Hydrodynamic description of relativistic heavy-ion collisions

Wojciech Florkowski W. Broniowski, M. Chojnacki, A. Kisiel

IFJ PAN & UJK Kielce

Seminarium Fizyki Wielkich Energii, UW 22 maja 2009

Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions

RHIC at BNL

Relativistic Heavy Ion Collider at Brookhaven National Laboratory

Google Maps: http://maps.google.com/?ll=40.874649,-72.870598&spn=0.047118,0.079823&z=14

RHIC at BNL

Four experiments

RHIC at BNL

Four experiments STAR

BRAHMS

PHOBOS

PHENIX

Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions

22 maja 2009 3 / 25

Relativistic heavy-ion collisions

simulations with Ultra-relativistic Quantum Molecular Dynamics (UrQMD)

http://www.phenix.bnl.gov/WWW/software/ luxor/ani/urqmdAni/urqmdForWBNL.mlv Animation by Jeffery Mitchell (Brookhaven National Laboratory). Simulation by the UrQMD Collaboration.

http://th.physik.uni-frankfurt.de/~weber/ Movies/au200au.big.mpg Animation by Henning Weber. UrQMD Cascade: Au + Au;200 GeV/u; b=5 fm

Relativistic heavy-ion collisions

Detectors

simulations in detectors

http://www.phenix.bnl.gov/WWW/software/ luxor/ani/starTrails/starTrailsLargev2.mpg Animation courtesy of Brookhaven National Laboratory

PHENIX

http://www.phenix.bnl.gov/WWW/software/ luxor/ani/phxTrails/phxTrailsLarge.mpg Animation courtesy of Brookhaven National Laboratory

1) transverse-momentum spectra, p_T distributions

2) elliptic flow coefficient v_2

http://www.phenix.bnl.gov/WWW/software/luxor/ani/ ellipticFlow/ellipticSmall1-1.mpg Animation by Jeffery Mitchell (Brookhaven National Laboratory)

PHENIX, Phys.Rev.Lett.91,182301(2003)

• • • • • • • • • • • •

3) correlations of identical particles (Hanbury-Brown, Twiss)

source emitting particles

3) correlations of identical particles (Hanbury-Brown, Twiss)

source emitting particles

two identical pions, $\pi^+\pi^+$, $\pi^-\pi^-$

three projections of the correlation

< 6 b

< 3

3) source sizes (HBT radii)

HBT radii depend on k_T

HBT radii

- *R_{side}* spatial transverse extension
- *R_{out}* spatial transverse extension + emission time
- *R_{long}* longitudinal extension

Motivation

an attempt to obtain a uniform description of soft observables main ingredients of the models:

- data suggest that matter behaves like a perfect fluid main tool: perfect-fluid hydrodynamics (Shuryak, Heinz, ...)
- hadronization equation of state incorporating the phase transition
- statistical description of decoupling of hadrons Cooper-Frye formula

A (10) A (10)

Motivation HBT puzzle

T.Hirano, K.Morita, S.Muroya, and C.Nonaka, Phys. Rev. C65, 061902 (2002)

イロト イヨト イヨト イヨト

Ingredients of the hydrodynamic model

- 1. Thermodynamic properties described by the equation of state
- 2. Free-streaming (optionally precedes the hydro evolution)
- 3. Perfect-fluid hydrodynamics implemented in the code LHYQUID (M. Chojnacki)
 - Equations of relativistic hydrodynamics
 - Initial conditions
 - Freeze-out hypersurface
- 4. Statistical model of freeze-out THERMINATOR (A. Kisiel et al.)
 - *p*_T spectra
 elliptic flow *v*₂(*p*_T)
 - HBT radii: $R_{side}, R_{out}, R_{long}, R_{out}/R_{side}$

イベト イモト イモト

Thermodynamics

phase diagrams

Thermodynamics

phase diagrams

phase diagram for water

phase diagram for QCD

Thermodynamics

modeling of the QCD EOS

hadron gas model for low temparatures

pliki inputowe z SHARE: Statistical hadronization with resonances G. Torrieri, S. Steinke, W. Broniowski, W. Florkowski, J. Letessier, J. Rafelski, Comput. Phys. Commun. 167, 229 (2005)

Iattice QCD simulations for large temperatures

based on: Y. Aoki, Z. Fodor, S. Katz, K. Szabo, JHEP 0601, 089 (2006)

simple parameterization of pressure: T. Biro, J. Zimanyi, Phys.Lett. B650, 193 (2007)

cross-over phase transition

thermodynamic variables change suddenly at T_c but smoothly,

the sound velocity does not drop to zero

Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions

22 maja 2009 14 / 25

Free-streaming

non-equilibrium process

- thermalization requires some time ($\tau \approx 0.25 1.0$ fm)
- two scenarios

< ロ > < 同 > < 回 > < 回 >

- model for early stage dynamics
 - free streaming of particles, no interactions
 - sudden hermalization Landau's matching conditions.
- our results indicate that the two scenarios are equivalent

Hydrodynamcs

conservation laws

energy-momentum conservation law

 $\partial_{\mu}T^{\mu
u}=0$

Hydrodynamcs

conservation laws

energy-momentum conservation law

 $\partial_{\mu}T^{\mu
u}=0$

energy-momentum of the perfect fluid

$$T^{\mu
u} = (\epsilon + P) u^{\mu} u^{
u} - P g^{\mu
u}$$

- ϵ energy density, **P** pressure, u^{μ} fluid four-velocity
- mid-rapidity ($|y| \le 1$) for RHIC $\mu_B \approx 0$, temperature is the only independent parameter
- boost-invariance equations solved at z = 0, solutions for $z \neq 0$ obtained by Lorentz boosts

< ロ > < 同 > < 回 > < 回 >

Hydrodynamics

initial conditions - nuclear matter profiles

most of the approaches use the Glauber model or Color Glass Condensate,

¹W. Broniowski, M. Rybczyński, P. Bożek arXiv:0710.5731[nucl-th] - - - - -

Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions

э 22 maja 2009 17/25

Hydrodynamics

initial conditions - nuclear matter profiles

- most of the approaches use the Glauber model or Color Glass Condensate,
- we assume the Gaussian profile (Gaussian approximation to Glauber)

$$rac{dN}{dxdy}\sim \exp\left(-rac{x^2}{2a^2}-rac{y^2}{2b^2}
ight)$$

the widths a and b determined from GLISSANDO¹

results from LHYQUID

reLativistic HYdrodynamics of QUark-gluon fluID

э

-

< A

freeze-out hypersurfaces

Hydrodynamics

freeze-out hypersurfaces

I freeze-out temperature $T_f = 145 \text{ MeV}$

central collisions

peripheral collisions

because of the strong transverse flow, hadron do not reenter the medium

space-like and time-like emission is similar

3 > 4 3

THERMINATOR²

THERMal heavy-loN generATOR

primordial particles are emitted according to the Cooper-Frye formula

$$rac{dN}{dy\,d^2p_T} = \int d\Sigma^\mu p_\mu f_{
m eq}\left(p\cdot oldsymbol{u}
ight),$$

 $d\Sigma^{\mu}$ - element of the freeze-out hypersurface – obtained from hydro u^{μ} - four-velocity of the fluid

- all resonances included
- elliptic flow coefficient v₂

$$\frac{dN}{dy \, d^2 p_T} = \frac{dN}{dy \, 2\pi p_T \, dp_T} \left(1 + 2\nu_2(p_T)\cos(2\phi_p) + \ldots\right)$$

²A. Kisiel, T. Tałuć, W. Broniowski and W. Florkowski Comput. Phys. Commun. **174**, 669 (2006)

THERMINATOR

results for the spectra and v_2

Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions

THERMINATOR

femtoscopy ³

- two-particle method used to calculate the correlation functions (procedure mimics closely the experimental situation).
- the wave function calculated in the pair rest frame (PRF) includes Coulomb (option)
- correlation function fitted in the Bertsch-Pratt coordinates $(k_T, q_{out}, q_{side}, q_{long})$ with Bowler-Sinyukov correction (option)

$$\mathcal{C}(\vec{q},\vec{k}) = (1-\lambda) + \lambda \mathcal{K}_{\rm coul}(q_{\rm inv}) \left[1 + \exp\left(-\boldsymbol{R}_{\rm out}^2 \boldsymbol{q}_{\rm out}^2 - \boldsymbol{R}_{\rm side}^2 \boldsymbol{q}_{\rm side}^2 - \boldsymbol{R}_{\rm long}^2 \boldsymbol{q}_{\rm long}^2\right) \right],$$

HBT radii (R_{out} , R_{side} , R_{long}) obtained from the fit and compared with data

³A. Kisiel, W. Florkowski and W. Broniowski Phys. Rev. C73, 064902 (2006)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

HBT results

THERMINATOR

HBT results

THERMINATOR

oscillations of the HBT radii

Conclusions

- our hydrodynamical model correctly describes the soft-hadronic data first successful attempt to solve the RHIC HBT puzzle.
- the things which matter
 - realistic equation of state
 - initial profile Gauss, fluctuations of the eccentricity
 - all resonances included
 - two-particle algorithm for femtoscopy
- future developments
 - predictions for LHC
 - full 3D evolution Piotr Bożek
 - finite baryonic potential
 - viscosity