Pomiar produkcji mezonu Upsilon w eksperymencie ZEUS

(przedstawienie wyników pracy doktorskiej)

Janusz Tomasz Malka

Dyfrakcyjna produkcja mezonów wektorowych

elastyczna

z dysocjacją protonu

- mezon wektorowy
 - wirtualność fotonu
 - energia CM systemu γp
 - (przekaz czteropędu)²

 $\rho, \omega, \phi, J/\phi, \phi', \Upsilon$ $Q^2 = -q^2 = -(k - k')^2$ $W^2 = (q + p)^2$ $t = (P - P')^2$

 Q^2

W

Mezony wektorowe

Lekkie mezony wektorowe

Ciężkie mezony wektorowe

Procesy miękkie i procesy twarde

Model dominacji wektorowej (procesy miękkie)

$$|\gamma\rangle = N|\gamma\rangle_{bare} + \sqrt{\alpha}|\gamma\rangle_{hadronic}$$

$$\sqrt{\alpha}|\gamma\rangle_{hadronic} = \sum_{V=\rho,\omega,\phi} \frac{1}{f_V^2} \left(\frac{M_V^2}{M_V^2 + Q^2}\right)^2 |\gamma\rangle$$

 f_V is $\gamma \rightarrow V$ coupling

• Foton fluktuuje w mezon wektorowy , V, który posiada te same liczby kwantowe co foton ($\gamma p \rightarrow Vp$)

• Mezon wektorowy rozprasza się elastycznie na protonie (Vp→Vp)

Formalizm Regge'go (procesy miękkie)

Przewidywania:

$$\frac{d\sigma(\gamma p \to V p)}{dt} \propto e^{-bt} \left(\frac{W^2}{W_0^2}\right)^{2(\alpha(t)-1)}$$

Obserwacje eksperymentalne:

•
$$\alpha(t) = \alpha(0) + \alpha' t$$
;

•
$$\alpha(0) = 1.08$$
 , $\alpha' = 0.25$; (DL – Donnachie & Landshoff)

• Słaba zależność przekroju czynnego od energii

 $\sigma \propto W^{\delta}\,,~\delta{\sim}0.2$;

Modele oparte na pQCD (procesy twarde)

- foton fluktuuje na parę qq
- para qq rozpraszana jest na protonie
- pra qq zamienia się w mezon wektorowy

Predictions:

•
$$\sigma \propto \frac{\alpha_s^2(Q)}{Q^6} |xG(x,Q^2)|^2$$

szybki wzrost przekroju czynnego z energią W

Przejście pomiędzy miękkimi a twardymi procesami

Zależność przekroju czynnego od energii W, w procesach foto produkcji mezonów wektorowych

Parametryzacja przekroju czynnego: $\sigma \propto W^{\delta}$

Uniwersytet Warszawski

Elastyczna elektroprodukcja $\gamma^* p \rightarrow \rho p$

- parametryzacja: $\sigma \sim W^{\delta}$
- przekrój czynny w funkcji W rośnie szybciej dla wyższych Q²

Elastyczna elektroprodukcja $\gamma^* p \rightarrow \rho(\phi) p$

Elastyczna elektroprodukcja γ*p→J/ψp

MRT – A. D. Martin, M. G. Ryskin and T. Teubner, Phys. Rev. D 62 (2000) 014022

wzrost przekroju czynnego w funkcji W nie zależy of Q²

Uniwersytet Warszawski

Zależność od |t| dla (ρ)

 $d\sigma/d|t| \sim exp(-b|t|)$ w binach Q^2

b maleje wraz ze wzrostem skali do wartości (~4-5 GeV-2)

Zależność od | t |

b maleje od ~ 10 GeV⁻² (miękki proces) do ~5 GeV⁻² (twardy proces) rozmiar rozpraszanego mezony maleje wraz ze wzrostem skali

Elastyczna produkcja mezonu Upsilon

Pomiar przekroju czynnego w eksperymentach H1 i ZEUS.

Elastyczna produkcja mezonu Upsilon

Pomiar przekroju czynnego w eksperymentach H1 i ZEUS. B $\sigma(\gamma p \rightarrow \Upsilon p) \equiv \sigma (\gamma p \rightarrow \Upsilon p)B(\Upsilon \rightarrow \mu^+\mu^-)$

 $B\sigma(Y) = 13.3 \pm 6.0^{+2.7}_{-2.3} pb$

 $\langle W \rangle = 120 \text{ GeV} (ZEUS) *$

 $B\sigma(Y) = 16.0 \pm 7.5 \pm 4.0 pb$

- (W) = 160 GeV (H1)**

*) ZEUS collaboration: hep-ex/9807020, DESY-98-089

**) H1 collaboration: hep-ex/0003020, DESY-00-037

MRT(1),(2) - A.D.Martin, M.G.Ryskin and T.Treubner, Phys.Lett. B454 (1999) 339. FMS - L.Frankfurt,M.McDermott and M.Strikman, JHEP 02 (1999) 002

Uniwersytet Warszawski

Detektor ZEUS

Układ wyzwalania detektora ZEUS

Rekonstrukcja / Symulacja przypadków

Generator przypadków:

Generacja procesu fizycznego, gdzie kinematyka i topologia wygenerowanych przypadków zależy od przyjętych modeli teoretycznych.

Rekonstrukcja przypadków:

Rekonstruowanie: śladów cząstek, zdeponowanej energii oraz wstępna identyfikacja cząstek, na podstawie wcześniej wysymulowanych danych.

Symulacja układu wyzwalania:

Symulowanie układu wyzwalania na podstawie danych dostarczonych przez poszczególne komponenty detektora.

Symulacja detektora:

Symulowanie odpowiedzi poszczególnych fragmentów detektora na przejście cząstki.

Dane zebrane przez detektor ZEUS odpowiadające całkowitej świetlności wynoszącej 431pb⁻¹ Zakres kinematyczny: 60 < W < 220GeV, Q² < 1GeV²

Dane zebrane przez detektor ZEUS odpowiadające całkowitej świetlności wynoszącej 431pb⁻¹

Zakres kinematyczny: 60 < W < 220GeV, Q² < 1GeV²

Dokładnie dwa ślady w CTD, dopasowane do wierzchołka oddziaływania, przecinające 5 super warstw w CTD

Dokładnie dwa ślady w CTD, dopasowane do wierzchołka oddziaływania, przecinające 5 super warstw w CTD

Mion zidentyfikowany w CAL i BAC oraz w F/B/R MUON

15 Paź 2010

Tło – miony kosmiczne

Wycięcie przypadków pochodzenia kosmicznego: π - 0.1 < θ < π

Tło fizyczne (a)

Bethe-Heitler (BH): $ep \rightarrow ep\mu^+\mu^-$

Taka sama topologia jak: ep $\rightarrow ep \Upsilon$ $\downarrow \mu^{+}\mu^{-}$

Większość przypadków BH pozostaje w badanej próbce

Tło fizyczne (b)

Maksymalna energia wyspy niedopasowanej do śladu < 0.5 GeV Energia w FCAL (40 cm) < 1 GeV Energia poprzeczna w wewnętrznym ringu w RCAL E_T < 0.1 GeV

Rozkłady kinematyczne (a)

Uniwersytet Warszawski

Rozkłady kinematyczne (b)

Wyznaczenie sygnału Υ

Metoda A:

Uniwersytet Warszawski

Przekrój czynny

Przekrój czynny na reakcje ep \rightarrow e Υ p:

$$\sigma_0 = \sum_i \sigma^{ep \to \Upsilon_i p} \cdot \mathcal{B}_i = \frac{N_{sig}(1 - f_{\text{pdiss}})}{\mathcal{AL}}$$

gdzie: B_i - stosunek rozgałęzień i-tego rezonansu, L - świetlność , f_{pdiss} = 0.25 ± 0.5 udział przypadków z dysocjacją protonu, A - akceptacja, N_{sig} – liczba przypadków sygnału

Przekrój czynny na reakcje ep \rightarrow e°(1S)p:

$$\sigma^{ep \to \Upsilon(1S)p} = \frac{f_{\Upsilon(1S)}}{\mathcal{B}_{\Upsilon(1S)}} \sigma_0$$

gdzie f $_{\Upsilon(1S)}$ – udział stanu $\Upsilon(1S) = 0.73^{+0.05}_{-0.06}$.

Przekrój czynny na reakcje $\gamma p \rightarrow \Upsilon(1S)p$:

$$\sigma^{\gamma p \to \Upsilon(1S)p} = \frac{1}{\Phi} \sigma^{ep \to \Upsilon(1S)p}$$

gdzie czynnik strumienia
$$\Phi = \frac{\int_{\Delta Q^2} \int_{\Delta W} dQ^2 dW(\frac{2W}{s}) \Gamma_T(\frac{1+\epsilon R}{1+R}) \sigma^{\gamma p}(Q_0^2, W_0)}{\sigma^{\gamma p}(Q^2, W)} \quad \text{oraz:}$$

$$\sigma^{\gamma p}(Q^2, W) \sim \frac{W^{\delta}}{(Q^2 + M_V^2)^n} \, {}^{\prime} R(Q^2) = \frac{\xi \frac{Q^2}{\Lambda^2}}{1 + \chi \xi \frac{Q^2}{\Lambda^2}} \, {}^{\prime} \qquad n = 2.5, \ \delta = 1.2, \ \Lambda = M_V, \\ \chi = 0.66, \ \xi = 0.33$$

Zestawienie wyników

W range (GeV)	60 - 130	130 - 220	60-220
$N_{\rm tot}$	159 ± 13	135 ± 12	294 ± 17
$N_{\rm BH}$	118 ± 11	91 ± 10	209 ± 14
$N_{ m sig}$	41 ± 13	44 ± 12	85 ± 17
$N_{\Upsilon(1S)}$	30 ± 9	32 ± 8	62 ± 12
\mathcal{A}	0.216	0.230	0.227
$\sum_{i} \sigma^{ep \to \Upsilon_i p} \cdot \mathcal{B}_i \ (pb)$	$0.30 \pm 0.09^{+0.08}_{-0.04}$	$0.31 \pm 0.08^{+0.04}_{-0.10}$	$0.60 \pm 0.12^{+0.07}_{-0.09}$
$\sigma^{ep \to \Upsilon(1S)p} \ (pb)$	$9.0 \pm 2.8^{+2.5}_{-1.2}$	$9.0 \pm 2.4^{+1.3}_{-2.9}$	$17.7 \pm 3.6^{+2.3}_{-2.9}$
Φ	0.055	0.028	0.074
$W_0 \; (\text{GeV})$	100	180	140
$\sum_{i} \sigma^{\gamma p \to \Upsilon_{i} p} \cdot \mathcal{B}_{i} \ (pb)$	$5.5 \pm 1.7^{+1.5}_{-0.7}$	$10.9 \pm 2.9^{+1.5}_{-3.5}$	$8.1 \pm 1.6^{+1.0}_{-1.2}$
$\sigma^{\gamma p \to \Upsilon(1S)p} (pb)$	$1\overline{63\pm 50^{+46}_{-22}}$	$321\pm85^{+47}_{-106}$	$239 \pm 48^{+31}_{-39}$

Przekrój czynny - porównanie z danymi

• większa dokładność

• pierwszy pomiar w dla dwóch wartości W

Przekrój czynny – porównanie z innymi pomiarami

twarda skala dla dużych wartości skali (Q²+M²)

Przekrój czynny - porównanie z modelami

Przekrój czynny - porównanie z modem IKS

Preferowana pośrednia wartość skali

Przekrój czynny - porównanie z modelem FMS

Uniwersytet Warszawski

Przekrój czynny - porównanie z modelem MNRT

Przekrój czynny - porównanie z modelem RSS

RSS – A. **Rybarska**, W. **Schäfer** and A. **Szczurek**, Phys. Lett. B 668 (2008), p. 126.

k_T,p_T

Coulombowska:

$$\psi_{1S}(p^2) = \frac{C_1}{\sqrt{M}} \frac{1}{(1+a_1^2p^2)^2}$$

Gaussowska:

$$\psi_{1S}(p^2) = C_1 \exp\left(-\frac{p^2 a_1^2}{2}\right)$$

Zależność od |t| dla (Υ)

Elastyczna produkcja: $b \approx 4 - 12 \text{ GeV}^2$, zależny od M², Q² Produkcja z dysocjacją protonu : $b \approx 0.7 \text{ GeV}^2$, nie zależy od M², Q² EPC C24, 345-360 (2002)

Zależność od |t| dla (Υ)

Ta sama selekcja przypadków + przypadki wyselekcjonowane przez układ wyzwalania detektora BAC

Po raz pierwszy pomiar b dla Upsilona:

Zależność od |t| dla (Υ) porównanie z innymi wynikami

RSS

Podsumowanie i dyskusja wyników

Zmierzono przekrój czynny na fotoprodukcję mezonu Υ w funkcji energii w środku masy, W (po raz pierwszy).

Pomiar wykonany w mionowym kanale rozpadu ($\Upsilon \rightarrow \mu^+ \mu^-$).

Modele FMS, MNRT, RSS Gauss, IKS(μ=7) są w zgodzie z otrzymanymi wynikami Modele IKS(μ=1.3), RSS Coulomb nie opisują danych doświadczalnych.

Pomiar b w zgodzie z istniejącymi założeniami.