Oscylacje neutrin i antyneutrin w eksperymencie MINOS

Katarzyna Grzelak

Zakład Cząstek i Oddziaływań Fundamentalnych IFD UW

11.03.2011

K.Grzelak (UW ZCiOF)

1/45

• • • • • • • •

- 3 Eksperyment MINOS
- Oscylacje neutrin/antyneutrin akceleratorowych w MINOS'ie

イロト イ団ト イヨト イヨト

- MINOS: eksperyment zbudowany w celu potwierdzenia hipotezy oscylacji neutrin i precyzyjnego zmierzenia parametrów modelu oscylacji
- Unikalny eksperyment, pozwalający na bezpośrednie porównanie oscylacji neutrin i antyneutrin
- Kontrolowana wiązka neutrin z akceleratora (źródło wiązki w ośrodku Fermilab pod Chicago)
- Pierwsze oddziaływanie neutrina z wiązki w dalekim detektorze: 7 marzec 2005

イロト イポト イヨト イヨト

MACIERZ MIESZANIA DLA NEUTRIN

Trzy zapachy neutrin jako kombinacja trzech stanów własnych masy.

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$
neutrina poszukiwane deficyt neutrin słonecznych reutrin sł

BADANIE ZJAWISKA OSCYLACJI W EKSPERYMENTACH AKCELERATOROWYCH Z DŁUGĄ BAZĄ

- Parametry modelu oscylacji neutrin: 3 kąty mieszania θ_{23} , θ_{13} i θ_{12} , 1 faza δ i dla trzech rodzajów neutrin 2 niezależne różnice mas Δm^2 . ($\Delta m_{kj}^2 \equiv m_k^2 m_j^2$)
- Obserwacje znikania neutrin mionowych

$$P(
u_{\mu}
ightarrow
u_{\mu}) \simeq 1 - \sin^2 2 heta_{23} \sin^2 rac{1.27 \Delta m_{atm}^2 L}{E_{
u}}$$

過す イヨト イヨ

WIĄZKA NEUTRIN NuMI

1

イロト イロト イヨト イヨト

 Protony o energii 120 GeV z akceleratora Main Injector w Fermilabie

イロト イロト イヨト イヨト

WIĄZKA WTÓRNA - MOD NEUTRINOWY

A (10) × (10) × (10)

WIĄZKA WTÓRNA - MOD ANTYNEUTRINOWY

・ 同 ト ・ ヨ ト ・ ヨ ト

Przeanalizowane dane:

- 7.2 × 10²⁰pot (neutrina)
- 3.2 × 10²⁰pot (antyneutrina, wiązka neutrinowa)
- 1.7 × 10²⁰pot (antyneutrina, wiązka antyneutrinowa)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

EKSPERYMENT MINOS

イロト イ団ト イヨト イヨト

Eksperyment MINOS:

29 instytucji, 125 fizyków Instytucje: Argonne, Athens, Brookhaven, Caltech, Cambridge, Campinas, Fermilab, Goias, Harvard, Holy Cross, IIT, Indiana, Iowa, Minnesota, Minnesota-Duluth, Otterbein, Oxford, Pittsburgh, Rutherford, Sao Paulo, South Carolina, Stanford, Sussex, Texas A&M, Texas-Austin, Tufts, UCL, Uniwersytet Warszawski, William&Mary

Eksperyment MINOS:

- kontrolowana wiązka neutrin z akceleratora
- dwa podziemne detektory w odległości 735km (czas przelotu neutrina pomiędzy detektorami: ~ 2.5ms):
 - Bliski Detektor (ND) (1kt) w ośrodku Fermilab pod Chicago
 - Daleki Detektor (FD) (5.4 kt) w kopalni Soudan, w Minnesocie

< ロ ト < 同 ト < 三 ト < 三 ト

POŁOŻENIE DETEKTORÓW

- Daleki Detektor (FD) → poszukiwanie oscylacji
- Bliski Detektor (ND) → widmo energii niezakłócone przez oscylacje

伺下 イヨト イヨト

MINOS: BLISKI I DALEKI DETEKTOR

ND

FD

イロト イロト イヨト イヨト

MINOS: BLISKI I DALEKI DETEKTOR

RODZAJE ODDZIAŁYWAŃ NEUTRIN w MINOS'ie

• $\nu_{\mu} N \rightarrow \mu X$

 Sygnaturą oddziaływania CC ν_μ jest obecność toru mionu

→ Ξ > < Ξ</p>

4 A 1

•
$$E_{\nu} = E_{shower} + E_{\mu}$$

TOPOLOGIE PRZYPADKÓW Z WIĄZKI NuMI

Monte Carlo, Daleki Detektor

K.Grzelak (UW ZCiOF)

ZANIKANIE ν_{μ} Z WIĄZKI

K.Grzelak (UW ZCiOF)

크

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ -

• • • • • • • •

SELEKCJA PRZYPADKÓW C $\overline{C} \nu_{\mu}$ 2008

- Ozas rejestracji oddziaływania zgodny z czasem wiązki NuMI
- Oc najmniej jeden dobrze zrekonstruowany tor (kandydat na mion)
- Wierzchołek oddziaływania w wiarygodnym obszarze detektora (fiducial volume):

- Miony z ujemnym ładunkiem (wybór u_{μ})
- Cięcie na parametrze PID (Particle IDentification), używanym do selekcji oddziaływań NC i CC - algorytm kNN (k-NearestNeighbours)

SELEKCJA PRZYPADKÓW CC ν_{μ} 2011 - GŁÓWNE ZMIANY

w stosunku do analizy z 2008 roku

- poprawa rozdzielczości energetycznej dla kaskad hadronowych z przedziału 1-1.5 GeV z 55% na 43%.
- Tory nie muszą mieć zrekonstruowanego ujemnego ładunku (odzyskiwanie niskoenergetycznych przypadków)
- Dodana dodatkowa klasa oddziaływań (zwiększa dwukrotnie statystykę) z wierzchołkami z mniej wiarygodnego obszaru detektora i z otaczającej skały.

イロト イポト イヨト イヨト

WIĄZKA WTÓRNA - LICZBA PRZYPADKÓW CC ν_{μ} W CZASIE

Skok związany z wypełnieniem rury rozpadowej helem.

WIĄZKA WTÓRNA - STABILNOŚĆ WIĄZKI NEUTRINOWEJ

A (10) × (10)

WIĄZKA WTÓRNA - WIDMA UŻYWANYCH WIĄZEK NEUTRINOWYCH

Bliski Detektor (ND)

K.Grzelak (UW ZCiOF)

イロト イロト イヨト イヨト

Wszystkie kryteria selekcji przypadków i procedury przeprowadzania analizy zdefiniowane bez dostępu do pełnych danych z Dalekiego Detektora

イロト イポト イヨト イヨト

Daleki Detektor (FD)

< □ > < □ > < □ > < □ > < □ >

Daleki Detektor (FD)

< 🗇 🕨

Wyniki dla całkowicie i częściowo

zrekonstruowanych przypadków

イロト イポト イヨト イヨト

イロト イロト イヨト イヨト

Porównanie liczb przypadków (FD) przewidywanych (brak oscylacji) i obserwowanych.

Wiązka	POT	Teoria		Pomiar	
	(10 ²⁰)	(bez oscylacji)			
		częściowo	całkowicie	częściowo	całkowicie
		zrekonstru-	zrekonstru-	zrekonstru-	zrekonstru-
		owane	owane	owane	owane
LE (I)	1.269	426	375	318	357
LE (II)	1.943	639	565	511	555
LE (III)	3.881	1252	1130	1037	977
HE	0.153	134	136	120	128
Suma	7.246	2451	2206	1986	2017

イロト イ団ト イヨト イヨト

Główne źródła błędów systematycznych:

- dla Δm^2 :
 - energia kaskady hadronowej
 - energia mionu (zasięg 2%, krzywizna 3%)
 - względna normalizacja pomiędzy detektorami (1.6%)
- dla sin² $2\theta_{23}$
 - tło od oddziaływań NC (20%)

Wyniki dla wszystkich przypadków

・ 同 ト ・ ヨ ト ・ ヨ

ZANIKANIE $\overline{\nu_{\mu}}$ Z WIĄZKI

K.Grzelak (UW ZCiOF)

크

◆ロト ◆掃 ト ◆注 ト ◆注 ト

- Analiza jak dla ν_{μ} w 2008 roku
- Mniejsza statystyka
- Potencjalnie większe tło
- Oddziaływania są mniej hadronowe (rozkład y)
- Błędy systematyczne bardzo podobne do analizy dla ν_μ (dodatkowa niepewność w związku z tłem od oddziaływań cc-ν_μ)
- Dominują błedy statystyczne

Bliski Detektor (ND)

< □ > < □ > < □ > < □ > < □ >

K.Grzelak (UW ZCiOF)

Wybrane zostały tylko przypadki z dodatnim mionem (Q/P>0)

A B F A B F

< <p>Image: A matrix and a matr

Wyniki

 $\Delta \overline{m}_{23}^2 = (3.36^{+0.46}_{-0.40}(stat.) \pm 0.06(syst.)) \times 10^{-3} eV^2,$ $\sin^2 2\overline{\theta_{23}} = 0.86 \pm 0.11(stat.) \pm 0.01(syst.)$ Zaobserwowano 97 przypadków. W przypadku braku oscylacji powinno być 155 przypadków. Tło: 2 NC, 6 ν_{μ} -CC, 0.3 $\overline{\nu}$ -CC

イロト イポト イヨト イヨト

E

イロト イロト イヨト イヨト

Wyniki dla antyneutrin z wiązki neutrinowej

Zaobserwowano 42 przypadki. Dla oscylacji identycznych jak dla neutrin oczekiwane są $58.3 \pm 7.6(stat.)^{+4.3}_{3.4}(syst.)$ Wkrótce wyniki dla dwa razy większej statystyki

• Zmierzone parametry oscylacji:

- Dla neutrin $\Delta m_{23}^2 = (2.32^{+0.12}_{-0.08}) \times 10^{-3} eV^2$, $\sin^2 2\overline{\theta_{23}} = 1.00$ (najlepsze dopasowanie)
- Dla antyneutrin $\Delta \overline{m}_{23}^2 = (3.36^{+0.46}_{-0.40}(stat.) \pm 0.06(syst.)) \times 10^{-3} eV^2$, $\sin^2 2\overline{\theta_{23}} = 0.86 \pm 0.11(stat.) \pm 0.01(syst.)$
- Znaczoność różnicy pomiędzy u_{μ} i $\overline{
 u_{\mu}}$ 2.3 σ

- MINOS kontynuuje zbieranie danych z wiązką antyneutrinową (oczekuje się podwojenia statystyki)
- Wkrótce ukończona zostanie analiza oddziaływań $\overline{\nu_{\mu}}$ z wiązki neutrinowej dla dwukrotnie większej statystyki
- Nie są przeanalizowane wszystkie dane dla oscylacji u_{μ}

伺 ト イヨト イヨト

- Jeżeli różnica pomiędzy ν i $\overline{\nu}$ się zwiększy:
 - modele łamiące CPT z różnymi masami dla neutrin i antyneutrin ? (M.C.Gonzales-Garcia, M.Maltoni, Phys.Rept. 460,1,2008)
 - niestandardowe oddziaływania z materią ? (W.Mann et al., Phys.Rev. D 82, 113010, 2010, J.Kopp et al., Phys.Rev.D 70, 111301(2004))
 - ...??

< ロト < 同ト < ヨト < ヨト