Pierwsze wyniki z eksperymentu LHCb

Marek Szczekowski Instytut Problemów Jądrowych

26 listopada 2010

1

Fizyka zapachów

Większość otwartych pytań w Modelu Standardowym (MS) ma związek z fizyką zapachów:

- Dlaczego istnieją 3 rodziny kwarków i leptonów ?
- Co powoduje olbrzymie różnice mas fermionów (m_t /m_u ~ 10⁵) ?
- Skąd biorą się elementy macierzy CKM i dlaczego hierarchia ?
- Co powoduje łamanie parzystości CP ?

Powiązanie z otwartymi pytaniami w kosmologii – MS nie jest w stanie opisać obserwowanej asymetrii materii i anymaterii w Wszechświecie.

Badanie fizyki zapachów wiele razy prowadziło do ważnych odkryć:

- BR($K_{L}^{0} \rightarrow \mu\mu$) i GIM \rightarrow przewidywanie cząstek powabnych
- Łamanie CP \rightarrow konieczna trzecia rodzina kwarków
- Pomiar mieszania mezonów $B \rightarrow masa kwarka t jest b. duża$

Dokładne pomiary procesów tłumionych w istniejących teoriach to doskonały sposób na poszukiwanie efektów Nowej Fizyki.

Zagadka zapachów w Nowej Fizyce

Nowa Fizyka \rightarrow nowe człony w lagranizanie: $L = L_{SM} + \frac{1}{\Lambda}L_5 + \frac{1}{\Lambda^2}L_6 + \dots$ gdzie Λ – skala energetyczna Nowej Fizyki na przykład wkłady od Nowej Fizyki do diagramów opisujących oscylacje neutralnych mezonów K, D, B i B_s : $L_{\Delta F=2} = \frac{g_{sd}}{\Lambda_{NF}^2} \left(\overline{d_L} \gamma_{\mu} s_L\right)^2 + \frac{g_{cu}}{\Lambda_{NF}^2} \left(\overline{c_L} \gamma_{\mu} u_L\right)^2 + \frac{g_{bd}}{\Lambda_{NF}^2} \left(\overline{d_L} \gamma_{\mu} b_L\right)^2 + \frac{g_{bs}}{\Lambda_{NF}^2} \left(\overline{s_L} \gamma_{\mu} b_L\right)^2$ K⁰- antyK⁰ B⁰ - antyB⁰ D⁰- antyD⁰ B⁰- antyB⁰ ale te Am są już dobrze pomierzone i zgodne z przewidywaniami MS : $\Delta m_{\kappa}/m_{\kappa} \sim 7.0 \ 10^{-15}$ 1. Jeśli $g_{ii} = O(1)$ to $\Lambda_{NF} = O(10^3 - 10^4) \text{TeV}$ $\Delta m_{\rm D}/m_{\rm D} \leq 2 \ 10^{-14}$ 2. Jeśli Λ_{NF}= O(1) TeV to struktura zapachów NF jest bardzo szczególna: $\Delta m_{\rm B}/m_{\rm B} \sim 6.3 \ 10^{-14}$ $g_{ii} \le 10^{-4} - 10^{-7}$ $\Delta m_{Bs}/m_{Bs} \sim 2.1 \ 10^{-12}$

CKMfitter 2010

Efekty Nowej Fizyki w oscylacjach można sparametryzować przez czynnik Δ_{a} :

$$\left\langle B_{q}^{0} \left| M_{12}^{SM+NP} \left| \overline{B}_{q}^{0} \right\rangle \equiv \Delta_{q}^{NP} \left\langle B_{q}^{0} \left| M_{12}^{SM} \left| \overline{B}_{q}^{0} \right\rangle \right| q = d, s \right.$$

$$\left[\Delta_{q}^{NP} = \operatorname{Re}(\Delta_{q}) + i \operatorname{Im}(\Delta_{q}) = \left| \Delta_{q} \right| e^{i\phi^{\Delta q}} = r_{q}^{2} e^{2i\theta_{q}} = 1 + h_{q} e^{2i\sigma_{q}}$$

Przed pomiarami z teleskopu Hubble'a... ...po pomiarach z teleskopu Hubble'a

Co mierzymy w eksperymencie LHCb ?

- Należy wybrać i zidentyfikować stan końcowy dla danego rozpadu mezonu B ⇒ potrzebny jest efektywny układ wyzwalania detektora (tryger) i identyfikacja cząstek
- Należy zmierzyć czas własny w rozpadzie mezonu B⁰: t = m_B L / p c a więc długość rozpadu L (typowo ~ 1 cm w LHCb) i wyznaczyć pęd p z analizy produktów rozpadu B (które mają ~ 1–100 GeV).
- Ponieważ mezony B⁰ oscylują należy również oznakować stan B w czasie produkcji: czy było to B⁰ czy anty-B⁰. Można do tego użyć ładunku leptonu lub kaonu z rozpadu drugiego hadronu b, bo b → c + W⁻ (→ I⁻ + v_I) a anty-b → anty-c + W⁺ (→ I⁺ + v_I)

Detektor LHCb jaki jest, każdy widzi

Efektywność pracy detektorów

8

Pierwszy dzień przy $\sqrt{s} = 7 \text{ TeV}$

pp collision at 3.5+3.5 TeV, March 30, 2010

Zdolność rozdzielcza w masie $B^+ \rightarrow J/\psi K^+$

Zdolności rozdzielcze bliskie oczekiwanym z MC:

J/ψ w LHC – dane z ICHEP 2010

CMS preliminary **CMS** preliminary ²1400 (1400 ²) Events / (0.02 GeV/c² 100 nb⁻¹ 450 CMS Preliminary, √s = 7 TeV 100 nb⁻¹ OS data OS data 400 1.4<|y|<2.4 SS data SS data |y|<1.4 signal+background Events / (0.02 350 signal+background 1000 background-only background-only $N_{J/\Psi} / nb^{-1} \approx 73$ 300 $N_{J/\Psi} / nb^{-1} \approx 17$ 800 $\sigma = 47 \text{ MeV/c}^2$ σ= 30 MeV/c² 250 $\sigma = 47 \text{ MeV/c}^2$ 600 200 $\sigma = 30 \text{ MeV/c}^2$ 150 400 100 200 50 3.1 3.2 3.3 3.4 0[⊑] 2.6 2.6 3 3.1 3.2 3.3 3.4 3.5 2.7 2.8 2.9 2.7 2.9 3 3.5 2.8 Dimuon invariant mass [GeV/c²] Dimuon invariant mass [GeV/c²] 350 Entries/0.080 [GeV⁻¹] Events / 10 MeV/c² 00 000 000 000 **ATLAS** preliminary LHCb preliminary 300 • 7 TeV data: opposite sign 2.5<|y|<4 Total fit 14.2 nb⁻¹ 9.5 nb⁻¹ 250 ---- Background fit $N_{J/\psi}$ / nb⁻¹ \approx 71 $N_{J/\Psi} / nb^{-1} \approx 202$ |y|<2.25 200 $\sigma = 71 \text{ MeV/c}^2$ $\sigma = 15 \text{ MeV/c}^2$ 150 400 100 and a start start 200 50 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 2800 3000 3200 3400 J/ψ mass [GeV] $M(\mu^+\mu^-)$ (MeV/c²)

11

MENU DNIA

• przystawki

- cząstki mniej lub bardziej egzotyczne
- przekrój czynny dla pp \rightarrow b anty-b X

• danie główne

- cząstki powabne : mieszanie i łamanie CP
- deser
 - bardzo rzadki rozpad $B_s \rightarrow \mu \mu$

Spektroskopia w LHCb: upsilony, chi, psi, X

Bariony piękne i powabne: Λ_b^0 (udb) i Λ_c^+ (udc) w LHCb

15

Cząstki powabne i piękne w zderzeniach hadronowych

Bezpośrednia produkcja mezonów D

Mezony D z rozpadów cząstek pięknych

Parametr zderzenia (IP) służy do rozdzielenia przekrojów czynnych c anty-c i b anty-b

Przekrój czynny pp \rightarrow bbX z B \rightarrow D⁰ μ X

 $BR(b \rightarrow D^0 \mu v X) = 6.82 \pm 0.35 \%$

Events / (0.5

350

300

250

200

150

100

50F

Duże tło od bezpośredniej produkcji D można usunąć przez dołączenie mionu (I) o dobrym znaku: $b \rightarrow cW^{-}(\rightarrow \mu^{-})$ w wierzchołku B

Korelacje z dobrym znakiem

18

$Przekrój~czynny~pp \rightarrow bbX~z~B{\rightarrow}D^0~\mu X$

liczba przypadków D⁰µ⁻ i Dº µ⁺

 $\sigma(pp \rightarrow h_b X) = \frac{1}{2 L \epsilon BR(b \rightarrow D^0 \mu v X) BR(D^0 \rightarrow K^- \pi^+)}$

Ułamek fragmentacji b $\rightarrow h_b$ z LEP lub Tevatronu.

Błąd systematyczny zdominowany przez błąd wyznaczania świetlności ok. 10%

σ (pp→H_bX) = 75.3 ± 5.4 ± 13.0 μb dla 2<η< 6 √s=7 TeV

Ekstrapolując do 4π (PYTHIA 6.4): $\sigma(pp \rightarrow bbX) = 284 \pm 20 \pm 49 \ \mu b$

Uśredniając z wynikiem dla b \rightarrow J/ ψ X: σ (pp \rightarrow bbX) = 292 ± 15 ± 43 µb

Częstość produkcji kwarków b zgodna z założeniami przy symulacjach w LHCb: 500 µb przy √s =14 TeV → 220 µb przy √s = 7 TeV

Cząstki (jawnie) powabne

Łamanie CP i mieszanie D⁰-D⁰

- D⁰ (cu) jedyny mezon z kwarków górnych, który się miesza
- Pierwszy pomiar mieszania D⁰- antyD⁰ w 2007 r. (Belle, BaBar)
- Obserwacja mieszania otwiera drogę do znacznie bogatszej struktury łamania CP w cząstkach powabnych
- Lamanie CP w cząstkach powabnych b. małe w MS (10⁻³ 10⁻⁸)

→ okazja do poszukiwania NF bez tła MS

 Obecne pomiary mają dokładność ~ 1% → konieczne zejście do 0.1%. Możliwe w LHCb już przy ΔL ~ 100 pb⁻¹

Zmienne opisujące mieszanie i łamanie CP

Dwa stany zapachowe:

$$i\frac{\partial}{\partial t} \begin{pmatrix} D^{0}(t) \\ \overline{D}^{0}(t) \end{pmatrix} = \left(M - \frac{i}{2}\Gamma\right) \begin{pmatrix} D^{0}(t) \\ \overline{D}^{0}(t) \end{pmatrix}$$

Stany masowe (m₁,m₂): $|D_{1,2}\rangle = p |D^0\rangle \pm q |\overline{D}^0\rangle$

Mierzalne parametry x i y opisujące mieszanie :

$r = \frac{1}{2}$	$n_1 - m_2$	
$\lambda = -$	Γ	

W MS:

trudne do policzenia

 $y \equiv \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$

b. małe (tłumione przez GIM i CKM).Możliwy wkład od NF.

Łamanie CP : $φ_D$ = arg (M₁₂ / Γ₁₂) ≠ 0 |q/p| ≠ 1

asymetria CP ~ $x_p \sin 2\Phi_p$ a $x_p \sim 1\%$ (oscylacje baaaardzo wolne)

 $x_{D} = 0.98 \pm 0.25 \%$ $y_{D} = 0.83 \pm 0.16 \%$

(%)

 $\sum_{i=1}^{2}$

1.5

0.5

-0.5

|q/p|

23

|q/p|

Dobry i zły znak K oraz CF i DCS

Neutralne mezony D: rozpady faworyzowane przez kąt Cabibbo (**CF**), pojedynczo tłumione (λ) (**SCS**) i podwójnie tłumione (λ^2) (**DCS**)

 $\Gamma_{CF} : \Gamma_{SCS} : \Gamma_{DCS} = 1 : λ^2 : λ^4 \approx 1 : (1/20) : (1/400)$

Przy mieszaniu dwa źródła "złego znaku K" :1. DCS2.
$$D^0 \rightarrow anty D^0 \rightarrow CF$$
24

Różne pomiary mieszania i łamania CP w rozpadach D

Po obserwacji mieszania w D⁰ – antyD⁰ następnym krokiem jest znalezienie łamania CP.

Dwa rodzaje analizy:

- zależna od czasu
 - (łamanie CP w mieszaniu oraz mieszaniu i interferencji: 10⁻⁸ w MS)
- niezależna od czasu
 (bezpośrednie łamanie CP: 10⁻³ 10⁻⁴ w MS)
- Stany własne CP: pomiar y_{CP} z pomiaru stosunku czasów życia dla stanów z różnym CP
- Rozpady z "złym znakiem K": x² i y² z pomiaru czasów życia
- Rozkłady Dalitza w funkcji czasu → bezpośredni pomiar x i y
- Rozpady półleptonowe z "złym znakiem µ": pomiar częstości mieszania x i y. Sama obserwacja rozpadu WS: D⁰→ K^{(*)+} I⁻ v wskazuje na mieszanie.

W LHCb można użyć różnych hadronowych stanów końcowych w rozpadach D.

Łamanie CP w rozpadach dwuciałowych do stanów o różnym CP

Porównanie czasów życia rozpadu $D^0 \rightarrow K^- \pi^+$ (mieszanka CP= +1 i CP= -1) i rozpadów z CP= +1: $D^0 \rightarrow K^- K^+ (\pi^- \pi^+)$:

$$y_{CP} \equiv \frac{\tau(D^0 \to K^- \pi^+)}{\tau(D^0 \to K^- K^+, \pi^- \pi^+)} - 1 = y \cos \phi - \frac{1}{2} A_m x \sin \phi \quad \to \text{ y dla zachowania CP}$$
$$\left| \frac{q}{p} \right|^2 = 1 + A_m \qquad \qquad \text{PDG2010: } y_{CP} = (1.107 \pm 0.217) \%$$

Można użyć **znakowanych i nieznakowanych** D⁰.

Znakowane pomiary pozwalają zmierzyć asymetrię CP:

$$A_{\Gamma} \equiv \frac{\tau(\overline{D}^{0} \to K^{-}K^{+}) - \tau(D^{0} \to K^{-}K^{+})}{\tau(\overline{D}^{0} \to K^{-}K^{+}) + \tau(D^{0} \to K^{-}K^{+})} = \frac{1}{2}A_{m}y\cos\phi - x\sin\phi$$

PDG2010: $A_{\Gamma} = (1.4 \pm 2.7) \ 10^{-3}$

26

Łamanie CP w rozpadach dwuciałowych do stanów z "złym znakiem" Kπ

Dwie możliwości rozpadu D⁰ do stanu z "złym znakiem" π⁻ K⁺

Bez mieszania mamy
$$\Gamma_{ws}(t) \sim R_{D}e^{-rt}$$

Z mieszaniem drugi mechanizm się otwiera,
który modyfikuje $\Gamma_{ws}(t) \sim R_{D}e^{-rt}$
Zaniedbując łamanie CP:
 $\Gamma(t; D^{0} \rightarrow \pi^{-}K^{+}) \sim e^{-\Gamma t} \begin{bmatrix} R_{D} + \sqrt{R_{D}} y'\Gamma t + \frac{1}{4} (y'^{2} + x'^{2})(\Gamma t)^{2} \end{bmatrix}$
 $R_{D} \equiv \frac{\Gamma(DCS)}{\Gamma(CF)}$
DCS interferencja DCS oscylacje
 $x' \equiv x \cos \delta + y \sin \delta$
 $y' \equiv -x \sin \delta + y \cos \delta$
DIa łamania CP mamy taki sam wzór, ale różne
współczynniki $R_{D}^{\pm}, x'_{\pm}, y'_{\pm}$ dla rozpadów D⁰(+) i antyD⁰(-).
DIa rozpadów wielociałowych (np. D⁰ \rightarrow K⁺ π π ⁻D⁰) można
dopasowywać ten wzór dla różnych położeń na wykresie Dalitza.

Rozpad $D^0 \rightarrow K^- \pi^+$ (CF)

Dla 37 pb⁻¹ oczekujemy ok. **2 10⁶ przypadków** $D^0 \rightarrow K^- \pi^+ \rightarrow \sigma_{stat.} \approx 0.002 - 0.003$

Rozpad $D^0 \rightarrow K^- K^+$ (SCS)

Dla 37 pb⁻¹ oczekujemy ok. **2.5 10⁵ przypadków** $D^0 \rightarrow K^- K^+$

Rozpad $D^0 \rightarrow \pi^- \pi^+$ (SCS)

Rozpady wielociałowe D⁺ \rightarrow K⁺K⁻ π ⁺ (SCS)

Bardzo rzadki rozpad $B_s\!\!\rightarrow\mu\mu$

Bardzo rzadkie rozpady w MS: $BR(B_s^0 \rightarrow \mu^+\mu^-) = (3.35 \pm 0.32) \cdot 10^{-9}$ $BR(B_d^0 \rightarrow \mu^+\mu^-) = (1.03 \pm 0.09) \cdot 10^{-10}$

Ale czułe na NF, w szczególności na nowe cząstki skalarne, w MSSM: BR $\propto tan^6\beta$ / M^4_A

Dla przewidywań MS LHCb oczekuje 10 przypadków sygnału dla 1 fb⁻¹.

Obecne ograniczenia: BR($B_s^0 \rightarrow \mu^+\mu^-$) < 4.3·10⁻⁸ , BR($B_d^0 \rightarrow \mu^+\mu^-$) < 7.9·10⁻⁹ (95%CL) **CDF** BR($B_s^0 \rightarrow \mu^+\mu^-$) < 5.1·10⁻⁸ (95%CL) **D0**

Bardzo rzadki rozpad $B_s\!\!\rightarrow\mu\mu$ w LHCb: metoda

Metoda LHCb podobna do Tevatronu: luźna preselekcja (zoptymalizowana aby uzyskać podobne efektywności dla sygnału i kanałów kontrolnych: $B_{(s)} \rightarrow h^+h^-$, $B^+ \rightarrow J/\psi K^+$, $B \rightarrow J/\psi K^*$), a następnie konstrukcja globalnej funkcji wiarygodności.

Każdemu przypadkowi przypisujemy prawdopodobieństwo, że pochodzi z sygnału lub tła. (Sygnał

Globalna funkcja wiarygodności w trójwymiarowej przestrzeni zbudowana z:

- 'Wiarygodności geometrycznej' GL (topologia i czas życia)
- Wiarygodności masy niezmienniczej
- Wiarygodności identyfikacji cząstki (µ)

Z obserwacji przypadków można wyznaczyć granicę lub zmierzyć BR przez porównanie z znanym kanałem kontrolnym, np. B+→J/ψK+ (Sygnał skalibrowany na kanale kontrolnym; tło z przypadków $M_{\mu\mu}$ poza M_{Bs})

$B_s\!\!\rightarrow\mu\mu$ w LHCb: normalizacja

$$BR = BR_{cal} \times \frac{\epsilon_{cal}^{REC} \epsilon_{cal}^{SEL|REC} \epsilon_{cal}^{TRIG|SEL}}{\epsilon_{sig}^{REC} \epsilon_{sig}^{SEL|REC} \epsilon_{sig}^{TRIG|SEL}} \times \frac{f_{cal}}{f_{B_s^0}} \times \frac{N_{B_s^0 \to \mu^+ \mu^-}}{N_{cal}}$$

Główne źródło niepewności ≈ 13%

- Kanały do normalizacji :
 - $B^+ \rightarrow J/\psi K^+$
 - $B^0 \rightarrow J/\psi K^*$ Lepiej znane BR_{cal} ale zawierają błąd na f_d/f_s
 - $B^0 \rightarrow K^- \pi^+$
 - $B_s \rightarrow J/\psi \Phi$
 - $B_s \rightarrow D_s^- \pi^+$ Pomiary z Belle dla Y(5S), większy błąd dla BR_{cal}
 - B_s→K⁻K⁺

$B_s \rightarrow \mu \mu w LHCb$

Identyfikacja mionów, tryger i zła identyfikacja mionów zgodne z oczekiwaniami z MC:

Wiarygodność Geometryczna vs **masa niezmiennicza µµ** dla 0.2 pb⁻¹: brak przypadków w obszarze sygnału oraz ogólne własności tła zgodne z oczekiwaniami

$B_s \rightarrow \mu \mu$ w LHCb: oszacowanie tła

Dominuje tło kombinatoryczne od przypadków bb $\rightarrow \mu\mu$ (BR(b $\rightarrow \mu X) \approx 10\%$). Pozostałe tła od:

B→hh z podwójną złą identyfikacją h

(np. $BR(B_d \rightarrow K\pi) \approx 2 \ 10^{-5}$, $BR(B_d \rightarrow \pi \pi) \approx 5 \ 10^{-6}$, $BR(B_s \rightarrow KK) \approx 3 \ 10^{-5}$)

 $- B \rightarrow J/\psi (\mu\mu)h$ z h źle zidentyfikowanym jako mion:

(np. BR(B \rightarrow J/ $\psi\mu\nu$) \approx 5.10⁻⁵, BR(B_u \rightarrow J/ ψ K⁺) \approx 10⁻³)

są zaniedbywalnie małe

$B_s \rightarrow \mu \mu w LHCb$

Oczekiwana czułość w LHCb zakładając zmierzony przekrój czynny dla b anty-b (292 µb)

B_s →µµ w LHCb (ΔL = 20 pb⁻¹)

Oscylacje mezonów B

Pierwszy sygnał oscylacji w przypadkach rozpadu $B^0_{d} \rightarrow D^{*-}(D^0\pi^-) \mu^+\nu$

Bezpośrednie łamanie CP w B \rightarrow K π 35 pb⁻¹ Events / (0.0225 GeV/c LHCb HCb Preliminary Preliminary BR=2 10⁻⁵ 100 B_d ∖ \overline{B}_{d} √s = 7 TeV Data √s = 7 TeV Data 80 $K^-\pi^+$ $K^+\pi^-$ 60

40

20

 $A_{CP}(B^{\circ}) = -0.134 \pm 0.041$ $A_{CP}(B_{s}) = -0.43 \pm 0.17$

 $\overline{\mathsf{B}}_{\mathrm{s}}$

Events / (0.0225 GeV/c²) 00 00 00 01 051

40

20

$$A = A(B \to f) = A_1 + A_2 = |A_1|e^{i\delta_1}e^{i\phi_1} + |A_2|e^{i\delta_2}e^{i\phi_2}$$

$$\overline{A} = A(\overline{B} \to \overline{f}) = \overline{A_1} + \overline{A_2} = |A_1|e^{i\delta_1}e^{-i\phi_1} + |A_2|e^{i\delta_2}e^{-i\phi_2}$$

$$|A|^2 - |\overline{A}|^2 = -2A_1A_2\sin(\phi_1 - \phi_2)\sin(\delta_1 - \delta_2)$$

 B_{s}

5.5

BR=5 10⁻⁶

5.7

5.8

5.6

Plany

- najbliższy okres (konferencje zimowe) : 37 pb⁻¹
 - kilkanaście analiz różnorodnych tematów fizyki zapachów (b ale także c)
 - przetestowanie metod, teł itp.
 - dla $B_s \rightarrow \mu \mu$ wchodzimy w obszar CDF i D0
- średniookresowe (konferencje letnie): kilkaset pb⁻¹
 - dla Bs \rightarrow µµ wchodzimy w obszar SUSY (1-2 10⁻⁸)
 - $A_{FB} \ w B^0 \rightarrow K^{(*)} \mu \mu$ ok.1100 przypadków dla 1 fb⁻¹
 - J/ $\psi \phi$ i a_{FS} (prezentacja Artura Uklei 10.12.2010)

• 2011/2012 (2 fb⁻¹ / rok)

 dla dużej części pomiarów w fizyce zapachów i związanej NF (np.kąt γ, rozpady B_s …) eksperyment stanie się wiodącym i prawdopodobnie bez konkurencji przez jakiś czas.

• po zebraniu ok. 6 fb⁻¹ ("Run I")

 przebudowa detektora LHCb: przystosowaniedo pracy z L = 10³³ cm⁻²s⁻¹ (odczyt 40 MHz, nowy VeLo (piksel)...). Docelowo 60 fb⁻¹.

Podsumowanie

 Wbrew pewnym obawom wszystko wskazuje na to, że precyzyjna fizyka b (i c) jest możliwa w trudnych warunkach kolajdera hadronowego.

Detektor LHCb pracuje w sposób zbliżony do zakładanego w symulacjach MC.

Tła w większości rozpadów można w znacznej części usunąć.

 Akcelerator LHC szybko zwiększa świetlność (chociaż nie do końca w sposób optymalny dla fizyki LHCb) i w przyszłym roku możliwe jest osiągnięcie 1 fb^{-1.}
 To otwiera drogę do precyzyjnych pomiarów w poszukiwaniu

Nowej Fizyki.