Seminarium Fizyki Wysokich Energii, 9.IV.2010, Warszawa

PLAN

» Wstęp - Ciemna Materia
» Metody poszukiwania cząstek Ciemnej Materii
» Wyniki eksperymentalne

- DAMA/LIBRA
- CDMS
- CoGeNT
- PAMELA
- ATIC
- FERMI/GLAST
- Super-Kamiokande

detekcja bezpośrednia

detekcja pośrednia

>> Podsumowanie

P.Mijakowski

Wstęp – Ciemna Materia

Dark Matter in the Universe

Universe – dominant mass contribution from unknown matter component. It manifests only through gravitational interactions with surrounding baryonic matter. Its presence determines evolution of Universe and can be observed through:

- Velocity distribution in galaxy clusters (F.Zwicky in 1933)
- » Galaxies rotation curves Dark Matter: ~95% mass of Galaxies
- » Gravitational lensing example: Bullet Cluster

- Cosmic Microwave Backround (CMB)
- >> Evolution of large cosmic structures

ACDM model

ΛCDM – standard model of a Big Bang cosmology, based on recent observations: CMB, large scale structures, accelerating expansion of the Universe

Cosmological parameters

> $\Omega_{\rm tot}$ Ω_{tot} = 1.02 ± 0.02

> $\Omega_{\rm m}$ $\Omega_m = 0.27 \pm 0.02$

> $\Omega_{\rm b}$ $\Omega_{\rm b}$ ~ 0.044 ± 0.002

$$\Omega_{\Lambda}$$
 Ω_{Λ} = 0.73 ± 0.02

Conclusions:

 $\Omega_m^{>>} \Omega_b => \text{Dark Matter}$ $\Omega_m^{<} 1 => \text{Dark Energy}$

P.Mijakowski

Dark Matter - candidates

PRIME

SUSPECT

well motivated candidates:

- » neutrino hot DM
- » neutralino χ
- » "generic" WIMP
- axion a
- axino ã
- **»** gravitino Ĝ

Dark Matter - candidates

PRIME

SUSPECT

well motivated candidates:

- » neutrino hot DM
- >> neutralino χ
- » "generic" WIMP
- axion a
- axino ã
- » gravitino Ĝ

WIMPs naturally comes with SUSY: (Weakly Interacting Massive Particle)

• neutralino χ - Lightest Supersymmetric Particle (LSP), stable (R-parity conservation)

neutralino couplings (example):

$$\tilde{\chi} = a_1 \tilde{\gamma} + a_2 \tilde{Z} + a_3 \tilde{H_1} + a_4 \tilde{H_2}$$
(6GeV) < 50 GeV < M _{χ} < ~10 TeV
$$\downarrow$$
LEP2
Cosmology

Bottino et al., Phys.Rev.D69:037302 (2004)

Metody poszukiwania cząstek Ciemnej Materii

• **gammas** (HESS, MAGIC, EGRET, GLAST/FERMI) insensitive to magnetic fields, E spectra not attenuated over galactic scales, produced in most DM annihilation modes in π^0 decays

• anti-matter: positrons, anti-deuteron, anti-proton (PAMELA, HEAT, BESS, ATIC, AMS-02 ...)

satellite or balloon-born expriments – go up to probe primary CR component

• **neutrinos** (Super-Kamiokande, Ice-Cube)

 χ get trapped in massive celestial objects (Sun, core of Earth, Galactic Center), start annihilating, only v's escape

) Terrestrial experiments: search for χ 's in Galactic Halo

- Need to go underground to suppress cosmic ray BKG
- Recoil energy meas. with different techniques:
 - e/γ bkg discrimination vs. heavy nuclear recoils

Energia odrzutu

>> Energia odrzutu zależy od:

- masy χ oraz masy jądra tarczy
- Energii kinetycznej WIMP-ów Τχ (model halo)

przykładowy model halo

 prędkość WIMP-ów w halo: rozkład Maxwella-Bolzmanna ze średnią prędkością względem centrum Galaktyki = 0, jej dyspersją ≈ 230 km/s, V_{esc} ≈ 600 km/s

- $V_{ukladu slon}$. \approx 230 km/s (względem halo) -> określa śred. T χ
- ρ gęstość WIMP-ów w halo galaktycznym (~ 0.3 GeV/c² ·1/cm³)

(Z

>> Np. (rozpraszanie w fali S):

Widmo energii jąder odrzutu dla ustalonej m_x jest ciągłe i ma charakter eksponencjalny

Ar
$$M\chi = 50 \text{ GeV/c}^2 < T_{odrzutu} > = 14 \text{ keV}$$

=40) $M\chi = 100 \text{ GeV/c}^2 < T_{odrzutu} > = 24 \text{ keV}$

Częstość zdarzeń

Liczba rejestrowanych przypadków (Rate):

 $R \sim \rho \cdot V \cdot \sigma$

p - gęstość WIMP-ów w halo galaktycznym

σ- elastyczny przekrój czynny zależny od materiału tarczy - rodzaju sprzężenia WIMP-nukleon (spinu), czynnika postaci $F(q^2)$... dla WIMP-ów spodziewamy się $\sigma_{\chi-nukleon} \sim \sigma_{EW} < 10^{-38} \text{ cm}^2$

» Strumień WIMP-ów (
$$\phi_{\chi}$$
): $\phi_{\chi} = \frac{\rho_x}{M_{\chi}}$.

Przy założeniach: $\rho_{\chi} = 0.3 \text{ GeV}/(c^2 \cdot \text{cm}^3)$ $v_{\chi} = 230 \text{ km/s}$ $M_{\chi} = 100 \text{ GeV}/c^2$

dla dektora Ar oznacza to rejestrację

Strumień WIMP-ów:
$$\phi_{\chi} \approx 7 \times 10^4 \text{cm}^{-2} \text{s}^{-1}$$
 1000 przyp./ kg /dzień
 $przy \sigma_{\chi-\text{nukleon}} = 10^{-38} \text{ cm}^2$
Aktualne wyniki eksperymentalne
sugerują jednak iż $\sigma_{\chi-\text{nukleon}} < 10^{-42}$

 V_{x}

P.Mijakowski

Efekt modulacji sezonowej

V – średnia prędkość cząstki WIMP względem nukleonu (tarczy) – ZALEŻY OD PORY ROKU!

Sumaryczna prędkość Ziemi i Słońca względem centrum Galaktyki:

Maksimum - 2 czerwiec - $V \approx 248$ km/h

Minimum - 2 grudzień - $V \approx 219$ km/h

P.Mijakowski

Wyniki – detekcja bezpośrednia

DAMA/LIBRA (~250kg Nal)

DArk Matter/Large sodium Iodide Bulk for RAre processes

 χ scatter on Na/I \rightarrow scintillation

- Gran Sasso in Italy (4000 m w.e.)
- DAMA/Nal in operation since 1996
- Nal(TI) scintillation crystals 25 x 9.7 kg ≈ 250 kg; signal detected by two PMTs
- No active electron/gamma bkg determination technique
- Energy > 2 keV
- Exposition 0.82 tonne-years
- >> Latest results: May 2008

DAMA – annual signal modulation

Acos[ω (t-t₀)]: A = (0.0129±0.0016) counts per day/kg/keV, t₀ = (144 ± 8) day, T = (0.998 ± 0.003) year

@ 8.2 σ CL

Characteristics

cos(t) 1 year period (T= $2\pi/\omega$) phase (t₀) – summer/winter low energy signal single detector hit "What other physical effect could satisfy all these criteria?"

source: EPJ C56 (2008), 333, arXiv:0804.2741

>> model independent evidence
>> no signal modulation > 6 keV and in "multiple hits events"

CDMS (Cryogenic Dark Matter Search) χ scatter on Ge/Si \rightarrow ionization, phonons

- CDMS II @ Soudan Lab (2004-2009) depth 2090 m w.e.
- 19 Ge (~4.75kg in total) & 11 Si (~1.1kg) particle detectors arranged in 5 towers
- > Two independent signal detection methods: ionization and phonons
 - 10-100 keV analysis energy range

T < 0.01 K

CDMS - results (Dec. 2009)

- Most backgrounds (e,γ) produce electron recoils
- WIMPs, neutrons, alphas produce nuclear recoils
- "Ionization yield" depends on particle type
- Particles that interact in the "surface dead layer" result in reduced ionization yield (can mimic WIMP signal) -> However could be rejected based on timing of phonon signal

(*) J.Cooley @ SLAC Dec/17/2009 & (*) Z. Ahmed et al., arXiv.org:0912.3592

"ionization yield" – ratio of energy deposited as ionization to phonons

CDMS – results (Dec. 2009)

(*) Z. Ahmed et al., arXiv.org:0912.3592 (*) J.Cooley @ SLAC Dec/17/2009

- Gamma events have faster-rising phonon pulses than nuclear recoil events
- Yield + Timing criteria gives 10⁻⁶ misidentification probab. for electron events to be nuclear recoils
 - "normalization yield" number of standard deviations from mean of nuclear recoil band

calibration data

CDMS - results (Dec. 2009)

"Blind analysis" - estimate bkg, apply cuts,not look at the region where signal is expected... after opening the box: (*) J.Cooley @ SLAC Dec/17/2009 (*) Z. Ahmed et al., arXiv.org:0912.3592

data (from 2 detectors only)

Probability of observing 2 or more background events is 23%

"Our results cannot be interpreted as significant evidence for WIMP interactions. However, we cannot reject either event as signal." ()*

new CDMS II, 2004-2009 (Ge) (612 kg·d)

P.Mijakowski

10040315030

 10^{1}

 10^{3}

 10^{2}

WIMP Mass [GeV/c²]

- At moderate temp. & pressure chamber is sensitive only to high dE/dx radiation such as nuclear recoils
- > 10⁻¹⁰ discrimination power against gamma/ electron events
- neutrons may scatter (several/few bubbles)
 WIMPs – single bubbles

CoGeNT (Coherent Germanium Neutrino Technology)

 χ scatter on Ge \rightarrow ionization

- One 440g Ge detector; low noise technology = low energy treshold
 0.4 keV electron equivalent
- Measures ionization energy; cannot distinguish e/γ from nuclear recoils
- » Applications: neutrino elastic scattering (anti-v from reactors), ββ decay, DM search
- Soudan Lab, ~20m from CDMS
- Setup with neutron/gamma shieldings and muon veto
- Data: Dec. 2009, 56 days (first trial run@Soudan)

results published 25 Feb. 2010

Prospects:
 Majorana detector 60 kg

CoGeNT – results (Feb 2010)

- Detector cannot distinguish e/γ events from nuclear recoils
- Surface' 'bulk' event rejection due to signal rise time in preamplifier
- ➤ Ge activation by CR neutrons/protons → unstable intrinsic isotopes, delayed decay emmiting X-ray

keVee = keV electron equivalent 1 keVee = 1 keV x quenching recoil factor source: CoGeNT collaboration arXiv:1002.4703v2

P.Mijakowski

CoGeNT – results (Feb 2010)

- All cosmogenic peaks due to Ge crystal activation identified
- Exponential event excess in 0.4-3.2 keVee range. Claim that not due to noise, external or internal radioactive bkg or semiconductor physics

» FIT:

- Background: expo + constant + 2 Guassians to account for ⁶⁵Zn, ⁶⁸Ge peak
- WIMP signal: expo with shape defined by χ mass & normalization prop. to SI cross-section

source: CoGeNT collaboration arXiv:1002.4703v2

FIT results

no WIMPs, only BKG:

χ^2 /dof = 20.4/20 (=1.02)

m χ =9GeV, σ_{SI} = 6.7x10⁻⁴¹cm⁻²+BKG: χ^2 /dof = 20.1/18 (=1.12)

An example WIMP mass in the

region:

source: J.Collar @ UCLA DM 2010, Feb/26

CoGeNT – results (Feb 2010)

 10^{-38}

 10^{-39}

 10^{-40}

 10^{-41}

 10^{-42}

ΜΑ 5σ

with ion-

channeling

 $\sigma^{}_{\rm SI}(\rm cm^2)$

source: CoGeNT collaboration arXiv:1002.4703v2

m (GeW c^2)

CDMS (2009)

CoGeNT 2008

10

» CoGeNT claim

- m_χ ~7-11 GeV WIMP fits the data nicely
- compatible with CDMS 2 evts, also with DAMA region
- excess not due to neutrons (MC simulation)
- no evidence of detector contamination
- very different from electronic noise (?)

If genuine:

P.Mijakowski

- already see >70 DM events coming in constant rate
- MAJORANA 60kg demonstrator should see annual modulation

CoGeNT 2010 90% CL allowed region

DAMA 5σ

effMSSM

Bottino et

al.

CoGeNT 2010

9.IV.2010, Warszawa

100

Direct detection – summary

DAMA – annual modulation signal, positive signal not confirmed by other experiments

Spin Independent

DAMA region excluded with 3σ CL by other exp. for M χ > ~10GeV

Spin Dependent

DAMA region excluded for $M\chi > \sim 10$ GeV (strong constrains from Indirect searches)

DAMA region for $M_{\chi} < \sim 10$ GeV constrained partially by COUPP

CDMS-II – 2 events in signal region,
not statistically significant for discovery
→ the most stringent SI limit

CoGeNT – exploring low WIMP mass range in SI, signal not convincing

Wyniki – detekcja pośrednia

DM self-annihilation cross section

- cross section averaged over the relative velocity distribution $<\sigma_a v>$

"freeze out" of the relic particle

PAMELA

a Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics

- PAMELA is mounted on satellite Resurs-DK1, inside a pressurized container
- » launched June 2006
- » minimum lifetime 3 years
- Detector: spectrometer (B-field, dE/dx), calorimeter, neutron detector
- Simultaneous measurement of many cosmicray species
- New energy range (e.g. contemporary antiproton & positron maximum energy ~ 40 GeV)
- >> Unprecedented statistics

•	Antiprotons:	80 MeV ÷190 GeV
•	Positrons:	50 MeV ÷ 300GeV
	Fleetreney	up to 400 CoV

- Electrons: up to 400 GeV
- Protons: up to 700 GeV
- Electrons+positrons: up to 2 TeV(from alorimeter)

PAMELA – antiproton/positron identification

Positron measurement could be a tricky bussiness,
 ... especially that expected p/e⁺=10³-10⁴

Bending in spectrometer: sign of charge

Ionisation energy loss (dE/dx): magnitude of charge

Interaction pattern in calorimeter: electron-like or proton-like, electron energy

PAMELA results (positrons)

O.Adriani et al. [PAMELA Collaboration], Nature, 458,607-609(2009)

➤ Cosmic-ray positrons are a sensitive probe of the local astrophysical environment (few kpc) → energy loose due to Inverse Compton and Synchrotron Radiation

P.Mijakowski

PAMELA results (antiprotons) (*) O.Adriani et al. [PAMELA Collaboration], arXiv.0810.4994(Oct 2008)

- Agreement with other experiments and "secondary" production models
- If DM ann. is responsible for positron excess -> observed antiproton flux should be also higher: 5-10 times for 1 TeV neutralino ann. to W⁺W⁻!!! (assuming typical thermal relic DM smoothly distributed in our Galaxy – NFW model)

M.Cirelli et al., Nucl. Phys. B 813 (2009) 1; arXiv: 0809.2409v3

PAMELA results fit with annihilating DM

DM with m_{χ} = 150 GeV and W⁺W⁻ dominant annihilation channel

M.Cirelli et al., Nucl. Phys. B 813 (2009) 1; arXiv: 0809.2409v3

PAMELA results fit with annihilating DM

DM with $m_{\chi} = 10$ TeV and W⁺W⁻ dominant annihilation channel: unnaturally high mass for most SUSY models

P.Mijakowski

M.Cirelli et al., Nucl. Phys. B 813 (2009) 1; arXiv: 0809.2409v3

PAMELA results fit with annihilating DM

DM with $m_{\chi} = 1$ TeV and $\mu^+\mu^-$ dominant annihilation channel

antiprotons

P.Mijakowski

Advanced Thin Ionization Calorimeter

- Baloon born experiment for C.R. measurement
- » Operated from McMurdo, Antarctica
- » ATIC-1 15 days (2000/2001)
- » ATIC-2 17 days (2002/2003)
- » flights @ 36km

ATIC: e⁺+e⁻ flux in cosmic rays

J. Chang, et al. [ATIC Collaboration], Nature, 456, 362-365 (2008)

P.Mijakowski

PAMELA & ATIC positron excess – discussion

- > PAMELA excess of HE positrons > 10GeV (p-bar flux agrees with expectation)
- > ATIC excess of $e^+ + e^-$ at about 300-600 GeV

If genuine, possible explanations:

- Insufficient BKG estimation model
- » Nearby pulsar ...
 - good explanation
 - could be a source of e+e- pairs
 ... their escape probability not clear

> DM annihilation ... some problems:

- Hard energy spectrum (with a cut off) observed by ATIC → then χ should mostly ann. to charged leptons (unlikely in most SUSY models)
- Also should be overproduction in **p-bar** and γ's
- High ann. rate required -> 'boost factor' of 10^2-10^3 ... could be related to DM clumps in local halo ρ or enhanced annihilation cross section < σ V>

DM origin of positron excess seems weak

FERMI (GLAST)

Observatory:

- Launched by NASA in June 2008
- Design life 5 yrs (min), goal: 10 yrs
- Astroparticle mission exploring mainly high energy gamma-ray sky
- Results from its first year of operation
- >> Two instruments:
 - » Large Area Telescope
 - > Gamma Burst Monitor

LAT (Large Area Telescope)

- 20 MeV >300 GeV
- Anticoincidence detector; Tracker; Calorimeter
- No magnetic field

GBM (Gamma Burst Monitor)

- 8 keV >20 GeV
- 12 NaI + 2 BGO detectors
- Search for GRBs

P.Mijakowski

FERMI results

 $0^{\circ} \le l \le 360^{\circ}, 10^{\circ} \le |b| \le 20^{\circ}$

 10^{3}

E_. [MeV]

 10^{4}

e⁺ + e⁻

Search for WIMPs in SuperK (directional flux)

(*) S.Desai et al., Phys.Rev. D70 (2004) 083523

- Search for excess of neutrinos from direction of Sun, core of Earth, Galactic Center
- WIMP mass range 18GeV-10TeV -> neutrino energy: ~5 GeV 5 TeV
- Result: no excess over the expected atmospheric v flux
- Limit: DM-induced v flux, limit on χ -nucleon cross section based on equilibrium assumption capture rate ($\sim \sigma_{\chi-nucl}$) = annihilation rate ($\sim < \sigma V$ >)

 10^{2}

WIMP Mass $[GeV/c^2]$

 10^{4}

10⁻⁴⁰

DM annihilation @ SuperK (my PhD)

Investigation is limited to "most optimistic" WIMP >> annihilation channel:

- Due to distinctive energy spectra of WIMP-induced >> neutrinos coming from that "golden channel" it is possible to test data against characteristic distortions in energy and cos spectra
- Use method of min χ^2 to find best allowed **>>** WIMP contribution
- Derive conservative upper limit on WIMP total self->> annihilation cross section $\langle \sigma V \rangle$,

world limit by 1-2 orders of magnitude

P.Mijakowski

Podsumowanie

>> Ciemna Materia – czas nowych, wielce obiecujących wyników...

Detekcja bezpośrednia

- DAMA twierdzi że odkryła CM już przeszło 10 lat temu
- Pozostałe eksperymenty (kilkanaście) nie potwierdzają tych wyników
- CDMS (2009) 2 przypadki w obszarze spodziewanym dla sygnału (tło 0.8 przyp.); weryfikacja niedługo przez XENON
- CoGeNT wskazuje na model CM o masach 7-10 GeV

Detekcja pośrednia

- PAMELA/ATIC nadmiar pozytonów (oraz e⁺+e⁻) ponad spodziewane tło, przy energiach > 10 GeV (ATIC: 300-600 GeV) ... sytuacja trudna do wytłumaczenia anihilacją CM w ramach standardowych modeli i założeń
- FERMI nie potwierdza tak znaczącego efektu nadmiaru e⁺+e⁻; rozproszony strumień fotonów z obszaru Galaktyki nie większy niż przewidywany
- >> Czy w roku 2010 odkryjemy Ciemną Materię?
 - Co raz więcej wyników potwierdzających... niestety niespójnych.
 - Obserwacja wymaga potwierdzenia przez kilka eksperymentów bezpośrednich (różne materiały), przez eksperymenty pośrednie w zakresie różnych kanałów produkcji (antymateria, γ,ν) oraz w LHC

Dziękuję za uwagę

Dark Matter in the Universe

1933 r. - Fritz Zwicky, COMA cluster. Velocity of galaxies too high to form bound system (if total mass was related only to luminous part of the system)

1970,80s – rotation curves of galaxies; halo of unseen matter component (?)

CONCLUSIONS

Spherical dark matter halo encompassing galaxy

- unseen matter component, manifests through gravitational interactions

- modification of gravity on large scales / MOND (Modified Newtonian Dynamics)

Bullet Cluster

direct empirical proof of existence of dark matter

>> Distribution of mass in colliding clusters of galaxies (1E 0657-56)

- Gravitational lensing total gravitational potential (Hubble Space Telescope, European Southern Observatory VLT, Magellan) / violet
- >> X-rays Chandra X-ray Observatory (NASA) / pink
- Typically, gas represents most of the mass of ordinary (baryonic) matter in clusters (2 times more than luminous matter). It interacts e-m and slows down during collision.
- Result: mass concentration related to luminous matter
- X-rays regions: only 10% of the mass of cluster pair

(*) D.Clowe et al. 2006 Ap. J. 648 L109

ACDM model

ΛCDM – cosmological model based on recent observations: CMB, large scale structures, accelerating expansion of Universe

Cosmological parameters

 $\Omega_{\rm tot}$ $\Omega_{tot} = 1.02 \pm 0.02$ "flat" Universe! cosmic microwave background (WMAP - 2003 r.) $\Omega_m = 0.27 \pm 0.02$ WMAP (2006 r.) $\Omega_m \sim 0.3$ gravitational interactions (i.e. rotation curves) $\Omega_{\rm b} \sim 0.040 \pm 0.005$ (astro-ph/0001318) Big Bang Nucleosynthezis (BBN) + abundance of ligh elements (H,D,He,Li) $\Omega_{\rm b} \sim 0.044 \pm 0.002$ $\rightarrow \Omega_{\text{lumni}} \Omega_{\text{lumni}} \sim 0.006$ WMAP (2006 r.) Luminescence of stars and interstellar medium

ACDM model

Cosmological parameters

>
$$\Omega_{\Lambda}$$
 $\Omega_{\Lambda} = 0.73 \pm 0.02$
WMAP (2006 r.) + SN Ia

Conclusions:

 $\Omega_m >> \Omega_b => Dark Matter$ $\Omega_m < 1 => Dark Energy$

Dark Matter candidate: WIMP

It seems that DM consists of some sort of particles which interacts via gravity and/or weak force. MOND (Modified Newtonian Dynamics) are rather excluded.

WIMP (Weakly Interacting Massive Particle)

one of very well motivated candidates for DM particle:

🔶 neutral

• long lived (with τ ~ age of Universe) • massive (M_{χ} ~ 100 GeV) • weakly scale couplings $\sigma \leq 10^{-2}$ pb (10^{-38} cm²)

neutralino couplings (example):

Jungman, Kamionkowski, Griest, Phys. Rep., 267, 195 (1996)

cosmology

WIMPs naturally come with SUSY:

• neutralino χ (SUSY) - Lightest Supersymmetric Particle (LSP), stable (R-parity conservation in SUSY)

9.IV.2010, Warszawa

 $18 \text{ GeV} < M_{\gamma} < 18 \text{ GeV} < M_{\gamma} < 18 \text{ GeV} <$

P.Mijakowski

MOND

$$\vec{F} = m \cdot \mu \left(\frac{a}{a_0} \right) \ \vec{a}$$

μ(x)=1 for x>>1 μ(x)=x for x<<1 a₀ ~ 10⁻⁸ cm/s² Propozycja M.Milgroma - 1981r.

Direct detection – current experimental limits

PAMELA detector principle

Time-of-flight: trigger, albedo

rejection, mass

determination (up to I GeV)

Bending in

spectrometer:

sign of charge

Ionisation energy

loss (dE/dx): magnitude of

Interaction

calorimeter:

proton-like, electron energy

electron-like or

pattern in

charge

• SI, S2, S3; double layers, x-y

- plastic scintillator (8 mm)
- ToF resolution ~300 ps (SI-3 ToF >3 ns)
- lepton-hadron separation < I GeV/c
- S1.S2.S3 (low rate) / S2.S3 (high rate)

Sign of charge, rigidity, dE/dx

- Permanent magnet, 0.43 T
- 21.5 cm²sr

Trigger, ToF, dE/dx

- 6 planes double-sided silicon strip detectors (300 µm)
- 3 µm resolution in bending view ⇒ MDR
- ~ 1000 GV (6 plane) ~600 GV (5 plane)

Electron energy, dE/dx, lepton-hadron separation

- 44 'Si-x / W / Si-y' planes (380 µm)
- 16.3 X₀ / 0.6 λ_L
- dE/E ~5.5 % (10 300 GeV)
- Self trigger > 300 GeV / 600 cm²sr

Lepton-hadron separation

- 36 ³He counters
- ³He(n,p)T; E_p = 780 keV
- I cm thick poly + Cd moderator
- 200 µs collection time

PAMELA results (positrons)

- Baloon born experiment for C.R measurement
- Operated from McMurdo, Antarctica
- > ATIC-1 15 days (2000/2001)
- > ATIC-2 17 days (2002/2003)
- flights @ 36km

ATIC Instrument Summary

- Measure charge, energy and number
- Ionization Calorimetry only practical method to measure high energy light elements
- Silicon Matrix (Si) has 4,480 pixels to measure GCR charge in presence of shower backscatter
- Graphite Target to interact the primary particle and generate fragments that, in turn, will start an electromagnetic cascade. Also provides some backscatter shielding
- Plastic scintillator hodoscopes (S1, S2, S3), embedded in Carbon target, provides event trigger plus charge & trajectory information
- Fully active calorimeter includes 400 Bismuth Germinate (BGO) crystals to foster and measure the nuclear electromagnetic cascade showers

Flight and Recovery

Flight path for ATIC-1 (2000) and ATIC-2 (2002)

The good ATIC-1 landing on 1/13/01 (left) and the not so good landing of ATIC-2 on 1/18/03 (right)

ATIC is designed to be disassembled in the field and recovered with Twin Otters. Two recovery flights are necessary to return all the ATIC components. Pictures show 1st recovery flight of ATIC-1

DM annihilation to gammas

Advantages

- insensitive to magnetic fields (source information)
- not attenuated over galactic scales
 energy spectrum
- produced in the most of WIMP annihilation modes, π⁰ decays (abundant ann. product)

Uncertainities:

- >> Astrophysical background rate
 - distribution around Galactic Center

DM annihilation to gammas - EGRET

>> EGRET excess in diffuse galactic gamma ray flux

P.Mijakowski

DM annihilation to gammas - EGRET

Objections to EGRET interpretation

- DM density concentrated to the galactic plane. This is not what one expects from CDM!
- Excess in anti-protons data NOT observed (correlation: fragmentation of quark jets)

Instrumental problem with EGRET?
 Too simple conventional model for galactic gamma-ray emission?

P.Mijakowski

DM annihilation to positrons (HEAT)

(*) D. Hooper., Annu. Rev. Nucl. Part. Sci. (2008), Vol. 58

>> for $\langle \sigma_A v \rangle = 3 \times 10^{-26} cm^3 / s$, $\rho_{\chi} = 0.3 GeV / cm^3$ to normalize the HEAT data

ann. rate should be boosted ~50

Consequence: DM clumps in local halo (but expected only ~5-10); different cross section (then should be observed by others)

Dark Matter annihilation to neutrinos

... where they may come from?

Search for neutrinos from DM annihilation (strategies)

Directional flux

related to regions of increased DM density:

- core of Sun, Earth, Galaxy Center
- constrain SD/SI $\sigma_{\gamma n}$

Diffuse flux:

- flux averaged over large cosmic volumes (many galactic halos) or over Milky Way
- constrain DM self-annihilation cross section <σ·v>

Cerenkov ring categories

How can we distinguish interacting neutrino flavor?

» e-like

» μ-like

fuzzy rings (due to E-M showers)

solid rings

SuperK limit for neutrialino elastic cross section (spin dependent)

(*) S.Desai et al., Phys.Rev. D70 (2004) 083523; Erratum-ibid. D70 (2004) 109901

(*) Kamionkowski, Ullio, Vogel JHEP 0107 (2001) 044

- Limit 100 times lower than from direct search experiments
- DAMA annual modulation due to axial vector couplings ruled out by this result (Kamionkowski et al.)

P.Mijakowski

- >> EGRET excess of gammas (not confirmed by preliminary FERMI data)
- » FERMI, HESS also observe excess of e⁺ + e⁻
- » HEAT excess of e⁺
- The indirect experiments seem to see some effect above expected background:
 - nearby pulsar (?)
 - wrong bkg estimation (propagation) (?)
 - DM annihilation (?)
- DM signal would be difficult to concile with standard WIMP model:
 - requires "boost factors" ~ 50-1000
 - ... which could related to DM clumps in local halo (ρ) or different annihilation cross section (but then some excess should likely be observed in more experiments)
- await more data: PAMELA, FERMI (PLANCK and AMS in future)

P.Mijakowski

11.I.2010, Wrocław