x_{G}^{avg}) = \frac{A_{||} + A_{corr}}{\beta}; \quad \beta = a_{LL}^{PGF} R_{PGF} - a_{LL}^{PGF,incl} \frac{R_{PGF}^{incl}}{R_{LP}^{incl}} \left(R_{LP} + a_{LL}^{QCDC} R_{QCDC} \right)$$

$$A_{corr} = -A_1(x_{Bjk}) \frac{R_{LP}}{R_{LP}^{incl}} - A_1(x_{QCDC}) \alpha_1 + A_1(x_{QCDC}') \alpha_2$$

$$\alpha_1 = \frac{1}{R_{LP}^{incl}} \left(a_{LL}^{QCDC} R_{QCDC} - a_{LL}^{QCDC,incl} R_{QCDC}^{incl} \frac{R_{LP}}{R_{LP}^{incl}} \right)$$

$$\alpha_2 = a_{LL}^{QCDC,incl} \frac{R_{QCDC}}{R_{LP}^{incl}} \frac{R_{QCDC}}{R_{LP}^{incl}} a_{LL}^{QCDC}$$

- a_{LL}^n , R_n depend on partonic kinematics (not accessible in experiment)
- a_{LL}^n , R_n , x_C , x_G are parametrised using MC simulation
- In order to maximise the statistical efficiency a weighted estimator is used
- For each event a statistical weight is constructed
- Weights are constructed from: $f, D, P_B, \beta, \alpha_1, \alpha_2$

Asymmetry calculation

$$A_{exp} = \frac{\Delta G}{G} P_t P_b a_{LL} f \frac{S}{S+B} + A_{BG}$$
$$A_{exp} = \frac{N^{\uparrow \Downarrow} - N^{\uparrow \Uparrow}}{N^{\uparrow \Downarrow} + N^{\uparrow \Uparrow}}$$

 P_t - Target polarisation P_b - Beam polarisation f - Dilution factor

S - signal events

B - background events

 a_{LL} - partonic cross-section asymmetry parametrised using Neural Networks based on Aroma MC. (correlation ~80%)

 \Rightarrow both obtained form fits to D mass spectra

Selection

Statistical weights

To increase the statistical gain a weighted estimator is used. Each event is applied a weight:

$$w = P_b fa_{LL} \frac{S}{S+B}$$

RICH PID

- K, π identification
- e rejection

The $\frac{S}{S+B}$ is parametrised as a function of kinematic variables and RICH response:

- available on event-by-event basis
- built from Data (fits to D spectra)

Channels

• $D^0 \to K\pi$

•
$$D^* \to D\pi_{soft} \to K\pi\pi_{soft}$$

• BR $(D \rightarrow K\pi) \sim 3.8\%$

もってい 正明 スポッスポット モッ

Selection

Open Charm

D^* event selection			
0.1 < y < 0.9			
z _D o > 0.2			
$ \cos{(heta^*)} < $ 0.9			
$3.2 \text{MeV} < m(K \pi \pi_{soft}) - m(D^0) - m(\pi) < 8.9 \text{MeV}$			
π, K, e identification based on RICH			
p<50 GeV/c			
No other D^* in the same event			
D ⁰ event selection			
0.1 < y < 0.9			
z _D o > 0.2			
$ cos\left(heta^{*} ight) < 0.65$			
π, \mathcal{K}, e identification based on RICH			
>7 GeV/c for pions and for both <50 GeV/c			
No other D^* or D^0 in the same event			

- $\begin{array}{l} \text{High } p_T \\ \bullet \ Q^2 > 1 \ \text{GeV}^2 \end{array}$
 - $p_T > 0.7$ GeV (for both hadrons)
 - 0.1 < y < 0.9
 - $x_F, z > 0.0$
 - $m(h_1, h_2) > 1.5$ GeV: remove ρ resonance
 - $\Sigma z < 0.95$: remove exclusive events

Mass spectra

$\frac{S}{S+B}$ parametrisation in action

⁰-tagged events with 0.85 < Σ < 0.92

◆□> <畳> <目> <目> <目> <目> <<=>

Intrinsic Charm

a_{LL} parametrisation for Open Charm

- analyzing power depends on the full parton kinematics
- in the experiment there is only indirect access to cc
 via D⁰
 kinematic
- using Neural Network and MC generated sample of D⁰&D* parametrization of aLL /D is made
- correlation between *a_{LL,gen}* and *a_{LL,rec}* is about 0.80

 $\Delta G/G$

Open Charm

High *p*_T

◆□> <個> <目> <目> <目> <000</p>

Tuning of fragmentation

- LUND fragmentation $f(z) = z(1 - z)^{a}e^{-bm_{T}^{2}/z}$ $m_{T}^{2} = m^{2} + p_{T}^{2}$
- with variable parameters a (PARJ(41)) and b (PARJ(42))
- String between two outgoing quarks
- $q\bar{q}$ pairs created with transverse momentum k_T
- width of the gaussian $k_{x,y}$ PARJ(21) = 0.36
- non gaussian tails modelled by second broader gaussian
 - width = PARJ(24) × PARJ(21)
 - fraction PARJ(23) = 0.01 of first gaussian

High p_T Monte Carlo

Avarage values of a _{LL}	Final MC	
$\langle a_{LL}^{LP} \rangle$	0.63	
$\left\langle a_{LL}^{QCDC} \right\rangle$	0.50	
$\langle a_{LL}^{PGF} \rangle$	-0.36	
R _{LP}	0.40	
R _{QCDC}	0.29	
R _{PGF}	0.31	
JETSET parameters	Default	COMPASS
PARJ(41)	0.3	0.6
PARJ(42)	0.58	0.1
PARJ(21)	0.36	0.3
PARJ(23)	0.01	0.02
PARJ(24)	2.0	3.5