"Eksperyment NA61 (SHINE) -pomiar produkcji hadronów powstałych w wyniku naświetlania wiązką protonową tarcz grafitowych"

SEMINARIUM FIZYKI WIELKICH ENERGII

Magdalena Posiadała

Eksperyment NA61 (SHINE)
 Program fizyczny
 Wiązka w T2K

>Wyniki z pierwszego etapu zbierania danych w 2007

12.11.2009 magdap

The NA61/SHINE Collaboration

122 physicists from 24 institutes and 13 countries:

University of Athens, Athens, Greece University of Bergen, Bergen, Norway University of Bern, Bern, Switzerland **KFKI IPNP, Budapest, Hungary** Cape Town University, Cape Town, South Africa Jagiellonian University, Cracow, Poland Joint Institute for Nuclear Research, Dubna, Russia Fachhochschule Frankfurt, Frankfurt, Germany University of Frankfurt, Frankfurt, Germany University of Geneva, Geneva, Switzerland Forschungszentrum Karlsruhe, Karlsruhe, Germany Institute of Physics, University of Silesia, Katowice, Poland Jan Kochanowski Univeristy, Kielce, Poland Institute for Nuclear Research, Moscow, Russia LPNHE, Universites de Paris VI et VII, Paris, France Faculty of Physics, University of Sofia, Sofia, Bulgaria St. Petersburg State University, St. Petersburg, Russia State University of New York, Stony Brook, USA KEK, Tsukuba, Japan Soltan Institute for Nuclear Studies, Warsaw, Poland Warsaw University of Technology, Warsaw, Poland University of Warsaw, Warsaw, Poland Rudjer Boskovic Institute, Zagreb, Croatia ETH Zurich, Zurich, Switzerland

NA61 (SHINE) – program fizyczny

Fizyka silnie oddziałującej materii

Możliwości odkrywcze:

Poszukiwania punktu krytycznego silnie oddziałującej materii.

wystąpienie Antoniego Aduszkiewicza w kwietniu 2008 roku Dane dla eksperymentów poświęconych badaniu fizyki: neutrin oraz promieniowania kosmicznego

Dokładne pomiary:

- Pomiary produkcji hadronów powstałych w wyniku naświetlania tarcz grafitowych, jednej z nich będącej kopią tarczy z projektu badawczegoT2K.
- Pomiar produkcji hadronów w oddziaływaniach p+C, (π+C) potrzebnych dla eksperymentów: Pierre Auger Observatory oraz Kascade.

NA61 (SHINE)- Program fizyczny – Pierre Auger i Kascade (I)

Pomiary promieniowania kosmicznego są oparte na analizie wtórnych cząstek powstałych w wyniku ewolucji kaskad hadronowych. **Ostatnie hadronowe oddziaływania:**

- Cząstki "wiązki": π, Κ, p
- Tarcza: powietrze (~C)
- >Wtórne cząstki: π , K

Symulacje:

- Różnice pomiędzy modelami
- Potrzebny pomiar produkcji hadronów

Wiązka	Tarcza	p[GeV]	Rok	Dni	Fizyka
р	С	31	2007	30	T2K,CR
р	С	31	2009	21	T2K,CR
π-	С	158, 300	2009	14	CR
				<pre></pre>	

Hadronowa kaskada promieniowania kosmicznego

NA61 (SHINE)- Program fizyczny - T2K (I)

Bardzo ważny punkt programu fizycznego NA61 (SHINE) to :

Dokładny pomiar produkcji hadronów niezbędny do precyzyjnego określenia strumienia neutrin dla eksperymentu T2K.

T2K (Tokai to Kamioka) w J-PARC (JAPONIA):
Eksperyment neutrinowy z "długą bazą"
Pomiary kąta θ₁₃ poprzez pojawienie v_μ ->v_e oraz θ₂₃, Δ m²₂₃ w oscylacji v_μ ->v_μ znikanie v_μ

(31GeV/c) Protony uderzają w tarcze węglową (90 cm) -> intensywna poza osiowa wiązka

6

Widmo neutrin mierzone w bliskim (ND280) oraz dalekim (Super-Kamiokande) detektorze

T2K collaboration

Canada

TRIUME U. of Alberta U.of British Columbia Napoli U. U. of Regina U. of Toronto U. of Victoria York U. France CEA Saclay IPN Lyon LLR E. Poly LPNHE-Paris Germany RWTH Aachen U.

Italy **INFN Bari** INFN Roma Padova U. Rome U. Japan Hiroshima U. ICRR Kamioka ICRR RCCN KEK Kobe U. Kyoto U. Miyagi U. of Edu Osaka City U.

U. of Tokyo Korea Chonnam Nat'l U Dongshin U. Sejong U. Seoul Nat'l U. Sungkyunkwan U. Poland A.Soltan IPJ H.Niewodr IF. Technical U. U. of Silesia Warsaw U. Wroclaw U.

Russia INR Spain IFIC. Valencia U.A. Barcelona Switzerland Bern ETHZ U. of Geneva UK U. of Oxford Imperial C. London Lancaster U. Sheffield U.

STFC/RAL U. of Liverpool U. of Warwick USA Boston U. BNL Colorado State U. Duke U. Louisiana State U. Stony Brook U. U. of California, Irvine U. of Colorado U. of Pittsburgh Queen Mary, U. of L. U. of Rochester U. of Washington

477 members, 62 Institutes, 12 countries

Jak mierzymy parametry oscylacji w T2K ?

- 1) Stworzenie wąskopasmowej wiązki v_{μ}
- 2) Detekcja neutrin
- 3) Przewidywanie strumienia neutrin w SK ($N_{obs} = \Phi_{obs} * \sigma$)
- 4) Wyliczenie parametrów oscylacji przez porównanie liczby przypadków
 (N^{sk}_{obs}, N^{sk}_{exp}) oraz
 (Φ^{sk}_{obs}, Φ^{sk}_{exp}) w funkcji energii.

Stacja tarczy- schemat

T2K target

Poza-osiowa wiązka v_u

$\mathbf{R} = \Phi^{\mathrm{MC}}_{\mathrm{Far}} / \Phi^{\mathrm{MC}}_{\mathrm{Near}}$

Gdy mamy punktowe oraz idealnie izotropowe źródło to :

$$\begin{split} \Omega_{\text{ND}} &= S_{\text{ND}} \ / \ (L_{\text{ND}})^2 = (3m)^2 \ / (280m)^2 \ \sim 10^{-4} \ \text{rad} \\ \Omega_{\text{SK}} &= S_{\text{SK}} \ / \ (L_{\text{SK}})^2 = (40m)^2 \ / (295m)^2 \ ^* \ 10^{-6} \ \sim 2^* \ 10^{-8} \ \text{rad} \\ \textbf{Zatem R} &= \Omega_{\text{SK}} \ / \ \Omega_{\text{ND}} = 0.02^* \ 10^{-6} \end{split}$$

12.11.2009 magdap

$$\mathbf{R} = \Phi^{\mathsf{MC}}_{\mathsf{Far}} / \Phi^{\mathsf{MC}}_{\mathsf{Neal}}$$

- 1. przewidzieć strumień v_{μ} w dalekim det.
- 2. oszacować tło v_e

Bliski i daleki detektor widziane są pod różnymi kątami:

- 1. SK: źródło punktowe pod 2.5°
- 2. Bliski det: rozciągnięte źródło 1° to 3°

⇒ współ. R=Far/Near zależy od energii neutrin

aby poprawnie przewidzieć strumień v_{μ} , potrzebna jest znajomość produkcji cząstek rodziców (kinematyka procesów)

zamiast modeli hadronowych (Fluka et al.) trzeba użyć zmierzonych przekrojów czynnych dla pionów i kaonów

Strumień v_{μ} w nd280 i Super Kamiokande - symulacje

Sygnał dla oscylacji v_{μ} -> v_{e}

► T2K: $v_{\mu} \rightarrow v_{e}$ pomiar sin²2 θ_{13} ~0.006 (90%CL)

teraz sin²2θ₁₃ <0.14 (90%CL) CHOOZ +atm, solar + KAMLAND

Aby osiągnąć cel T2K błąd systematyczny na produkcję tła musi być δN_{bg} < 10 %</p>

> Tło stanowią: produkcja π^0 powstałych z oddziaływania v_{μ} :

 $\triangleright v_{\mu}$ + N = v_{μ} + N + π^0

oraz zanieczyszczenie wiązki neutrinami elektronowymi (v_e/v_μ z MC jest na poziomie ~ 0.5%)

 $v_e + n = e^- + p$

Strumień ve oraz Re

przewidywania, symulacje

Takie v_e będą stanowiły tło do poszukiwania sygnału

oscylacji $V_{\mu} \rightarrow V_{e}$

12.11.2009 magdap

$\mathbf{R} = \Phi^{MC}_{Far} / \Phi^{MC}_{Near}$ - zależność od modeli hadronowych

Potrzebne jest 200k zrekonstruowanych torów π^+ aby osiągnąć wspomniany cel.

Stosunek K/ π powinny być zmierzony z dokładnością $\delta(K/\pi) < 10\%$

CERN-SPS-2007-019

Akceptacja dla T2K- symulacje

Piony oraz kaony, które w wyniku rozpadu produkują neutrina mionowe trafiające do detektora SK.

Symulacje "jnubeam" wiązki T2K.

T2K - fakty

- nie ma precyzyjnych pomiarów produkcji cząstek na tarczy węglowej w przedziale 30-50 GeV energii padających protonów
- widmo neutrin dla bliskiego i dalekiego detektora nie jest identyczne, zależy od energii neutrin
- > niepewności dla współczynnika R=F/N są rzędu 20% (bazując tylko na podstawie modeli hadronowych z MC)
- nie ma pomiaru oddziaływań wtórnych hadronów dla wiązki T2K – wymagany pomiar odpowiednich przekrojów czynnych
- > ważny pomiar π⁺ dla zakresu pędów 1<p<6 GeV/c, oraz kąta θ<400mrad</p>
- K⁺ ważne-> stanowi tło dla badania powstałych w wyniku oscylacji V_e, 12.11.2009 magdap

JNUBEAM –symulacje wiązki neutrinowej T2K

Akceptacja NA61 (SHINE) a potrzeby T2K

Dodatnie cząstki – dane NA61 zebrane w 2007 roku

NA61 (SHINE)- detektor

> Wielki spektrometr dla naładowanych cząstek

- > TPCs główne elementy systemu rejestracji powstałych torów
- > 2 dipole magnesy-z siłą zakrzywiania 9 Tm na 7m długości (2007 rok: 1.14Tm)
- Nowy detektor czasu przelotu ToF-F
- > Zdolność rozdzielcza $\sigma p/p^2 = 10^{-4} \text{ GeV/c}$

> Dobra zdolność identyfikacji cząstek (PID) : σ(dE/dx)/<dE/dx>=0.04

> Rozdzielczość detektorów czasu przlotu:σ(ToF-L/R)=60ps, σ(ToF-F)<=120ps</p>

New ToF Wall for NA61

Użyte tarcze węglowe

Cienka węglowa tarcza > 2cm dł., rozmiar 2.5x2.5 > $\rho=1.84 \text{ g/cm}^3$ > ~ 0.04 λ_{int}

Replika tarczy T2K
 dł. 90 cm, φ=2.6 cm
 ρ=1.83 g/cm³
 ~ 1.9 λ_{int}

W 2007 roku dane dla T2K oraz CR były zbierane przez 2 tygodnie.

Cienka tarcza: ~670k triggers Replika tarczy T2K: ~230k triggers bez tarczy: ~80k triggers

Wyzwalanie sygnału -trigger

Definicja wiązki = S1&& S2 && $\overline{V1}$ & $\overline{V2}$ && C1&& C2

Oddziaływanie= wiązka * S4

Instalacja detektorów wyzwalania sygnału

A. Marchionni, Zebranie współpracy NA61 (SHINE)

Identyfikacja cząstek - strategia (I)

Pomiar strat energii:

- poniżej 1GeV/c dedykowana analiza strat energii dE/dx
- obszar pędu od 1 do 4 GeV/ckrzywe Bethe-Bloch'a przekrywają się identyfikacja niewiarygodna
- powyżej 4 GeV/c analiza dE/dx

Jak błąd na straty energii zależy od liczby mierzonych punktów (N) na torze (1)?

Zdolność rozdzielcza dE/dx jest na poziomie 4-5% dla torów przechodzących przez obie komory VTPC oraz MTPC.

Do analizy wybrano tory z liczba punktów mierzonych N>30

Opis metody identyfikacji cząstek (1)

30

Prawdopodobieństwo identyfikacji danej cząstki

Prawdopodobieństwo identyfikacji danej cząstki:

Przykładowy obrazek dla pędu p=(0.2-0.3) GeV/c jest po lewej. Kolory przedstawiają **dE/dx**_{theor} π + (czarny), e⁺ (czerwony), K⁺ (fioletowy)

Dla każdego binu dE/dx "i" przy założeniu danej hipotezy cząstki wyliczono jej prawdopodobieństwo. Np. dla π + użyto wzór:

$$prob^{i}_{\pi} = \frac{N_{\pi}^{i}}{N_{\pi}^{i} + N_{K}^{i} + N_{e}^{i} + N_{p}^{i}}$$

Graficzna ilustracja prawdopodobieństwa danej cząstki: Bin p=(0.2-0.3) GeV/c poniżej 4 (MIP) widoczny jest wkład tylko od π^+ , K⁺, e⁺

Wybieram biny dE/dx gdzie p>=95%. Liczbę pionów w tym binie mnożę przez wartość prawdopodobieństwa identyfikacji pionu w tym binie dE/dx.

Zależność strat energii od kąta produkcji θ

a_ π^+ =(42 ±1)*10⁻⁵ (mip/mrad); b_ π^+ =-(81+2)*10⁻³ (mip); δ =theta*a+ b; dedx=dedx_old - dedx_old* δ ; a $_{\pi^{-}} = (31 \pm 4)*10^{-5} \text{ (mip/mrad)}$ b $_{\pi^{-}} = -(64\pm 1)*10^{-3} \text{ (mip)}$ $\delta = \text{theta}*a + b;$ dedx=dedx_old - dedx_old* δ ; dodatnie cząstkipoprawione straty energii dE/dx na zależność od kąta produkcji

 ujemne cząstkipoprawione straty energii dE/dx na zależność od kąta produkcji

Pozytony versus elektrony

Dla poprawionych strat energii dE/dx wyliczono liczby pozytonów oraz elektronów.

Opis metody identyfikacji cząstek (2)

Teoretyczny rozkład dE/dx dla dodatnich pionów, dla których spełniony jest warunek p>=95% W każdym binie(p, θ)

(przykład dla p=(0.7-0.8) GeV/c oraz θ (300-360) mrad):

- uwzględniam tory w takim przedziale dE/dx, w którym spełniony jest warunek p>=95%
- 2) poprawiam na przedziały nie spełniające warunku p>=95%
- 3) stosuję poprawkę kątową

Opisana metoda została użyta do otrzymania zidentyfikowanych widm dodatnich oraz ujemnych pionów w przestrzeni (p, θ).

Poprawki detektorowe - symulacje

- Widma pionów zostały poprawione również na akceptacje geometryczna detektora NA61 (SHINE), wydajność programów rekonstrukcji, rozmycie kinematyczne oraz poprawność rekonstrukcji torów do głównego wierzchołka.
- Poprawki wyliczono wykorzystując pakiet symulacyjny detektora NA61 (GEANT3 wraz z generatorami VENUS oraz GHEISHA)
- > Macierz poprawek C⁻¹ (p, θ) została zdefiniowana następująco:

 $C^{-1}(p,\theta) =$ zrekonstruowane π do pierwotnego wierzchołka (p, θ)

wszystkie wygenerowane π z pierwotnego wierzchołka (p, θ)

Ostateczne wyniki poprawionych widm pionów otrzymałam stosując poniższą formułę:

poprawione widma $\pi(p,\theta) = \frac{\text{zidentyfikowane widma } \pi \text{ w przestrzeni } (p,\theta)}{C^{-1}(p,\theta)}$

12.11.2009 magdap

Widma pionów w przestrzeni (p,θ)

Widma cząstek powstałych w wyniku oddziaływań 30 GeV protonów z cienką węglową tarczą

na podstawie danych zebranych podczas naświetlań cienkiej tarczy grafitowej w 2007 roku

Wyniki prezentowałam w imieniu współpracy NA61 (SHINE) na : XXXIX International Symposium on Multiparticle Dynamics,

4-9 September 2009, Homel, Białoruś

π⁺ oraz π⁻ wyniki z analizy dE/dx dla cząstek poniżej 1 GeV/c

Identyfikacja cząstek strategia (II)

Pomiar czasu przelotu oraz strat energiipołączona informacja :

> p~[1-6] GeV/c pomiar czasu przelotu (ToF)
> łączna analiza dE/dx + ToF

Sebastien Murphy, Sandro Bravar

Identyfikacja cząstek - strategia (III)

> Analiza ujemnych hadronów:

Analiza ujemnych cząstek powstałych w pierwotnym wierzchołku zwana (analizą h-) zakłada, że większość wyprodukowanych ujemnych cząstek w oddziaływaniach p-C przy energii 30 GeV to

mezony π.

Pozostałość to K-, e- oraz zaniedbywalnie mała liczba antyprotonów.

Symulacyjny pakiet (Venus-GHEISHA oraz Geant) jest wykorzystywany do obliczeń poprawek związanych z akceptacją geometryczną detektora, wydajnością rekonstrukcji, słabymi rozpadami oraz rekonstrukcja wierzchołka.

Tomasz Palczewski, prof. Joanna Stepaniak

π^{-} - wyniki z dwóch analiz: dE/dx and h

π - wyniki z dwóch analiz h oraz dE/dx + TOF

Sebastien Murphy, Sandro Bravar

π^{-} - wyniki z analizy h

Naświetlanie tarcz w 2009 roku

Start: 26 lipiec Koniec: 16 listopad (~3 miesiące zbierania danych)

12.11.2009 magdap

Zebrane dane w 2009 roku- fizyka neutrin

Zebrane dane w 2009 rokufizyka promieniowania kosmicznego

Zebrane dane w 2009 rokufizyka silnie oddziałującej p+p at 158 GeV/c materii

p+p at 80 GeV/c p+p at 40 GeV/c p+p at 31 GeV/c 3M events p+p at 20 GeV/c 2M events

4M events 4M events 6M events

Podsumowanie (1)

- NA61 (SHINE) to wielki spektrometr hadronowy przy akceleratorze SPS w CERNie, który mierzy cząstki powstałe w wyniku oddziaływania protonów o energii 30 GeV na dwóch grafitowymi tarczach:
 - cienkiej: pomiar przekrojów czynnych
 - repliki tarczy T2K: studia wtórnych oddziaływań
- W 2007 roku podczas naświetlania grafitowych tarcz:
 - zebraliśmy dobrej jakości dane, ale o malej statystyce
 - zarówno dane jaki i symulacje pokazują pełne pokrycie przestrzeni fazowej wymaganej w eksperymencie T2K.
 - otrzymaliśmy pierwsze widma pionów
 - praca nad analizą danych z długiej tarczy jest jeszcze kontynuowana

Podsumowanie (2)

- zbieranie danych w 2009 roku. (26 lipiec- 16 listopad, ok. 3 miesiące pracy na wiązce z SPS)
- Zmiany detektorowe przygotowane na 2009 rok:
 - nowa elektronika odczytu dla komór projekcji czasowe TPC oraz nowy system akwizycji danych-> zwiększenie szybkości odczytu o czynnik ok. 10 (~70 Hz)
 - nowy system wyzwalania danych
 - zwiększona akceptacja detektora czasu przelotu ToF-F (p_{min} ~ 1 GeV/c \rightarrow 0.6 GeV/c)
 - nowe detektory pozycji wiązki (BPD) 5x5 cm2
 - dane zbierane dla eksperymentu T2K (p+C przy 31 GeV/c) przez okres ok. 3 tygodni
 - zebrano 6M przypadków dla cienkiej tarczy oraz ok. 4M na długiej

SPS North Experimental Area

NA61 (SHINE)- Program fizyczny – Pierre Auger i Kascade (II)

NA61 możliwości vs potrzeby Pierre Auger oraz Kascade

Sygnał dla v_{μ}

ν_μ + n -> μ⁻ + p

$\delta(sin^22\theta_{23}) \sim 0.01, \ \delta(\Delta m^2_{23}) \sim 3^* \ 10^{-5} \ eV^2 \ , \ (c.e. \ 0.04, \ 2-3^*10^{-4} \ SK, K2K, MINOS)$

Justyna Łagoda (IPJ)

6.03.2009

Komory projekcji czasowej (TPC)

- 1) cząstka jonizuje gaz
- elektrony dryfują w kierunku padów odczytowych
- elektrony tworzą lawinę
 na drutach odczytowych
- 4) sygnał rejestrowany jest na padach

Mieszanka gazowa : VTPC $ArCO_2$ 90/10 oraz MTPC $ArCO_2$ 95/5 Argon - większe wzmocnienie gazowe CO_2 – zmniejsza prędkość dryfu

 $\delta(N^{\pi 0}) < 1.6\%$ (0-1 GeV) i $\delta(N^{\pi 0}) < 1.4\%$ (1 -10 GeV), $\delta(N^{e}) < 2.7\%$ (0-1 GeV) i $\delta(N^{e}) < 0.4\%$ (1 -10 GeV),

12.11.2009 magdap

K.Sakashita plot

Oddziaływania wtórne w długiej tarczy

 π dzielimy na:

* wszystkie 68% proton-> 32% nie proton

* znajdujące się w akceptacji T2K: 75% proton->
25% nie proton

Absorpcja π dla (p_{π} > 0.5 GeV): 80% wychodzi ->20% zatrzymuje się w tarczy

Effect of secondary Interaction: 20~30% level

Oddziaływania wtórne vs długość tarczy

25

dia tarcz 2cm 2% 90 cm 20%

Antoni Aduszkiewicz

12.11.2009 magdap

Normalizacja do przekrojów czynnych

The inclusive inelastic cross section of a particle type α can experimentally be expressed by

$$\alpha = \pi, K, p \qquad \boxed{\frac{\Delta \sigma_{inel,\alpha}^{meas}}{\Delta p \Delta \theta} = \frac{1}{n N_{Beam}} \frac{\Delta n_{\alpha}}{\Delta p \Delta \theta} = \frac{N_{trig}}{n N_{Beam} N_{trig}} \frac{\Delta n_{\alpha}}{\Delta p \Delta \theta} = \frac{\sigma_{trig}}{N_{trig}} \frac{\Delta n_{\alpha}}{\Delta p \Delta \theta}}$$

n: target properties, N_{been}: # of incoming beam p, N_{talp}: # of triggers, σ_{talp}: trigger cross section, Δn: # of identified particles in a given bin p-θ bin

- σ_{trig} thus involves the trigger rate and the target properties

- ρ: density, L: length
 N_A: Avogadro const.
 A: Atomic number
 L_{aff}: effective length
 λ_{abs}: abs. length
- The real interaction probability (P_{int}) is calculated as the difference of the rate obtained with and without target:

$$P_{int} = \frac{R_{T_{in}} - R_{T_{out}}}{R_{Beam}} = P_{T_{in}} - P_{T_{out}}$$

- Interaction rate (Data):
 - Target out: $(1.72 \pm 0.01)\%$ $\sigma_{trig} = 297.5 \pm 0.7 \pm 3.9 \text{ mb}$ Target in: $(7.07 \pm 0.01)\%$ $\epsilon = \frac{R_{T_{rel}}}{R_{T_n}} = 24.3\%$ L_{eff} = 1.95 cm $\epsilon = \frac{R_{T_{rel}}}{R_{T_n}} = 24.3\%$ High T_{out}/T_{in} rate due to inelastic interactions in the material of the beamline

Nieelastyczny przekrój czynny

C.Strabel, A.Marchionni

- σ_{inel} can be obtained from the σ_{trig} by applying the following corrections:
- 1) Subtract the contribution of elastic interactions due to large angle coherent scattering
- Add the contribution of lost events where a secondary particle hits S4. Here, the major contribution comes from quasi-elastic scattering of the incident protons (σ_{loss-p}). Also secondary pions or kaons hitting S4 have to be taken into account (σ_{loss-π/K})
- \rightarrow Corrections have been estimated with Geant4 simulation

 \rightarrow Preliminary value for the σ_{inel} is in good agreement with previous measurements

Recalculated from

G. Bellettini et al., Nucl. Phys. 79 (1966) 609, S.P. Denizov et

S.P. Denisov et. al. Nucl. Phys. B61 (1973) 62,

A. Carroll et al., Phys. Lett. BS0 (1979) 319

Dane zebrane w 2009 roku - podsumowanie

All events in production runs

