

Akceleratory przyszłości dla Fabryki Neutrin i fizyki mionów

J. Pasternak, Imperial College, London / RAL STFC

Plan:

- Wprowadzenie.
- Fabryka Neutrin instrument precyzyjnej fizyki neutrin.
- Poszukiwanie łamania liczby leptonowej w sektorze naładowanych leptonów (COMET/PRIME).
- Perspektywy dla zderzacza mionów.
- Podsumowanie.

Standardowy Model Neutrin

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

Dane eksperymentalne:

$$\begin{array}{c} \theta_{12} \subset \{32.3^{\circ} \rightarrow 37.8^{\circ}\} \\ \theta_{31} \subset \{36.9^{\circ} \rightarrow 51.3^{\circ}\} \\ \theta_{13} < 10.3^{\circ} \\ \Delta m_{21}^2 = (7.66 \pm 0.35) \times 10^{-5} \ \mathrm{eV}^2 \\ \Delta m_{31}^2 = (2.38 \pm 0.27) \times 10^{-3} \ \mathrm{eV}^2 \end{array}$$

Nic nie wiadomo o fazie łamania symetrii CP!

Perspektywy poszukiwania theta₁₃

08.10.10, UW

Projekt Fabryka Neutrin

Międzynarodowe Studium Projektowe Fabryki Neutrin – International Design Study (IDS-NF)

IDS-NF Steering Group			
Committee			
A Blondel	Geneva		
MZisman	LBNL		
Y Kuno	Osaka		
K Long	Imperial (Chair)		
Accelerator Conveners			
S Berg	BNL		
Y. Mori	Kyoto		
C. Prior	STFC		
J. Pozimski	Imperial		
Detector Conveners			
A Bross	FNAL		
P Soler	Glasgow		
N. Mondal	Mumbai		
A. Cervera	Valencia		
Physics and Performance Evaluation Group Conveners			
A Donini	Madrid		
P. Huber	CERN		
S. Pascoli	Durham University		
W. Winter	Universität Würzburg		
O. Yasuda	Tokyo Metropolitan University		

www.ids-nf.org/

08.10.10, UW

Perspektywy poszukiwania łamania symetrii CP w Fabryce Neutrin

08.10.10, UW

Optymalizacja parametrów FN

 Potrzebne są dwa detektory o długości baz ~ 7500 km i 4000 km.

violation: 30

• Wymagana energia ok. 25 GeV.

Huber, Lindner, Rolinec, Winter, Phys.Rev.D74:073003,2006

Daleki Detektor dla Fabryki Neutrin

Niskoenergetyczna Fabryka Neutrin

08.10.10, UW

Możliwa lokalizacja w USA

A. Bross, Fermilab

Porównanie czułości z innymi projektami, P. Huber

J. Pasternak

Akcelerator protonowy

08.10.10, UW

Przykład, akcelerator protonowy dla CERN-u (M. Aiba)

- Liniowy akcelerator jonów H⁻.
- Pierścień akumulacji protonów.
- Pierścień kompresji paczek.

Akcelerator protonowy w RAL, UK

- W RAL pod Oxfordem istnieje akceleratorowe źródło neutronów przy synchrotronie ISIS (800 MeV, 50 Hz).
- Auktualna moc ~250 kW ale istnieje program zwiększenia mocy do 5 MW.
- Przy takiej mocy można pomyśleć o konstrukcji wspólnego akceleratora do produkcji neutronów i dla Fabryki Neutrin.

J. Pasternak

Wspólny Akcelerator Protonowy do produkcji neutronów i dla Fabryki Neutrin

- Bazuje na "nowej" ISIS z linakiem o energii 0.8 GeV i szybko cyklującym synchrotronie (RCS)- 3.2 GeV.
- Wymagany jest dodatkowy RCS.
- Motywacja: źródło jonów, RFQ, chopper, linak, akumulacja protonów i przyspieszanie do 3.2 GeV są wsólne!

Tarcza Rtęciowa

- Tarcza w postaci strumienia rtęci ze względu na olbrzymią moc wiązki (4 MW).
- Wysokie pole magnetyczne dla optymalizacji przechwytywania pionów.
- Basen rtęciowy jako hamulec wiązki i strumienia rtęci.

J. Pasternak

Front-End Mionowy

- Front end służy przygotowaniu wiązki do przyspieszania.
- Wiązka mionów jest podzielona na mniejsze paczki.
- Jej rozmycie energetyczne ulega zmniejszeniu.
- Emitancja wiązki (objętość w przestrzeni fazowej) ulega zmniejszeniu w chłodzeniu jonizacyjnym.

Podstawy chłodznia jonizacyjnego

- Cząstka przechodzi kolejno przez absorber (ciekły wodór) i wnękę przyspieszającą (RF).
- Uzyskuje się efekt redukcji pędu poprzecznego.
- Ważne jest mocne skupianie (w polu magnetycznym solenoidów) oraz niskie Z absorberów.

MICE

Przyspieszanie mionów

- Wymagana jest duża akceptancja i duży gradient przyspieszający ze względu na krótki czas życia mionów (2.2 us w spoczynku).
- Zaproponowany jest kompleks akceleratorów: linak, dwa RLA (Recirculating Linear Accelerator) oraz FFAG.

Przyspieszanie mionów dla Fabryki Neutrin (FN) w obecnych projektach zawiera akceleratory typu FFAG pracujące przy stałej częstości RF.

J. Pasternak

Definicja akceleratora typu FFAG – Fixed Field Alternating Gradient

Typ Akcelerator	Cyclotron	Synchrotron	FFAG
Pole magnetyczne	stałe	zmienne	stałe
Częstotliwość RF-u	stała	zmienna	zmienna (nie zawsze)
Orbita	zmienna	stała	zmienna

Definicja i klasyfikacja FFAG

FFAG:

- •Pierścień z siecią magnetyczną charakteryzującą się bardzo dużą akceptancją energetyczną, silnym skupianiem i małą dyspersją.
- •Wygląda jak synchrotron (mała różnica między orbitą początkową i końcową).
- •Częstość powtarzania bardzo duża (100 Hz 1kHz) lub praca ciągła (jak cyklotron).
- •Łatwy w obsłudze.
- •Bardzo szybkie przyspieszanie.

Rodzaj FFAG

Skalujący (scaling)

Pole magnetyczne

Orbity

Dyspersja

Tune

 $B = B_0 \left(\frac{R}{R_0}\right)^k$ skalują się

mała

stały (w praktyce prawie stały)

J. Pasternak

Nieskalujący (nonscaling)

liniowe (nie zawsze)

nie skalują się

bardzo mała

zmienia się z energią (nie zawsze)

Przykład akceleratorów FFAG, pierścienie w KURRI, Japonia

System 3 skalujących pierścieni FFAG zbudowanych w KURRI w celu badań nad systemami ADS. Obecnie w trakcie testów z wiązką.

EMMA (Electron Model for Many Applications)

EMMA – pierwszy pierścień nieskalujący:Model akceleratora mionów dla Fabryki Neutrin.

- •Doświadczalna demonstracja nowego rodzaju przyspieszania (10 –20 MeV).
- Doświadczenia nad szybkim przekraczaniem rezonansów.
- •Realizowany w Daresbury przy ALICE.

Motywacja dla nieskalującego FFAG jako akceleratora mionów

- Quasi-isochronous czas przelotu cząstki prawie nie zależy od energii.
- Liniowe pola magnetyczne duża akceptancja dynamiczna i proste magnesy.
- Mała dyspersja niski koszt.

Główny problem:

• Wprowadzanie/wyprowadzanie wiązki.

Aktualne parametry FFAG

Long Drift (m)	3.0	3.5	4.0	4.5	5.0
Cells	60	60	64	64	64
D length (m)	1.903800	1.803061	2.214080	2.095687	2.251117
D angle (mrad)	158.881	161.152	152.826	155.343	156.837
D shift (mm)	36.435	35.699	39.256	38.593	41.003
D field (T)	5.02885	5.37290	4.17163	4.46908	4.20784
D gradient (T/m)	-17.75656	-19.69323	-13.83029	-15.25579	-13.55592
F length (m)	1.143172	0.943586	1.232769	1.042002	1.086572
F angle (mrad)	-27.081	-28.216	-27.326	-28.584	-29.331
F shift (mm)	9.700	10.676	11.848	12.773	13.907
F field (T)	-1.24996	-1.55950	-1.15531	-1.41881	-1.39381
F gradient (T/m)	19.22556	24.47768	16.01219	19.75387	18.04570
Cavity cells	88	88	96	96	96
RF voltage (MV)	1090.503	1050.061	1175.028	1144.173	1213.861
turns	12.9	13.4	12.0	12.3	11.6
D radius (mm)	115	117	127	129	137
D max field (T)	7.1	7.7	5.9	6.4	6.1
F radius (mm)	153	145	162	155	163
F max field (T)	4.2	5.1	3.7	4.5	4.3
Circumference (m)	492	492	620	620	667
Decay (%)	5.5	5.7	6.4	6.6	6.7
Cost (A.U.)	167	175	181	188	193

TABLE III. Lattices with cell periods of a half integer number of RF periods.

Wprowaczanie/wyprowadzanie wiązki

Założenia:

•Ponieważ wiązka jest duża i ma 12.6/25 GeV potrzebnych jest wiele kickerów.

 Stosując symetryczną geometrię można użyć tych samych kickerów dla obu znaków mionów .

Wprowadzanie wiązki - Triplet

•Potrzebne są 3 kickery o długości 2.4 m i polu 0.0855 T oraz septum o długości 2.4 m i 2 T.

Perspektywy na przyszłość

Fabryka Neutrin@ Fermilab,K. Gollwitzer

Poszukiwanie łamania liczby leptonowej w sektorze naładowanych leptonów:

- Ponieważ łamanie liczby leptonowej dla naładowanych leptonów (cLFV) jest silnie tłumione w Modelu Standardowym, jego wykrycie byłoby sygnałem Nowej Fizyki!
- Poszukiwania te są komplementarne do LHC.
- Proces μ^- + N(A,Z) $\rightarrow e^-$ + N(A,Z) wydaje się najlepszy dla poszukiwana cLFV.
- Tło jest zdominowane przez wiązkę, którą można udoskonalić.

To ważny test dla modeli supersymetrycznych!

Poszukiwanie konwersji mionu w elektron

- The COherent Muon to Electron Transition (COMET) jest planowany w J-PARC, Japonia.
- Mu2e jest planowany w Fermilabie
- The Phase Rotated Intense Slow Muon (PRISM) osiągnie 100-u krotnie lepszą czułośc i może być następną fazą eksperymentu COMET.

PRISM- motywacja

- Dzięki obrotowi fazy RF w pierścieniu PRISM uzyskuje się wiązkę mionową o małym rozmyciu pędowym.
- Ring działa również jako filtr i "czyści wiązkę z zanieczyszczeń (pionów, antyprotonów etc).
- Istnieje projekt pierścienia PRISM i pierścień testowy został skostruowany w Osace (Y. Kuno, A. Sato).
- Obrót fazy został przetestowany z użyciem cząstek alfa.

Phase

PRISM-PRIME –geometria eksperymentu

08.10.10, UW

PRISM Task Force

Celem jest rozwiązanie problemów technologicznych na drodze do eksperymentu poszukiwanie konwersji mionu w elektron z użyciem pierścienia FFAG oraz R&D dla Fabryki Neutrin i fizyki mionów.

Badania obejmują:

- Fizykę mionów,

- Akceleratory protonowe,

- Linie transportu pionów/mionów,

 wprowadzanie /wyprowadzanie wiązki z pierścienia PRISM,

- alternatywny projekt pierścienia FFAG,

- Studia nad systemami FFAG (RF, kickery etc).

PRISM Task Force

J. Pasternak, Imperial College London, UK/RAL STFC, UK (contact: j.pasternak@imperial.ac.uk) L. J. Jenner, A. Kurup, Imperial College London, UK/Fermilab, USA M. Aslaninejad, Y. Uchida, Imperial College London, UK B. Muratori, S. L. Smith, Cockcroft Institute, Warrington, UK/STFC-DL-ASTeC, Warrington, UK K. M. Hock, Cockcroft Institute, Warrington, UK/University of Liverpool, UK R. J. Barlow, Cockcroft Institute, Warrington, UK/University of Manchester, UK C. Ohmori, KEK/JAEA, Ibaraki-ken, Japan H. Witte, T. Yokoi, JAI, Oxford University, UK J-B. Lagrange, Y. Mori, Kyoto University, KURRI, Osaka, Japan Y. Kuno, A. Sato, Osaka University, Osaka, Japan D. Kelliher, S. Machida, C. Prior, STFC-RAL-ASTeC, Harwell, UK M. Lancaster, UCL, London, UK

Nowy projekt pierścienia PRISM- zaawansowane FFAG (J-B. Lagrange et al.)

PRISM LATTICE

Bending cell	
k	6.5
Average radius	$3.5\mathrm{m}$
Phase advances:	
horizontal μ_x	$90 \deg$.
vertical μ_z	$90 \deg$.
Dispersion	$0.47\mathrm{m}$

Straight cell	
n/ ho	$2.14 m^{-1}$
Length	3m
Phase advances:	
horizontal μ_x	$24 \deg.$
vertical μ_z	$87 \deg.$

J. Pasternak

Sprzężenie linii transportowej z pierścieniem

Motywacja dla zderzacza mionów Masa elektronu: 0.511 MeV/c²

- Masa mionu: 106 Mev/c² •
- Zaniedbywalne promieniowanie • synchrotronowe ($\propto m^4$).
- Umożliwia to skonstruowanie • pierścieni mionowych do przyspieszania oraz jako zderzacza.
- Umożliwia uzyskanie wysokiej • świetlności!
- Miony potencjalnie mają duże ulletsprzężenie do Higgsa!
- Problem: chłodzenie mionów! •

Badania nad chłodzeniem mionów dla zderzacza mionów

- Chłodzenie mionów w Fabryce Neutrin jest dalece niewystarczające dla Zderzacza Mionów.
- Potrzebne jest 6 wymiarowe chłodzenie!
- Potrzebny jest mechanizm wymiany emitancji między płaszczyzną poprzeczną i podłużną w przestrzeni fazowej.
- W tym celu wprowadza się dyspersję w kanałach chłodzenia i uzyskuje się efekt korelacji drogi poprzez absorber od energii mionu.
- W praktyce uzyskuje się to poprzez specjalną geometrię magnesu.

Symulacja dynamiki oraz prototyp magnesu dla HCC (Helical Cooling Channel), R. Johnson, Muons Inc.

Możliwy schemat zderzacza mionów, (R. Johnson, Muons Inc.)

Scenariusze rozwoju akceleratorów mionowych w Fermilab-ie:

Podsumowanie

- Prace nad Fabryką Neutrin trwają.
- Czekamy na wyniki obecnych eksperymentów!
- Koncepcyjny projekt FN będzie gotowy w 2012.
- Przyszłość akceleratorów mionowych zapowiada się interesująco!
- Eksperymenty poszukujące konwersji mionu w elektron mają interesujący potencjał fizyczny jak również dają szansę rozwijać piękną fizykę akceleratorów, która może okazać się kluczowa dla Fabryki Neutrin i Zderzacza Mionów.
- Zderzacz mionów to maszyna marzeń dla fizyków akceleratorów, prace nad nim trwają i uzyskano widoczny postęp.

Dziękuję za uwagę!