

Detektory dla obszaru małych katów w zderzaczach liniowych e⁺e⁻ Detektor LumiCal przy ILC

Marek Idzik AGH-UST Kraków

Warszawa 26/02/2010

FCAL Collaboration

Partnerzy z wielu krajów

>AGH-UST, Krakow
>DESY, Germany
>IFJPAN, Krakow
>JINR, Dubna
>LAL, Orsay
>NCP & HEP, Minsk
>Royal Holloway University, London
>Tel Aviv University
>University of Colorado, Boulder
>VINCA, Belgrade
>Yale University, New Haven
>Tohoku University, Japan

Cooperation with SLAC

Prace na AGH finansowane z:
≻EUDET FP VI do końca 2010
≻MCPAD FP VII do końca 2012

Złożone wnioski: >AIDA FP VII >FITAL sieci naukowe :(

- LumiCal i BeamCal: dwa główne detektory w obszarze małych kątów
- Sensory dla obu detektorów
- System odczytu detektora w ogólności, a dla LumiCal-a w szczególności
- Elektronika odczytu w ogóle i konkretnie dla LumiCal-a
- Podsumowanie I uwagi o CLIC-u

Kolaboracja FCAL rozwija tzw. Very Forward Detectors dla ILC, czyli Precyzyjny pomiar całkowej świetlności ($\Delta L/L \sim 10^{-4}$) przede wszystkim: LumiCal i BeamCal – obydwa są kalorymetrami, mierzą 7mrad, 2.5 m. od. P. energię i ślad cząstek MARAN Diagnostyka wiązki na podstawie par z beamstrahlung 5-40mrad, 3.6 m od IP IP <u>Wyzwania:</u>

Wysoka precyzja, duża okupancja, obciążenia radiacyjne, szybki odczyt 4 duży zakres sygnałów !

Detektory FCAL

Detektor LumiCal

Dwa kalorymetry kanapkowe Si/W Każdy zbudowany z 2 półcylindrów, składających się z 30 warstw

Każda warstwa grubości X₀ składa się z absorbera (wolframu grubości 0.35cm) I sensora (Si o grubości 320μm) Variation of the second se

Silicon sensor half plane

się z 24 sektorów azimutalnych, z których każdy ma 64 radialne pady

Detektor LumiCal

LumiCal praktycznie w całości budowany jest przez AGH+IFJPAN. To chyba jedyny tak konkretny wkład aparaturowy polskich grup dla ILC

- □ LumiCal ⇔ 2 x 30 warstw sensorów Si
- □ Warstwa ⇔ 48 azimutalnych (7.5°) sektorów
- □ Sektor ⇔ R_{in-out} = 8-19.5 cm, zbudowany z 64 radialnych padów
- □ Oszacowanie ilości kanałów ⇔ 2*30*48*64 = 184320

Jak odczytać informacje przy zadanych ograniczeniach przestrzennych i poboru mocy ?, jak zapewnić wymaganą₇ precyzję mechaniczną ?

Detektor BeamCal

Podobnie ja LumiCal kalorymetr EM o struktiurze kanapkowej:

- ✤ 30 warstw grubości 1 X₀
- ✤ 3.5mm W i 0.3mm sensor
- ✤ Promień Moliére-a $R_M \approx 1$ cm
- Segmentacja 0.5 0.8 х R_м
- Razem ~40000 kanałów

Pojedyncza warstwa detektora

Sensory w BeamCal-u narażone będą na ekstremalnie wysokie obciążenia radiacyjne ! 8

Prototypy Sensorów dla LumiCal-a

- Sensory Hammamatsu
 (30° ↔ 4 sektory)
- Standardowy krzem
 - Prąd upływu < 10 nA/cm² @
 200 V
 - Wysokorezystywny krzem o podłożu typu n, o grubości 320um
 - Pady P+ z metalizacją Al-(sprzężone DC)

LumiCal - pomiary sensorów

- Pomiary C-V oraz I-V wykonane na probstacji
- Napięcie zubożenia ~50V
- Prądy upływu ~2nA/pad

Figure 15: IV curves for different padsizes.

LumiCal - prototypy fanout-u

- Fanout kaptonowy 50um grubości
- Po dwa sektory o trochę różnym projekcie
- Moga być źródłem przesłuchów pojemności między ścieżkami
- Będa przyklejone do sensorów

BeamCal: efekty radiacyje w sensorach

- Bardzo duże obciążenia radiacyjne w detektorze BeamCal: ~10⁵ par e⁺e⁻ deponujących około 10TeV na zderzenie (bunch crossing). To odpowiada dawce wielu MGy na rok (wielu 100 Mrads na rok !).
- Dlatego rozważa się różne materiał odporne na promieniowanie jak diament, GaAs i inne. Różne gęstości, przerwy energetyczne, ruchliwości etc.

Particle Energy Spectrum

Materiały brane pod uwagę AGH

- > pCVD diament:
- sCVD diament
- GaAs:
- \succ sCVD diamonds:
- Rad-hard Si
- inne...

Próbki napromieniowuje się do wielu MGy, np. na liniowym akceleratorze elektronów w Darmstadt

➢sCVD diamond \geq area 5x5 mm².

- ≻Two manufacturers: ♦Element Six_™ Fraunhofer Institute (IAF)
- $> 1 \times 1 \text{ cm}^2$
- ➤ 200-900 µm thick

>500 µm thick detector ▶87 5x5 mm pads >Mounted with fanout Solid state ionization chamber

Testy w laboratorium

⁹⁰Sr Source Sensor box Preamplifier

Trigger box

Po napromieniowaniu, oprócz krzywych C-V, I-V mierzy się CCD (charge collection distance) lub CCE (charge collection efficiency) przy przejściu cząstki minimalnie jonizującej.

E6_B1_400V_spec_00009

ADC Channels ~ charge

Pomiary struktur GaAs

- Duże prądy upływu (~uA)
- □ ~4.3 eV/parę e-h

Diament CVD

- Próbki z Element Six oraz Fraunhofer Institute
- Polikrystaliczny drogi, a monokrystaliczny bardzo drogi
- Cząstki minimalnie jonizujące widoczne do około 7 MGy
- Bardzo małe prądy upływu (~pA)
- □ ~13eV/parę e-h

E6 B1

System odczytu detektora

- Promieniowanie jonizujące indukuje impuls prądowy na elektrodach sensora
- Preamplifier całkuje impuls prądowy sensora, dając sygnał proporcjonalny do ładynku zdeponowanego w sensorze (w Si ~3.6 eV/ parę elektron-dziura)
- Shaper filtruje i wzmacnia sygnal by osiągnąć maksymalny stosunek sygnału do szumu (S/N), decyduje o czasie trwania sygnału zgodnie z oczekiwaną częstością zdarzeń
- ADC konwertuje sygnał do postaci cyfrowej o zadanej rozdzielczości

Główne komponenty elektryczne:

- Pojemność sensora
- Źródło prądu (sygnału i upływu)

Sensor - Sygnał - tw. Ramo

Wyindukowany prąd jest proporcjonalny do prędkości ładunku i pola wagowego! S. Ramo, "Currents Induced by Electron Motion", Proceedings of the I.R.E. 27 (1939) p.584-585

Formowanie sygnału w złączu

$$i(t) = \vec{E}_{w} \cdot (q_{e} \vec{v}_{e} + q_{h} \vec{v}_{h}) = E_{w}(q_{e} v_{e} + q_{h} v_{h})$$

$$E_{w}(x) = \frac{1}{D}$$

$$v_{e} = -\mu_{e} E(x), v_{h} = \mu_{h} E(x)$$
Równanie Poissona dla złącza p-n, etc....

$$i(t) \simeq \frac{2qV_{dep}}{D^3} (D - x_0) \left| \mu_e \exp(-\frac{2V_{dep}\mu_e}{D^2}t) + \mu_h \exp(\frac{2V_{dep}\mu_h}{D^2}t) \right|$$

Sygnał – efekt balistyczny

- W przetwarzaniu sygnału zwykle zakłada się, że wyindukowany w detektorze impuls można aproksymować przez deltę Diraca, tzn. i(t)=Q_{in}δ(t)
- W praktyce impuls z sensora powinien
 być zaniedbywalnie krótki w stosunku do czasu kształtowania elektroniki front-end
- Jeśli tak nie jest pojawia się efekt
 balistyczny, tzn. elektronika front-end
 daje sygnał rozciągnięty w czasie i o
 mniejszej amplitudzie
- Większe napięcie polaryzacji sensora krótszy impuls...

Sensor – schemat zastępczy wielokanałowy

- W sensorach wielokanałowych jak np. mikrostripy czy piksele istnieje pojemność sprzęgająca pomiędzy kanałami
- Zwykle C_{coup}>>C_d, a często dochodzi jeszcze fanout
- Niska impedancja elektroniki front-end jest decydująca dla efektywnej detekcji sygnału

Odczyt wielokanałowy

- Jedną z najważniejszych cech współczesnych detektorów jest gęsta wielokanałowa architektura (pitch ~100um), wymagająca dopasowanej wielokanałowej elektroniki odczytu, a zatem także minimalizacji mocy wydzielanej przez pojedynczy kanał (zniszczenia termiczne).
- Jest to możliwe tylko dzięki dedykowanym wielokanałowym układom odczytu wykonywanym w coraz gęstszych technologiach CMOS.
- Nasze (AGH) obecne prototypy wykonane są w procesie 0.35um. W badaniach naukowych używa się obecnie procesów aż do ~90nm (koszt!!!), a przemysł (INTEL, XILINX) o połowę mniejszych ~45nm.

Ograniczenia technologiczne – potrzebny kompromis²⁴

Szum systemu detekcji

- Zakłada się że do szumów kontrybuuje sensora, a z całej elektroniki odczytu tylko przedwzmacniacz (bo po nim sygnał jest już wzmocniony)
- Ekwiwalentny schemat szumowy układu sensor-przedwzmacniacz:

Szum termiczny – fluktuacje prędkości

$$S(f) = \frac{d\langle v^2 \rangle}{df} = 4 \,\mathrm{kTR}$$

Szum śrutowy – fluktuacje ilości nośników $S(f) = \frac{d\langle i^2 \rangle}{df} = 2qI$

Szum 1/f (flicker) – fluktuacje ilości nosników, pułapki

$$S(f) = \frac{d\langle v^2 \rangle}{df} = \frac{K_f}{f}$$

Stosunek sygnału do szumu

Istotne parametry LumiCal-a

- Zakres sygnałów: od 2 fC (miony w modzie kalibracyjnym) do ponad 10 pC (w modzie fizycznym)
- Okupancja: do ~4%
 (beam-strahlung),
 poniżej 1% (bhabha)

Sensory Si ze sprzężeniem DC

 $\rm C_{det}$ ~10-100 pF/pad, plus fanout ~1pF/cm, prąd upływu ~1-10 nA/pad)

- Czas pomiędzy zderzeniami ~ 350 ns
- Po ~1ms wiązki ~200ms przerwy, by uzyskać mały średni pobór mocy należy wyłączać elektronikę w przerwie

Architektura odczytu detektora LumiCal

Wyzwania i rozwiązania front-end-u LumiCal-a

Projekt elektroniki front-end

Preamplifier + PZC + CR-RC Shaper

$$\frac{U_{out}(s)}{I_{in}(s)} = \frac{1}{C_f C_i R_s} \cdot \frac{s + 1/C_p R_p}{s + 1/C_f R_f} \cdot \frac{1}{(s + 1/C_i R_i)(s + 1/C_p (R_p || R_s))}$$

Front-end: layout i produkcja

Layout – projekt masek technologicznych układu

Fotografia zbondowanego układu scalonego

Pomiary prototypów układów front-end i ADC Stanowiska pomiarowe

- System akwizycji oparty na FPGA
- Widmo szumów spectrum analyzer (np. Agilent 4395A)
- Pomiary statyczne U,I semiconductor device analyzer (np. Agilent B1500A)
- Generacja sygnałow sinusoidalnych i schodkowych waveform generator (np. AWG2021)

Pomiary Front-end-u

Wyniki pomiarów zgodne z założeniami

54

- □ 10 bit pipeline ADC 1.5 bit na stopień
- Próbkowanie 3-30 Ms/s
- W pełni różnicowa architecture
- Możliwość wyłączenia w przerwie pomiędzy wiązkami

Pomiary statyczne ADC

Bardzo dobra liniowość INL < 1LSB, DNL < 0.5 LSB

Pomiary dynamiczne ADC

Przykład widma FFT: sygnał sinusoidalny na wejściu, robimy transformatę Fouriera z kodów wyjściowych...

Dyskretna transformata Fouriera najlepszym narzędziem do charakteryzacji ADC 37

AGH Pomiary dynamiczne ADC

- SNHR stosunek sygnału do szumu bez harmonicznych
- THD stosunek sygnału do harmonicznych
- SINAD stosunek sygnału do szumu
- Efektywna liczba bitów
 ENOB=(SINAD-1.8)/6=9.5

Zmierzone parametry zgadzają się z symulacjami

AGH Przygotowanie beam-testu

- Dedykowana płytka PCB
- Sensory dla LumiCal-a (Si) iBeamCala-a (GaAs)
- 8 ASIC-ów front-end (64 kanały)
- □ Fanout-y (LumiCal, BeamCal)
- ADC zewnętrzne (na razie)

FCAL: ILC vs CLIC

- Kolaboracja FCAL rozwija detektory LumiCal i BeamCal także z myślą o CLIC
- FCAL rozpoczęło prace dla CLIC niedawno, więc ich zaawansowanie jest niewielkie
- Concepcja architektury detektorów jest podobna w obu przypadkach
- Bardzo istotne różnice wystąpia w odczycie detektorów ze względu na parametry czasowe wiązki:
 - w ILC sygnał wyzwalający co 369ns, w CLIC ze względu na bardzo krótki czas pomiedzy zderzeniami, każdy kanał będzie się musiał samowyzwalać
 - 5Hz ILC / 50 Hz CLIC będzie mialo konsekwencje w wyłączaniu odczytu i poborze mocy
- Uszkodzenia radiacyjne w CLIC ???
- Wiele innych różnic...

	LEP 2	ILC 0.5 TeV	CLIC 0.5 TeV	CLIC 3 TeV
L [cm ⁻² s ⁻¹]	5×10 ³¹	2×10 ³⁴	2×10 ³⁴	6×10 ³⁴
BX/train	4	2670	350	312
BX sep	247 ns	369 ns	0.5 ns	0.5 ns
Rep. rate	50 kHz	5 Hz	50 Hz	50 Hz
L/BX [cm ⁻²]	2.5×10 ²⁶	1.5×10 ³⁰	1.1×10 ³⁰	3.8×10 ³⁰
γγ→X / BX	neg.	0.2	0.2	3.0
σ _x /σ _y	240 / 4 mm	600 / 6 nm	200 / 2 nm	40 / 1 nm

Podsumowanie

- Kolaboracja FCAL rozwija detektory dla obszaru małych kątów dla zderzaczy liniowych e+e- ILC, CLIC
- Prace przy projekcie i budowie detektora świetlności LumiCal dla zderzacza ILC znajdują się już w zaawansowanej fazie, tzn. istnieją już działające prototypy kluczowych elementów systemu detekcji
- W ciągu następnych 3 lat będziemy chcieli stworzyć rozsądny prototyp modułu detektora (np. kilka warstw zawierających po 4-8 sektorów detektora każda) z kilkoma tysiącami kanałów
- Równolegle zaczęliśmy prace nad wersją systemu detekcji spełniającą wymagania zderzacza CLIC
- Zaangażowanie polskich grup w projekt i budowę przyszłych zderzaczy liniowych e+e- jest na razie bardzo małe !

FCAL architecture

High Dose Irradiation

Superconducting DArmstadt LINear ACcelerator Technical University of Darmstadt

- Irradiation up to several MGy: 10 ± 0.015 MeV and beam currents from 10 to 50 nA corresponding to 60 to 300 kGy/h.
- Keeping the sensor under bias permanently.
- This is a much higher dose rate compared to the application at the ILC (~1 kGy/h)

(1 MGy = 100 Mrad is deposited by about $4 \times 10^{15} e^{-7} cm^2$)

BeamCal Readout Electronics

- Dual-gain front-end electronics: charge amplifier, pulse shaper and T/H circuit
- Successive approximation ADC, one per channel
- Digital memory, 2820 (10 bits + parity) words per channel
- Analog addition of 32 channel outputs for fast feedback; low-latency ADC