Seminarium Fizyki Wysokich Energii

23.10.2009

Teoria cząstek elementranych 2009nowe metody Maria Krawczyk IFT

Teoria cząstek elementarnych ~Model Standardowy Nowe metody

Standard Model Theory for Colliders Physics
B. Anastasiou (EPS 2009)
Assault on the NLO Wishlist: pp → ttbb
M. Worek (Ustroń 2009)

Nonperturbative Field Theory R.Janik (EPS 2009)

Evolution of the Universe to the present Inert phase (EPS2009..)

Teoria cząstek elementarnych

THE THEORY OF MATTER and STANDARD MODEL(S)

F. Wilczek, LEPFest, Nov.2000 (hep-ph/0101187)

Theory of Matter = SU(2), weak x U(1), weak x SU(3), color

Theory of Matter refers to the core concepts:

- quantum field theory
- gauge symmetry
- spontaneous symmetry breaking
- asymptotic freedom
- the assignments of the lightest quarks and leptons

Standard Models: Choose the number of Higgs (scalar) doublets SM=1HDM, <u>2HDM</u> (MSSM), 3HDM ... Note, that the lightest scalar is often SM-like

NonStandard Models are based on more radical assumptions.

Brout-Englert-Higgs mechanism Spontaneous breaking of EW symmetry $SU(2) \times U(1) \rightarrow U(1)_{QED}$

Standard Model

Doublet of SU(2): $\Phi = (\phi^+, v + H + i\zeta)^T$ Masses for W^{+/-}, Z (tree $\rho = 1$), no mass for the photon Fermion masses via Yukawa interaction

Higgs particle H_{SM} - spin 0, neutral, CP even couplings to WW/ZZ, Yukawa couplings to fermions mass \leftrightarrow selfinteraction unknown

Standard Model Theory for collider physics **Babis Anastasiou ETH** Zurich

A theory revolution

Deeper understanding of the structure of gauge theories

Sharp theoretical predictions for collider experiments

A new technical revolution and a pace of progress to be very proud of

Highlights

Revolutionary new methods for one-loop calculations and a promise for precise multi-particle production cross-sections at the Tevatron and the LHC

Impressive progress on NNLO methods which has lead to precision phenomenology for LEP, HERA, Tevatron and the LHC

One-loop amplitudes from trees... and masters !!! and masters !

Trees in GaugeLoop Master Integrals intheoryscalar field theory

Master Integrals

 $+c_3$

One-loop amplitude in Gauge theory

 c_4

Integrals in scalar field theory

 c_2 -

Passarino,

Veltman

1980s

Known method(s) to compute c_i coefficients had a (# Legs)! computational cost

Unitarity

- Trees as input for the integrand
- Manifest gauge invariance
- Simplifications by using "natural"

 Mismatch between Trees in four dimensions^{spinor} variables and loop integration in D-dimensions

- Introduction of four dimensional helicity regularization scheme
- Clever theory input (collinear factorization) to recover the full one-loop amplitude

Trees were an essential ingredient. No explicit connection of master integral coefficients to tree amplitudes.

Coefficient of box master !

Britto, Cachazo, Feng 2004

• Simple product of four tree amplitudes

ONE-LOOP INTEGRAND

Ossola, Papadopoulos, Pittau 2006 (building on del Aguila, Pittau, 2004) $= \int \frac{d^d k}{\left(2\pi\right)^d} \Big[c_4 f_4(\vec{k}) + c_3 f_3(\vec{k}) + c_2 f_2(\vec{k}) + c_1 f_1(\vec{k}) \Big]$ (\vec{k}) $f_2(k)$ After Integration: $\equiv c_4$ $+c_3$ $+c_{2}$ >

ONE-LOOP INTEGRAND

Ossola, Papadopoulos, Pittau 2006

$$\begin{split} & \overbrace{} = \int \frac{d^d k}{(2\pi)^d} \Big[c_4 \, f_4(\vec{k}) + c_3 \, f_3(\vec{k}) + c_2 \, f_2(\vec{k}) + c_1 \, f_1(\vec{k}) \\ & \quad + \tilde{c}_4 \, \tilde{f}_4(\vec{k}) + \tilde{c}_3 \, \tilde{f}_3(\vec{k}) + \tilde{c}_2 \, \tilde{f}_2(\vec{k}) + \tilde{c}_1 \, \tilde{f}_1(\vec{k}) \Big] \\ & \tilde{f}_i(\vec{k}), f_i(\vec{k}) : \text{ Known rational functions of the loop momentum} \\ & \tilde{c}_i, c_i : \text{ coefficients can be determined algebraically} \\ & \text{ computing the integrand at a sufficient number} \\ & \text{ of values for } \vec{k} \end{split}$$

ONE-LOOP INTEGRAND

Ossola, Papadopoulos, Pittau 2006

 $\int \frac{d^d k}{(2\pi)^d} \left[c_4 f_4(\vec{k}) + c_3 f_3(\vec{k}) + c_2 f_2(\vec{k}) + c_1 f_1(\vec{k}) \right] \\ + \tilde{c}_4 \tilde{f}_4(\vec{k}) + \tilde{c}_3 \tilde{f}_3(\vec{k}) + \tilde{c}_2 \tilde{f}_2(\vec{k}) + \tilde{c}_1 \tilde{f}_1(\vec{k}) \right] = \int \frac{d^d k}{(2\pi)^d}$ Integrand is "easy", essentially a tree amplitude Evaluate integrand at loop momenta values such as loop particles are set ON SHELL **ON-SHELL:** determines coefficients successively

Conflict of dimensions

- Loop Integrations in D dimensions, Tree amplitudes in four dimensions. Mismatch, i.e. missing terms from amplitude evaluation. Requires a second calculation.
 - 9
- Specialized tree-like recursions in D = 4 for the missing terms Berger, Bern, Dixon, Forde, Kosower
- Elegant /general solution: Amplitude in a general dimension from result²⁰⁹ D = 5 and D = 6. Ellis, Giele, Kunszt, Melnikov
- 9
- Specialized Feynman rules for missing terms: Draggiotis, Garzelli, Papadopoulos, Pittau

Breathtaking developments

One-loop Giele, Zanderighi (08 2006 10² amplitudes with 22 1993 10¹ gluons Giele, 1989 ري 10⁰ Zanderighi (08); Lazopoulos (08); 10⁴ A^{tree}(+-+-...) [DP] 10⁻¹ A^v(+-+-...) [DP] Giele, Winter (09) fit to degree 4 polynom. numerical evaluation 10-2 * fit to degree 9 polynom. 10 15 Number of gluons of all 2 to 4 amplitudes in the Les-Houches 2007 van Hameren, Papadopoulos, Pittau (09) wish-list $q\bar{q}, gg \rightarrow t\bar{t}b\bar{b}, b\bar{b}b\bar{b}, W^+W^-b\bar{b}, t\bar{t}gg$ $q\bar{q}' \rightarrow Wqqq, Zqqq$

20

W+3 jets: NLO cross-section

Large Nc approximation Ellis,Giele,Kunszt,Melnikov,Zander ighi; Berger,Bern,Dixon,Cordero,Forde, Gleisberg,Ita,Kosower,Maitre arXiv:0906.1445

NEW: complete NLO Berger,Bern,Dixon,Cordero, Forde,Gleisberg,Ita,Kosower Maitre (arXiv:0907.1984)

Start of a new era, with precise theoretical predictions for multiparticle production at the LHC

$pp \rightarrow t\bar{t}b\bar{b}$:NLO cross-section

Brendenstein, Denner, Dittmaier, Pozzorini

First full NLO calculation for a 2 to 4 process at a hadron collider

Important Higgs boson background

With Feynman diagrams

intelligent, mostly numerical reduction, to master integrals

exploits infrared regulators other than the dimension

very large NLO corrections

NLO calculations @ LHC

What can we hope for?

We cannot do better than tree calculations..., i.e. processes with 7 or 8 particles in the final state.

All 2 to 4 processes with both Feynman diagrammatic and unitarity methods

2 to 5 and perhaps 2 to 6 processes with unitarity methods

Drell-Yan theory

NNLO total cross-sectior Hamberg, van Neerven 1990; Harlander, Kilgore 2002 NNLO rapidity distributic

NNLO rapidity distributio CA,Dixon,Menikov,Petrie o 2004

Fully differential NNLOMelnikov,PetrielloNEXT(?): W-mass measurement2006;Catani,requires mixed QCDxQED correctionsCieri,Ferrera,Grazzini2009

Higgs via gluon fusion

Total [Harlander,Kilgore 02; CA,Melnikov 02; Ravindran, Smith 03] and fully differential cross-sections through NNLO [CA,Melnikov,Petriello 04; CA,Dissertori, Stockli 07; Catani,Grazzini 07]

Very large perturbative corrections, which are sensitive to selection cuts

Outlook

0

9

Our abilities in simulating precisely collider processes have grown tremendously.

New computational methods at NLO are extremely powerful. A classic work which will be part of future field theory books. Advanced N..NLO understanding (Super Yang-Mills theory lessons?)?

Ready to take on the big challenge of finding new physics convincingly in hadron collider data

M. Worek Assault on the NLO Wishlist: $pp \rightarrow ttbb$

Importance of multi-leg processes at the LHC

- Huge W, Z and top-quark production rates plus multiple jet emission
- Multi-particle signatures with leptons, jets and missing energy
- Backgrounds to Higgs boson(s) and new physics

Benefits of higher order calculations

- Less sensitivity to unphysical input scales
 ⇒ LO up to a factor of 2, NLO 10%-20%
- First predictive normalisation of observables
- Improved shape of distributions
- Improve description of jets
- Cross sections under control

Doświadczenie

 Very important background to ttH production where the Higgs boson decays into a bb pair

- Early studies of ttH production at ATLAS and CMS suggested discovery potential
- Analyses with more realistic backgrounds show that the signal significance is jeopardized if the background from ttbb and tt + jets final states is not controlled very well
- ttjj 🚽 'reducibe' background, b-tagging
- 🛛 ttbb 🖻 'irreducibe' background
- Problem: misassociation of b-tagged jets to the orginal partons

- Reconstructed mass distribution
- All samples, contributions stacked
- Signal contribution also shown separately at the bottom.

Teoria : NLO dla $2 \rightarrow 4$ procesów

current technical frontier..

NLO QCD corrections to ttH W. Beenakker, S. Dittmaier, M. Krämer, B. Plümper, M. Spira, P.M. Zerwas (2001) TeVatron & LHC L. Reina, S. Dawson (2001) TeVatron

S. Dawson, L.H. Orr, L. Reina, D. Wackeroth (2003) LHC

NLO QCD corrections to ttbb A, Bredenstein, A, Denner, S, Dittmaier, S, Pozzorini (2008)

A. Bredenstein, A. Denner, S. Dittmaier, S. Pozzorini (2009)

- Confirm published results
- Demonstrate the power of system based on HELAC-PHEGAS, HELAC-1LOOP, CUTTOOLS and HELAC-DIPOLES in realistic computation with 6 external legs and massive partons

NLO Wishlist

Single boson	Diboson	Triboson	Heavy flavor
$W + \leq 5j$	$WW + \leq 5j$	$WWW + \leq 3j$	$t\bar{t} + \leq 3j$
$W + b\overline{b} + \leq 3j$	$WW + b\overline{b} + \leq 3j$	$WWW + \frac{b\overline{b}}{b} + \leq 3j$	$tar{t}+\gamma+\leq 2j$
$W + c\bar{c} + \leq 3j$	$WW + c\bar{c} + \leq 3j$	$WWW + \gamma\gamma + \leq 3j$	$t\overline{t} + W + \leq 2j$
$Z + \leq 5j$	$ZZ + \leq 5j$	$Z\gamma\gamma+\leq 3j$	$t\overline{t} + Z + \leq 2j$
$Z + b\overline{b} + \leq 3j$	$ZZ + b\overline{b} + \leq 3j$	$WZZ + \leq 3j$	$\frac{t\bar{t}}{t} + H + \leq 2j$
$Z + c\overline{c} + \leq 3j$	$ZZ + c\overline{c} + \leq 3j$	$ZZZ + \leq 3j$	$tar{b}+\leq 2j$
$\gamma + \leq 5j$	$\gamma\gamma + \leq 5j$		$bar{b}+\leq 3j$
$\gamma + bar{b} + \leq 3j$	$\gamma\gamma+bar{b}+\leq 3j$		$b\bar{b}t\bar{t}$
$\gamma+car{c}+\leq 3j$	$\gamma\gamma+car{c}+\leq 3j$		
	$WZ + \leq 5j$		
	$WZ + b\overline{b} + \leq 3j$		
	$WZ + c\bar{c} + \leq 3j$		
	$W \gamma + \leq 3 j$		
	$Z\gamma + \leq 3j$		

Cross section at NLO precision

$$\sigma = \sigma^{^{\textit{LO}}} + \sigma^{^{\textit{NLO}}}$$

 LO cross section (exclusive cross section in Born approximation integrated over available phase space of m final state particles)

$$\sigma^{LO} = \int_{m} d^{(4)} \sigma^{B} \qquad \qquad d^{(4)} \sigma^{B} = d^{(4)} \Phi^{(m)} |M_{m}|^{2} F_{J}^{(m)}$$

- NLO part consists of two contributions:
 - ⇒ emissions of additional parton (real corrections)
 - ⇒ virtual (one loop) corrections to Born matrix element
 - \Rightarrow collinear subtraction term (higher order corrections residing in PDF)

$$\sigma^{NLO} = \int_{m} d^{(d)} \sigma^{NLO} = \int_{m+1} d^{(d)} \sigma^{R} + \int_{m} d^{(d)} \sigma^{V} + \int_{m} d^{(d)} \sigma^{C}$$

Integrals IR divergent separately but sum finite
 KLN mass factorization theorem
 How to get individual contributions finite ?

Procedura odjęcia

- Construct a subtraction term for real emission
- \Rightarrow encodes all IR divergences, can be analitically integrated over in d dimensions

$$\sigma^{NLO} = \int_{m+1}^{M} d^{(d)} \sigma^{R} - \int_{m+1}^{M} d^{(d)} \sigma^{A} + \int_{m+1}^{M} d^{(d)} \sigma^{V} + \int_{m}^{M} d^{(d)} \sigma^{C}$$

$$\rightarrow \int_{m+1}^{M} \left[d^{(4)} \sigma^{R} - d^{(4)} \sigma^{A} \right] + \int_{m}^{M} \left[d^{(d)} \sigma^{V} + \int_{1}^{M} d^{(d)} \sigma^{A} + d^{(d)} \sigma^{C} \right]$$

Finite, integrated over in 4 dimensions

Integral of extra particle in d dimensions Remaining m-particle part in 4 dimensions

Massless: S. Catani, M.H. Seymour, Nucl. Phys. B485, 291 (1997)
 Massive: S. Catani, S. Dittmaier, M.H. Seymour, Z. Trocsanyi, Nucl. Phys. B627, 189 (2002)
 Polarized: M. Czakon, C. G. Papadopoulos, M. Worek, JHEP 0908 (2009) 085

Granica miękkiej i kolinearnej emisji w QCD - uniwersalna

• Full subtraction term for any matrix element given by sum of all possible dipoles

$$\int d\Phi \sum (|M_{m+1}|^2 - D)$$

$$D = \sum_{\{i,j\}} \sum_{k \neq i,j} D_{ij,k} + \sum_{\{i,j\}} \sum_{a} D_{ij}^a + \sum_{a,i} \sum_{j \neq i} D_{j}^{ai} + \sum_{a,i} \sum_{b \neq a} D^{ai,b}$$

$$D = \sum_{\{i,j\}} \sum_{k \neq i,j} D_{ij,k} + \sum_{\{i,j\}} \sum_{a} D_{ij}^a + \sum_{a,i} \sum_{b \neq a} D^{ai,b}$$

$$V_{ij,k} = V_{ij,k}$$

$$V_{ij,k} = V_{ij}$$

$$V_{ij} = V_{ij}$$

Charles I. I. Startished

Helac-dipoles

- Complete and publicly available automatic implementation of CS dipole subtraction
 - \Rightarrow phase space integration of subtracted real radiation and integrated dipoles in both massless and massive cases

http://helac-phegas.web.cern.ch/helac-phegas/

- Extended for arbitrary polarizations
 - \Rightarrow Monte Carlo over polarization states of external particles implemented
- Phase space restriction on the dipole phase space implemented
 - $\Rightarrow \alpha_{_{max}}$ introduced, cuts off dipole function for phase space regions away from singularity
- PHEGAS used for phase space generation with multi-channel optimization
 - \Rightarrow phase space denisity of channel given by product of Feynman diagrams denominators

Poprawki wirtualne

One-loop n particle amplitude

$$A = \sum_{I \in \{1,2,\dots,n\}} \int \frac{\mu^{4-d} d^d \bar{q}}{(2\pi)^d} \frac{\bar{N}_I(\bar{q})}{\prod_{i \in I} \bar{D}_i(\bar{q})} \qquad \bar{D}_i(\bar{q}) = (\bar{q} + p_i)^2 - m_i^2, \quad i = 1,2,\dots,n$$
$$A = \sum_i d_i Box_i + \sum_i c_i Triangle_i + \sum_i b_i Bubble_i + \sum_i a_i Tadpole_i + R$$

Amplitude can be expressed in basis of known integrals such 4-, 3-, 2-, 1-point scalar integrals

• In order to calculate one loop amplitude three main building blocks are needed:

- \Rightarrow Evaluation of numerator function N(q) **HELAC-1LOOP**
- Determination of coefficients via reduction method OPP, CUTTOOLS
- Evaluation of scalar functions ONELOOP

LHC

$$\sigma_{t\bar{t}b\bar{b}}^{LO}(LHC, m_t = 176.2 \text{ GeV}, CTEQ6L1) = 1489.2 +1036.8 (70\%) \text{ fb}}_{-565.8 (38\%)} \text{ fb}}_{\sigma_{t\bar{t}b\bar{b}}^{NLO}(LHC, m_t = 176.2 \text{ GeV}, CTEQ6M) = 2636 +862 (33\%) \text{ fb}}_{-703 (27\%)} \text{ fb}}.$$
G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau, M. Worek arXiv:0907.4723 (hep-ph]}
LHC for $\mu_R = \mu_F = \xi \cdot m_t$ at LO & NLO

$$\int_{0.5}^{0.5} \frac{1000}{0.5 + 1.0 + 2.0 + 5.0} \int_{0.5}^{0.5} \frac{K(m_{b\bar{b}})}{1.0 + 2.0 + 5.0} = \frac{d \sigma^{NLO} / dm_{b\bar{b}}}{d \sigma^{LO} / dm_{b\bar{b}}}$$

Wyniki – różniczkowe przekroje czynne

NEW !

- Differential cross sections at the LHC for pp → ttbb + X
- Invariant mass distribution of bb pair
- Transverse momentum of bb pair
- Rapidity distribution of bb pair
- Transverse momentum of b quark
- LO → blue dashed line
- NLO → red solid line
- All distributions for $\alpha_{max} = 0.01$
- Large corrections, relatively constant, contrary to case of quark initial states

Janik Niepert. teoria pola

Two-dimensional integrable QFT's become relevant for four-dimensional physics due to the AdS/CFT correspon-

Co chcielibyśmy zrozumieć me

 trudna, biegnąca stała sprzężenia, mieszanka efektów pert. i niepert.

Metody tradycyjne

- obliczenia na siatkach
- modele próżni QCD
- modele efektywne (nie z fund. Teorii)
- Są inne prostsze teorie z cechowaniem i inne metody

AdS/CFT correspondence

 $\mathcal{N}=4$ Super Yang-Mills theory

 \equiv

Superstrings on $AdS_5 imes S^5$

strong coupling nonperturbative physics very difficult weak coupling 'easy' (semi-)classical strings or supergravity 'easy' highly quantum regime very difficult

New ways of looking at nonperturbative gauge theory physics... Intricate links with General Relativity...

Dlaczego tak interesujące?

- Fascinating as it relates two <u>completely different theoretical constructions</u>: 4D gauge theory and string theory in 10D
- $\bullet~$ Use $\mathcal{N}=4~$ SYM as a theoretical laboratory for studying nonperturbative gauge theory physics
- In this theory one can perform quite rigorous computations at strong coupling
- The natural language of the AdS/CFT correspondence appropriate to strongly coupled $\mathcal{N} = 4$ SYM is quite new w.r.t. conventional gauge theory methods
- Try to build some new physical intuitions within this new language

 $\mathcal{N} = 4$ SYM may be the 'harmonic oscillator' of four dimensional gauge theories D. Gross

Ku ścisłemu rozwiązaniu dla każdego sprzężenia

One has to find the energy levels of an *integrable* two-dimensional QFT...

 We extended the string computation to give the result up to 5 loops (no gauge theoretical computation so far) [Bajnok,Hegedus,RJ,Łukowski]

$$\Delta = 4 + 12 g^2 - 48 g^4 + 336 g^6 + 96(-26 + 6\zeta(3) - 15\zeta(5)) g^8 -96(-158 - 72\zeta(3) + 54\zeta(3)^2 + 90\zeta(5) - 315\zeta(7)) g^{10}$$

This could be extended to twist two operators at 4 loops [Bajnok,RJ,Łukowski]
 Nontrivial relations with BFKL and NLO BFKL equations...

Nowe metody – sektor Higgsa

2HDM:

Ginzburg, Ivanov, 2009 Kanishev, MK, Sokołowska

Różne stany próżni → spektrum cząstek Higgsa → ciemna materia Dziś – Inert Model (cząstka Higgsa h, 4 skalary (H,A,H+,H-) najlżejsza np. H – ciemna) zgodny z danymi Pytanie: co było wcześniej? Stany próżni we Wczesnym Wszechświecie Przejścia fazowe?

Brout-Englert-Higgs mechanism Spontaneous breaking of EW symmetry $SU(2) \times U(1) \rightarrow ?$ Two Higgs Doublet Models Two doublets of SU(2) (Y=1, ρ =1) - Φ_1 , Φ_2 Masses for W^{+/-}, Z, no mass for photon? Fermion masses via Yukawa interaction – various models: Model I, II, III, IV,X,Y,... 5 scalars: H+ and H- and neutrals: - CP conservation: CP-even h, H & CP-odd A - CP violation: h₁,h₂,h₃ with undefinite CP parity*

Sum rules (relative couplings to SM χ)

2HDM Potential

Lee'73, Haber, Gunion, Glashow, Weinberg, Paschos, Despande, Ma, Wudka, Branco, Rebelo, Lavoura, Ferreira, Barroso, Santos, Bottela, Silva, Diaz-Cruz, Grimus, Ecker, Ivanov, Ginzburg, Krawczyk, Osland, Nishi, Nachtmann, Akeroyd, Kanemura, Kalinowski, Grządkowski ,Hollik, Rosiek..

- $V = \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2)$
 - + $\lambda_4(\Phi_1^{\dagger}\Phi_2)(\Phi_2^{\dagger}\Phi_1) + [\lambda_5(\Phi_1^{\dagger}\Phi_2)^2 + h.c]$
 - + $[(\lambda_6(\Phi_1^{\dagger}\Phi_1) + \lambda_7(\Phi_2^{\dagger}\Phi_2))(\Phi_1^{\dagger}\Phi_2) + h.c]$
 - $-m_{11}^{2}(\Phi_{1}^{\dagger}\Phi_{1})-m_{22}^{2}(\Phi_{2}^{\dagger}\Phi_{2})-[m_{12}^{2}(\Phi_{1}^{\dagger}\Phi_{2})+h.c.]$
- Z₂ symmetry transformation: $\Phi_1 \rightarrow \Phi_1 \quad \Phi_2 \rightarrow \Phi_2$ Hard Z₂ symmetry violation: λ_{6} , λ_7 terms Soft Z₂ symmetry violation: m_{12}^2 term (Re $m_{12}^2 = \mu^2$) Explicit Z₂ symmetry in V: λ_{6} , λ_7 , $m_{12}^2 = 0$

Possible vacuum states (for real V, Z_2) A. Barroso, P.M. Ferreira, R. Santos, J.P. Silva, hep-ph/0507329,

The most general vacuum state

$$\langle \phi_1 \rangle = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} v_1 \end{pmatrix}, \ \langle \phi_2 \rangle = \begin{pmatrix} u \\ \frac{1}{\sqrt{2}} v_2 e^{i\xi} \end{pmatrix}$$

 $v_1, v_2, u, ξ$ real, ≥ 0 $v^2 = v_1^2 + v_2^2 + u^2$ = (246 GeV)²

Inert	ļ	$u = v_2 = 0$ —	
Normal (CP conserving	ng) N	$u = \xi = 0$	
Charge Breaking	Ch	$u \neq 0 v_2 = 0$	
[Vac	uum B	$u = v_1 = 0$]	
CP violating	CP	<u>u</u> = 0 ξ ≠ 0	

Various vacua on (λ_4, λ_5) plane (Z₂ sym V) $X = \sqrt{\lambda_1 \lambda_2 + \lambda_3} > 0$ Positivity constrains on V: $\lambda_4 \pm \lambda_5 > - X$ ChInert (or B) $Y = \dot{M}_{H^+}^2 2/v^2$ N Inert

Charge Breaking Ch

Note the overlap of the Inert with N and Ch !

Normal

Ma'78 **Inert or Dark 2HDM** Barbieri'06 Z_2 symmetry under $\Phi_1 \rightarrow \Phi_1 \quad \Phi_2 \rightarrow - \Phi_2$ both in L and in vacuum \rightarrow Inert Model Today $<\Phi_1^{\top}>=(0,v)$ $<\Phi_{2}^{T}>=(0,0)$ $\rightarrow \Phi_1$ as in SM, with Higgs boson h (SM-like) Φ_2 - <u>no vev</u>, with 4 scalars (no Higgs bosons!) no interaction with fermions (inert doublet) Conservation of the Z_2 symmetry; only Φ_2 has odd Z_2 -parity \rightarrow The lightest scalar – a candidate for dark matter

(Φ_2 dark doublet with dark scalars).

Testing Inert Model To consider properties of SM-like h (light and heavy) properties of dark scalars (produced only in pairs!) DM candidate

Colliders signal/constraints Barbieri et al '2006 for heavy h Cao, Ma, Rajasekaren' 2007 for a light h

LEP II: $M_H + M_A > M_Z$, $\Delta(A, H) = 5 - 30$ GeV for $M_h = 105 - 110$ GeV EW precision data: $(M_{H^+} - M_A)(M_{H^+} - M_H) = M^2$, $M = 120^{+20}_{-30}$ GeV

Dark 2HDM: LEP II exclusion

LEP II + WIMP M_h = 200 GeV M_A- M_H > 8 GeV

Lundstrom et al 0810.3924

Inert Model: constraints LEP+DM → LHC *E. Dolle, S. Su, 0906.1609 [hep-ph]* LEP (exclusion and EW precision data) + relic density using MicroOMEGA/CalCHEP

Viable region for relic density

δ₁=m_{H±}-m_S

 $\delta_2 = m_A - m_S$

S=H

09

	DM	SM h	ms	δ1, δ2	λL
(I)	low ms	low mh	30 - 60 GeV	50 - 90 GeV	-0.2 to 0
(11)			60 - 80 GeV	at least one is large	-0.2 to 0.2
(III)		high m _h	50 - 75 GeV	large δ ₁ δ ₂ < 8 GeV	-1 to 3
(IV)			~ 75 GeV	large δ ₁ , δ ₂	-1 to 3
(V)	high ms	low m _h	500 - 1000 GeV	small δ ₁ , δ ₂	-0.2 to 0.3

Gustafsson,Lundstrom,Bergstrom,Edsjo' 2007 studied direct annihilation of HH into $\gamma\gamma$ and $Z\gamma$ for M_H between 40-80 GeV (loop process, energy below WW threshold).

Dark 2HDM – additional decays for h

Ma' 2007

For $M_H = 50$ GeV, $\Delta(A, H) = 10$ GeV, $M_{H+} = 170$ GeV, $m_{22} = 20$ GeV

Dark 2HDM – total width of h

Intert Model – dark scalar masses using X (positivity) and $Y = M_{H^+}^2 2/v^2$

here H is the dark matter candidate ($\lambda_5 < 0$)

here H+ is the lightest

Evolution of the Universe – different vacua in the past?

We consider 2HDM with an explicit Z_2 symmetry assuming that today the Inert Model is realized. Useful parametrization with k and δ

$$\begin{split} \lambda_2/\lambda_1 &= k^4, \quad m_{11}^2 = m^2(1-\delta), \quad m_{22}^2 = k^2 m^2(1+\delta) \\ \lambda_{345} &= \lambda_3 + \lambda_4 + \lambda_5, \quad \tilde{\lambda}_{345} = \lambda_3 + \lambda_4 - \lambda_5. \\ \Lambda_{345\pm} &= \sqrt{\lambda_1 \lambda_2} \pm \lambda_{345}, \quad \tilde{\Lambda}_{345\pm} = \sqrt{\lambda_1 \lambda_2} \pm \tilde{\lambda}_{345}, \quad \Lambda_{3\pm} = \sqrt{\lambda_1 \lambda_2} \pm \lambda_3. \end{split}$$

Yukawa interaction – Model I \rightarrow all fermions couple only to Φ_1

Possible vacua:

Ch

$$v_{1}^{2} = \frac{m^{2}k^{2}}{2} \left(\frac{1}{\Lambda_{3+}} - \frac{\delta}{\lambda_{3-}} \right), v_{2} = 0, \quad u^{2} = \frac{m^{2}}{2} \left(\frac{1}{\Lambda_{3+}} + \frac{\delta}{\lambda_{3-}} \right)$$

 $\mathcal{E}_{ch} = -\frac{m^{4}k^{2}}{8} \left(\frac{1}{\Lambda_{3+}} + \frac{\delta^{2}}{\Lambda_{3-}} \right)$
 $v_{2} = 0, v^{2} = v_{1}^{2} = \frac{m^{2}(1-\delta)}{\lambda_{1}}, \quad \mathcal{E}_{A} = -\frac{m^{4}(1-\delta)^{2}}{8\lambda_{1}}$
 $v_{1} = 0, v^{2} = v_{2}^{2} = \frac{m^{2}(1+\delta)}{k^{2}\lambda_{1}}, \quad \mathcal{E}_{B} = -\frac{m^{4}(1+\delta)^{2}}{8\lambda_{1}}$
 $v_{1}^{2} = \frac{m^{2}k^{2}}{2} \left(\frac{1}{\Lambda_{345+}} - \frac{\delta}{\Lambda_{345-}} \right), v_{2}^{2} = \frac{m^{2}}{2} \left(\frac{1}{\Lambda_{345+}} + \frac{\delta}{\Lambda_{345-}} \right),$
 $\mathcal{E}_{C} = -\frac{k^{2}m^{4}}{4} \left(\frac{1}{\Lambda_{345+}} + \frac{\delta^{2}}{\Lambda_{345-}} \right)$

Depending on value of $\delta \rightarrow$ a true vacuum (with the minimal energy)

Depending on $\delta \rightarrow a$ true vacuum

S

$$\mathcal{E}_{I} - \mathcal{E}_{N} = \frac{m^{4}}{8} \frac{(\Lambda_{345-} + \delta\Lambda_{345+})^{2}}{\lambda_{1}\Lambda_{345-}\Lambda_{345+}}, \quad \mathcal{E}_{I} - \mathcal{E}_{Ch} = \frac{m^{4}}{8} \frac{(\Lambda_{3-} + \delta\Lambda_{3+})^{2}}{\lambda_{1}\Lambda_{3-}\Lambda_{3+}}$$

$$\mathcal{E}_{N} - \mathcal{E}_{Ch} = \frac{k^{2}m^{2}}{4}\lambda_{45} \left[\frac{1}{\Lambda_{3+}\Lambda_{345+}} - \frac{\delta^{2}}{\Lambda_{3-}\Lambda_{345-}}\right], \quad \mathcal{E}_{I} - \mathcal{E}_{B} = \frac{m^{4}\delta}{2\lambda_{1}}.$$
For Ch
$$\Delta_{Ch} = \Lambda_{3-}/\Lambda_{3+} \ge 0$$
For N
$$\Delta_{N} = \Lambda_{345-}/\Lambda_{345+} \ge 0$$
So, if & change with time?

Phase transitions from the EW symmetric phase

$$\Lambda_{3-} > 0, \lambda_4 + \lambda_5 > 0$$
 $\delta(T_{Ch\pm}) = \pm \Delta_{Ch}$
Two second order phase transitions:
EW $\xrightarrow{''}$ Phase B $\xrightarrow{''}$ Charged phase $\xrightarrow{''}$ Inert phase

$$\Lambda_{345-} > 0, \ \lambda_4 + \lambda_5 < 0 \quad \delta(T_{N\pm}) = \pm \Delta_N$$

Two second order phase transitions: EW \xrightarrow{II} Phase B \xrightarrow{II} Phase N \xrightarrow{II} Inert phase

F = Ch, N Phase B Inert Model

First order phase transition: EW \xrightarrow{II} Phase B \xrightarrow{I} Inert phase

to the present INERT phase

EW - B - I: an example

Conclusions

- Rich content of 2HDMs
- Intert Model in agreement with present data soon tests at FERMI and LHC
- What was in the Past?

EW ^{II}→ Phase B ^I→ Inert phase
EW ^{II}→ Phase B ^{II}→ Phase N ^{II}→ Inert phase
EW ^{II}→ Phase B ^{II}→ Charged phase ^{II}→ Inert phase
EW ^{II}→ Inert phase

Various scenarios
 Can we find clear signals ?
 B-Inert is the 1st order phase transition –discontinuities
 It is possible not to have DM at high temperature

Teoria cząstek elementarnych

