ICHEP2010

21-28 VII 2010, Paris

$1495=12 W$

Maria Krawczyk IFT

Seminarium Fizyki Wielkich Energii 19.XI. 2010

ICHEP2010 Palais de

 Congres, Paris
1088 participants

plenary

6 parallel sessions 169 talks 132 posters

01 - Early Experience and Results from LHC

Sessions

02 - The Standard Model and Electroweak Symmetry Breaking
03 - Perturbative QCD, Jets and Diffractive Physics
04 - Hadronic Structure, Parton Distributions, soft QCD, Spectroscopy
05 - Heavy Quarks Properties (experiment and theory)
06 - CP violation, CKM and Rare Decays
07 - Neutrinos
08 - Heavy Ion Collisions and Soft Physics at Hadron Colliders
09 - Progress in Lattice Techniques and New Results
10 - Beyond the Standard Model (theory and experimental searches)
11 - Particle Astrophysics and Cosmology
12 - Beyond Quantum Field Theory Approaches (including String Theories)
13 - Advances in Instrumentation and Computing for HEP
14 - Future Machines and Projects

Highlights

LHC- first results
Tevatron - constraining the Higgs

M. le Président de la République Nicolas SARKOZY

La Nuit des Particules
http://www.ichep2010.fr/nuitdesparticules.htm/
N. SARKOZY..

Allow me, here, to pay tribute to the French scientific community working in your field. Our country cultivates materials science; the Nobel Prize that went to Pierre Gilles De Gennes is a case in point. Our physicists build on a long tradition of research in France, extending from Pierre and Marie Curie to George Charpak, the inventor of the multiwire proportional chamber, and recent Nobel laureate Albert Fert, to mention only those working in atomi physics.

With western economies going through a difficult period - a recession unlike any the world has experienced since 1929 governments are obviously tempted to postpone needed investments in science. If you were in our shoes, you would be tempted too.
But we in France took the opposite tack, considering that higher education and research are the solution to the recession. The economic downturn should not prompt us to postpone investment in science, but rather to bring it forward and consolidate it.

This talk - Riggs, mainly SM

extraordinary claims require extraordinary evidence. extraordinary claims require extraordinary extraordinary claims require extraordinary

Summary - M. Spiro

HIGHLIGHTS, VISION: Outline

LHC - the first results

Decided Scenario 2010-2011

Following the technical discussions in Chamonix

 (Jan 2010) the CERN management and the LHC experiments decided- Run at $3.5 \mathrm{TeV} /$ beam up to a integrated luminosity of at least $1 \mathrm{fb}^{-1}$.
- Then consolidate the whole machine for $7 \mathrm{TeV} /$ beam (during a shutdown in 2012)
- From 2013 onwards LHC will be capable of maximum energies and luminosities

Discovery Potential at LHC $1 \mathrm{fb}^{-1}$

3.5 TeV (end 2011 or beginning 2012)

- HIGGS competitive with the Tevatron
- Z': extend by a factor 2 the Tevatron potential
- SUSY from 400 GeV (Tevatron) to 800 GeV exclusions or discoveries
- Extra dimensions, mini black holes (extend by factor 2 the Tevatron limits (or discovery)

LHC

Some highlights

- High rapidity plateau: gluon gluon collider?
- Rediscovery of all Standard Model particles: $\mathrm{K}, \pi, \mathrm{p}, \Lambda, 1000 \Omega, 1000 \mathrm{~W}, 100 \mathrm{Z}, 10$ top
- Use data from less than a week!!!
- 100 papers
- Measurements of jets, di jets, soon α_{s} already competitive with Tevatron
- However uncertainties on luminosity and jet energy scale to be improved

International Linear Collider ILC Compact Linear Collider CLIC Vision for next machine (2030 ?)

i/f ${ }^{\text {e+e- } 500 \mathrm{GeV}}$
 IIL Mature

e+e- 3 TeV
Feasibility Study

crive beam 100 A. 239 ns
$238 \mathrm{GeV}-240 \mathrm{Hev}$

High Energy LHC $\geq 30 \mathrm{TeV}$
New Idea

Large Hadron electron Collider 40-140 GeV on 1-7 TeV e ${ }^{ \pm}$p, also eA

ep Linac-Ring configuration

The LHeC is a PeV equivalent fixed target ep scattering experiment, at 50000 times higher energy than the pioneering SLAC MIT experiment. It may need a LINAC not much longer than the 2 mile LINAC to the right. Its physics potential is extremely rich.

Q ${ }^{2}$

Pjejf

Can tunnel for LHeC Linac be build as first part of a LC tunnel at CERN ?
Tunnel studies for CLIC and ILC at CERN both have tunnels which are deeper underground than LHC and seen from top they both pass close to LHC ring center. Therefore they are not suited to send e^{-}beam tangential to LHC ring.

Approaching the moment of truth

- Higgs has no place to hide !

P Squeezing allowed mass from both sides

- 95% CL Exclusion $158<\mathrm{m}_{\mathrm{H}}<175 \mathrm{GeV}$ (about expected)

L Limit 1.5*SM @ 115 GeV

* BSM searches : consistent with SM
> 2 sigma is largest discrepancy in CDF MSSM H \rightarrow bb (so far)

MISSING PARTIIILLE:

Nane: Yiggs bosion
Age: 13.7 Si/iicn years
Missing: 45 years
Birthday: Every few doys at
Fermi/ad
Favorite trait: Mass
Favorite particle: top quark Favorite Hangout: Tavalron

2010 Sakurai Prize

for "elucidation of the properties of spontaneous symmetry breaking in four-dimensional relativistic gauge theory and of the mechanism for the consistent generation of vector boson masses."

PRL 13. 321-323 (1964)

Higgs

Hagen Guralnik Kibble

PRL 13, 508-509 (1964)
PRL 13. 585-587 (1964)

Motivation

$\sum_{w h}^{2 / 3}$ The Higgs boson is the only undiscovered
"elementary" particle in the Standard Model Its discovery will help answer the questions:
> How do fermions/weak bosons acquire mass?
> How EW symmetry is broken?

The SM can not predict the Higgs boson mass
> Needs to be determined by experiment !!
Status of SM Higgs Search
$\sum_{\text {mw }}^{3 / 3}$ Current constraint on the SM Higgs boson

- Precision electroweak measurements (top mass, W mass, etc)

$$
M_{H}=89_{-26}^{+35} \mathrm{GeV} / \mathrm{c}^{2} \quad M_{H}<158 \mathrm{GeV} / \mathrm{c}^{2}
$$

(LEP EWG 2010, http://lepewwg.web.cern.ch/LEPEWWG/

Tevatron covers whole mass region

Tevatron

- $\mathrm{p}, \overline{\mathrm{p}}$ collisions with $\sqrt{ } \mathrm{s}=1.96 \mathrm{TeV}$
- Two collider experiments, CDF \& DO

SM Higgs at the Tevatron

Main decay modes

Higgs acceptance

Higgs rate small, we reconstruct additional topologies

$$
\begin{array}{lll}
\text { Production: } & \text { Decay: } & \text { W, Z decays: } \\
\mathrm{gg} \rightarrow \mathrm{H} & \mathrm{H} \rightarrow \mathrm{WW} \longrightarrow \mathrm{~W} \rightarrow \mathrm{Iv} \\
\mathrm{qq} \rightarrow \mathrm{H}+\mathrm{W} & \mathrm{H} \rightarrow \mathrm{bb} \\
\mathrm{qq} \rightarrow \mathrm{H}+\mathrm{Z} & \mathrm{H} \rightarrow \mathrm{TT} & \mathrm{Z} \rightarrow \mathrm{II} \\
\mathrm{qq} \rightarrow \mathrm{H}+\mathrm{qq} & \mathrm{H} \rightarrow \mathrm{Y} & \mathrm{Z} \rightarrow \mathrm{vv} \\
\mathrm{~W} \rightarrow \mathrm{Tv}
\end{array}
$$

> For example :
> $\mathrm{qq} \rightarrow \mathrm{HZ} \rightarrow \mathrm{WWZ} \rightarrow \mathrm{Vil} q \mathrm{q}$
> Select : electrons, muons, MET, jets

Higas Production @ Tevatron

等 the Tevatron

ZH->vvbb \& WH->Xvbb

Event Selection

large MET +2 high- E_{T} jets
Include WH->(I)vbb and $\mathrm{ZH}->$ (II) bb

Analvsis techniques

- First NN to remove huge QCD multijet background
- Three b-tagging categories (SECVTX and JETPROB)
- Jet energy resolution improvement by combining tracking and calorimeter information
- Second Neural Network for final discriminant

Expected upper limit

$4.0 \times \sigma(S M)$ (@115 GeV)
Observed upper limit
$2.3 \times \sigma(\mathrm{SM})$ (@115 GeV)

CDF Run II Prolimimay : St

ZH->Ilbb

Event Selection

Two high- p_{T} leptons ($\mathrm{ee}, \mu \mu$), m(II) within Z boson mass window +2 high- E_{T} jets

Analysis techniques

- Recover loose muon pairs using NN selection (first use of multivariate lepton ID in a low-mass analysis)
- 2-D Neural Network as discriminant (ZH vs top-pair, ZH vs $\mathrm{Z}+$ jets)

Expected upper limit $5.5 \times \sigma(\mathrm{SM})$ (@115 GeV)
 Observed upper limit $6.0 \times \sigma(\mathrm{SM})$ (@115 GeV)

Gaining faith in multivariate methods

Single top observation $t+q \rightarrow$ lvjj (with b-tag)

Similar to WH \rightarrow lvbb

Neural Network: Us : $\sigma(t)=4.70{ }^{+1.18}{ }_{-0.03} \mathrm{pb}$ SM : $\sigma=3.46 \pm 1.8 \mathrm{pb}$

Diboson observation : $W W+W Z \rightarrow I v j j$

Similar to WH \rightarrow Ivbb

Matrix Element : US: $\sigma(W W+W Z)=16.6^{+3.5}{ }_{-3.6} \mathrm{pb}$ $\mathrm{SM}: \sigma=15.1 \pm 0.8 \mathrm{pb}$

WH sample before b-tag

- Similar to WH \rightarrow Ivbb
- Actual control region for WH
- Same object kinematics
- Statistics = 30 * tagged sample Random Forest trained on :
1 Masses of jets
b P_{T} of combinations
- Angular separations

Basic $H \rightarrow$ WW analysis

Signature: Opposite charge leptons, high MET, no jets

Main Signal Main BKGs
Key discriminant $g \mathrm{~g} \rightarrow \mathrm{H} \quad \mathrm{WW}, \mathrm{W} Y \quad \Delta \mathrm{R}$ leptons $=$ "Angle" between leptons

Fakes \& conversions: Can check Same Sign modeling

品

Theory \& uncertainties

We make use of well-motivated and state of the art gluon fusion cross-section calculations and uncertainties
bg \rightarrow H uses NNLL + NNLO calculations
"Next to Next to Leading Log/Order"
D de Florian \& Grazzini (Phys.Lett.B674:291-294, 2009)

1. Soft-gluon resummation treatment
2. MSTW2008 Parton Density Function
1) Anastasiou, Boughezal, Petriello (JHEP:0904:003, 2009)
D. Proper treatment of b-quarks at NLO
1. Inclusion of two-loop electroweak effects

For those interested in a detailed explanation of our choices and comparison with more extreme approaches :
http://tevnphwg.fnal.opow/results/SMHPubWinter2010/ gghtheoryreplies may 2010 html

Reweight PYTHIA Higgs kinematics to full NNLL calculation

Consider same varlations for dnminant WW hka

Summary of low \& high mass results

Channel	Expt	Dataset now	Increase since Nov. 2009 combination
H \rightarrow WW	D0	6.7	24\%
$\mathrm{H} \rightarrow \mathrm{WW}$	Com-	5.9	23\%
WH \rightarrow libb	CDF	3.7	30\%
WH \rightarrow lvbb	D0	5.3	6%
$\mathrm{ZH} / \mathrm{WH} \rightarrow \mathrm{METbb}$	CDF	5.7	60\%
$\mathrm{ZH} / \mathrm{WH} \rightarrow \mathrm{METbb}$	D0	6.4	23\%
$\mathbf{Z H} \rightarrow 1 \mathrm{lbb}$	CDF	5.7	40\%
$\mathrm{ZH} \rightarrow \mathrm{llbb}$	D0	6.2	45\%
$\mathrm{H} \rightarrow \mathrm{Y}$	CDF	5.4	New
$\mathrm{H} \rightarrow \mathrm{Y} Y$	D0	4.2	0\%
H \rightarrow TT	CDF	2.3	15\%
$H \rightarrow T$	D0	4.9	0\%
$\mathbf{z H /} / \mathbf{W H} \rightarrow q q \mathrm{bb}$	CDF	4	100\%
t+H	DO	2.1	0\%

Each channel represents several "sub-channels"
H \rightarrow WW Sub-channels
opposite sign leptons +0 -jets
opposite sign leptons +1 -jets
opposite sign leptons +2 -jets
opposite sign leptons, low Mu
same sign leptons
trileptons, no Z candidate
trileptons, Z candidate, 1-jet
trileptons, z candidate, 2 -jet
electron + hadronic tou
muen + hadronic tau
leptons + jets
New

CDF \& DO combinations

Shown first on July 23. 2010

CDF's limits

CDF achieves expected exclusion at 165 GeV

DO's limits

DO almost achieves observed exclusion at 165 GeV
@ $\mathrm{m}_{\mathrm{H}}=100 \mathrm{GeV}$, both set observed limits below expected Closing in on low mass LEP exclusion

What goes into the combination?

Tevatron combination

Prospects for Higgs evidence

$\sim 16 \mathrm{fb}^{-1}: *$
> 3σ expected sensitivity from $100-185 \mathrm{GeV}$ 4 ow 115 GeV

End of 2011:---

 $>2.4 \sigma$ expected sensitivity across mass range 3σ at 115 GeV $-=-$$-=-$

* $16 \mathrm{fb}^{-1}$: based on "Run III" proposal to run 3 more years

Search for Supersymmetric Higgs boson

s Supersymmetric models extend Higgs sector

- $\phi=\left(H^{0}, \mathrm{~A}^{0}, h^{0}\right)$, and $\mu^{ \pm}$
- Introduces $\tan \beta=$ $\left\langle H_{u}\right\rangle /\left\langle H_{d}\right\rangle$ parameter
] $\sigma(\Phi)$ enhanced by (tan $\beta)^{2} \sim 1000$ over SM
- Branching ratio
- ${ }^{20 \%} \mathrm{bb}, 10 \%$ TT
- Tevatron has comprehensive MSSM Higgs program
- $\Phi \rightarrow \mathrm{T}$

1. $\Phi+\mathrm{b} \rightarrow \mathrm{bb}+\mathrm{b}$

- $\Phi_{+\mathrm{b}} \rightarrow \mathrm{TT}+\mathrm{b}$

* CDF \& DO combined search for $\Phi \rightarrow \pi$ with $2 \mathrm{fb}^{-1}$

1. Probes interesting value of $\tan \beta \sim \mathrm{mt}_{\mathrm{t}} / \mathrm{mb}_{\mathrm{b}} \sim 30$

Search for Supersymmetric Higgs boson

MSSM Higgs $3 b$ search $(\Phi+b \rightarrow b b+b)$

- Complements MSSM H \rightarrow TT search

Relies on CDF's trigger-level b-tagging used in b physics
New version of analysis $2 x$ more acceptance

- $\mathrm{m}_{H}=140 \mathrm{GeV}$ most significant excess
- P-value $=0.9 \%$ (5.7% with trials factor)

New MSSM Higgs search

* DO's $\phi \rightarrow \mathrm{TT}+\mathrm{b}$
- Does not suffer radiative corrections which increase Higgs width as in $\Phi \rightarrow b b+b$
\Rightarrow Exclusive from $\Phi \rightarrow T T$

1. Provides similar sensitivity

Conclusions

Tevatron Run II Preliminary, $L=6.7 \mathrm{fb}^{61}$

- Higgs has no place to hide !

P Squeezing allowed mass from both sides

- $95 \% \mathrm{CL}$ Exclusion $158<\mathrm{m}_{\mathrm{H}}<175 \mathrm{GeV}$ (about expected)

L Limit $1.5^{*} \mathrm{SM}$ @ 115 GeV

* BSM searches : consistent with SM

D 2 sigma is largest discrepancy in CDF MSSM $H \rightarrow b b$ (so far)

Higgs production at Tevatron

Baglio

$M_{H} \gtrsim 150 \mathrm{GeV}, g g \rightarrow H$ channel
Exact at NLO QCD ${ }^{3}, K_{\text {NLO }} \sim 2$
Infinite top mass at NNLO QCD ${ }^{b}$,
$K_{\text {NNLO }} \sim 3$
Exact NLO EW corrections ${ }^{\text {c }}$, Effective NNLO mixed QCD-EW ${ }^{d}$:
$\simeq \pm \mathrm{a}$ few \%
$M_{H} \lesssim 150 \mathrm{GeV}, p \bar{p} \rightarrow H V$ channel
Exact at NNLO QCD ${ }^{e}, K_{\text {NNLO }} \sim 1.5$
Exact NLO EW corrections ${ }^{f} \simeq-5 \%$

CKM effects included ($\sim-5 \%$)
${ }^{2}$ Dawson (EFT, 1991), Djouadi, Spira \& Zerwas (EFT, 1991); Spira, Djouadi, Graudenz, Zenwas (1995)
${ }^{b}$ Harlander \& Kilgore (2002), Anastasiou \& Melnikov(2002), Ravindran, Smith \& V. d. Neerven (2003)
${ }^{c}$ Djouadi $\&$ Gambino (1994), Aglietti et al. (2004), Degrassi $\&$ Maltoni (2004), Actis et al. (2008)
${ }^{d}$ Anastasiou, Boughezal, Pietriello (2009)
${ }^{2}$ Hamberg, V. d. Neerven \& Matsuura (1991), Brein, Djouadi \& Harlander (2004)

Resummation in the gluon-gluon fusion channel?

Gluon-gluon fusion channel known up to Next-to-Next-to-Leading-Logarithm (NNLL)
(Catani, de Florian, Grazzini \& Nason (2003)). But here not included because:

- Experimental analysis still at the NNLO
\Rightarrow theoretical input should be (for now) at NNLO
- Cross section with cuts (and no resummation) have reduced K-factors \Rightarrow should be seen in the NNLO scale uncertainty
- No PDF at the NNLL level until now
\Rightarrow calculation slightly inconsistant (Corcella \& Magnea (2005))

Scale uncertainty

Higher orders (HO) guessed with μ_{R}, μ_{F} variation around central $\mu_{0}=m_{H}$

$$
\frac{m_{H}}{\kappa} \leq \mu_{R}, \mu_{F} \leq \kappa m_{H}
$$

Small $\mathrm{HO} \Rightarrow \kappa=2$ enough (ex. $q \bar{q} \rightarrow H V$)
Large HO in $g g \rightarrow H\left(K_{H O} \simeq 3\right)$ guess scale domain from σ_{NLO} :
NLO band catches $\sigma_{\text {NNLO }}$
$\Rightarrow \kappa=3$ needed (at least) according to our criterium
NNLO $g g \rightarrow H: \simeq 20 \%$ scale variation
($\neq 10 \%$ assumed by CDF/D0)

Different sets of PDFs on the market
\Rightarrow differents errors on individual PDF

+ different central values
All have $\sim 5-7 \%$ error, but central ABKM is

Putting together all the errors

Combining the errors: quadature or linear?
CDF: 10% scale $\oplus 5 \%$ PDF $=11 \%$ total error
D0: 10% total error
Reasonable way: add in quadature
$\mathrm{PDF}+\Delta^{\text {exp }+ \text { th }} \alpha_{s}$ on $\min _{\max } \sigma(\mu)$
and eventually linearly the small EW and b-loop errors
$g g \rightarrow H: \sim \pm 40 \% \gg \sim 10 \%$ CDF/D0
$p \bar{p} \rightarrow H V: \sim \pm 10 \%>\sim 5 \%$ CDF/D0
$p \bar{p} \rightarrow H V$ much more under control

CDF+D0 exclusion bands?

CDF\& D0: excluded $M_{H} \in[162-166] \mathrm{GeV}$ (Phys. Rev. Lett. 104, 061803 (2000))

But with our errors:

This 95\% CL exclusion should therefore be reconsidered

Summary and conclusion

Higgs production at Tevatron

- The two most important channels have been revisited at Tevatron (minor update for the two others)
- gluon-gluon fusion has been thoroughtly studied with all uncertainties: scale, PDF, $\alpha_{s}^{\text {exp+th }}$, EFT
- Higgs-strahlung has been revisited with all major uncertainties: scale, PDF, $\alpha_{s}^{\exp +\text { th }}$
- The overall $\simeq 40 \%$ error on $g g \rightarrow H$ cross section implies that the Tevatron exclusion bands on Higgs mass should be revisited
- Same has also been done at $\ell \mathrm{HC}=\mathrm{LHC@7} \mathrm{TeV}$ and 1 fb^{-1} for gluon-gluon fusion, MSSM study under way

Backup: $g g \rightarrow H$ at the LHC@7 TeV

Combination: same exercice as at Tevatron
Final error in $\mathrm{gg} \rightarrow \mathrm{H}: \sim-25 \%, \sim+30 \%$ much more under control than at Tevatron ($\sim-40 \%,+50 \%$ error).

International Workshop on Linear Colliders Geneva, October 18-22, 2010

(ECFA-CLIC-ILC Joint Meeting)

Origin of the Linear Collider Idea

M. Tigner,

Nuovo Cimento 37 (1965) 1228

A Possible Apparatus for Electron-Clashing Experiments (*).
M. Tigner
Laboratory of Nuclear Studies. Cornell University - Ithaca, N.Y.

"While the storage ring concept for providing clashingbeam experiments (${ }^{l}$) is very elegant in concept it seems worth-while at the present juncture to investigate other methods which, while less elegant and superficially more complex may prove more tractable."

Energy Frontier and $\mathrm{e}^{+} \mathrm{e}^{-}$Colliders

ilf 116

Making Choices - The Tradeoffs

Energy\&Lumi			CLIC	CLIC	ILC
	$E_{\text {cms }}$	[TeV]	0.5	3.0	0.5
	$f_{\text {rep }}$	[Hz]	50	50	5
	$f_{R F}$	[GHz]	12	12	1.3
	$G_{R F}$	[MV/m]	80	100	31.5
Towards a future Linear	n_{b}		354	312	2625
and	Δt	[ns]	0.5	0.5	369
Linear Collider studies at CER	N	[109]	6.8	3.7	20
Steinar Stapnes (CERN)	σ_{x}	[nm]	202	40	655
	σ_{y}	[nm]	2.26	1	5.7
	ϵ_{x}	[$\mu \mathrm{m}$]	2.4	0.66	10
	ϵ_{y}	[nm]	25	20	40
	$\mathcal{L}_{\text {total }}$	$\left[10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]$	2.3	5.9	2.0
	$\mathcal{L}_{0.01}$	$\left[10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]$	1.4	2.0	1.45

Train repetition rate 5 Hz (ILC) or 50 Hz (CLIC)

CLIC: $\quad 1$ train $=312$ bunches
ILC: 1 train $=2625$ bunches
0.5 ns apart

369 ns apart

50 Hz
5 Hz

RDR Design Parameters

Max. Center-of-mass energy	500	GeV
Peak Luminosity	$\sim 2 \times 10^{34}$	$1 / \mathrm{cm}^{2} \mathrm{~s}$
Beam Current	9.0	mA
Repetition rate	5	Hz
Average accelerating gradient	31.5	MV / m
Beam pulse length	0.95	ms
Total Site Length	31	km
Total AC Power Consumption	~ 230	MW

Compact Linear Collider CLIC
Poland?

CLIC Feasibility status

Sytat	litem	Fendility lsate	Unit	Haminal	Achipued	How	Feasbility
Two Beam Accelleration	Drve beam generation	Fuily loxded accel effic	8	97	95	CTF3	"
		Frequcurrent mullipl	=	234	24	CTF3	\checkmark
		12 GHz beam current	A	$4.524=100$	3.54\% 28	CTF3	
		12 GHz pulse length	nsec	240	240	CTF3	
		Intensity stability	$1 . \mathrm{E}-4$	0.75	0.6	CTIF	
		Drive beam linac RF phase tability	Deg (16HZ)	0.05	0005	CTF3, SFEL	
	Beam Driven RF power generation	PETS RFP Power	WW	130	130	TETSSLAC	
		PETS Pulse length	ns	170	>170	TETESLAC	
		PETS Brealodown rate	Im	< 1-10-7	>1.210-6	TETSSLAC	
		PETS ONOFF	-	9 SOHz	-	CTFITETS	2011
		Drive beam to RF efficiency	\%	50\%	-	CTF3TEL	2010-41
		RF pulse shape control	年	40.14	-	CTFITETS	
	Accelerating Structures (CAS)	Structure Ace field	WVm	100	100	CTF3 Tod Stand 5LAC. KEK	$\begin{aligned} & 2010-11 \\ & 2010-11 \end{aligned}$
		Structure Flat Top Pulas length	n5:	170	170		
		Structure Ereakdown rats	im MVim, ${ }^{\text {as }}$	4 3-10-7	5-10-5다		
		Rt to beam transter efficiency	\%	27	15		
	Two Beam Acceleration	Power producton and probe beam acceleration in Two beam module	MVIm $=\mathrm{ns}$	100-170	$55 \cdot 170$	TBTS	2011-12
		Drive to main beam timing sability	Prec	0.05	-	CTFS	2012
		Main to main beam tirning shability	peec	0.07	-	CTFS	2012
$\begin{gathered} \text { Ultra low } \\ \text { beam } \\ \text { emittance } \mathrm{E} \\ \text { sizes } \end{gathered}$	Ultra low	Emititance generation HV	$\ldots \mathrm{m}$	5005	30012	ATF, NSLSES	4
	Emitances	Emithance procervation: Edow-up	nm	$160 / 15$	$180 / 15$	+ simulation	2010-12
	Alignment	Vain Linac components	microns	15	10 (prine.)	Alignement 8 Mod Test Bench	2010
		Final-Doublet	mierpos	268			2010
	Vertical stabilisation	Quad Main Linse	nmp 1 Hz	1.5			
		Final Doublet (assuming ferdbacks)	nimp 4 Hz	0.2	$\left\|\begin{array}{c} 0.13 \\ \text { (painciple) } \end{array}\right\|$	Ted Eench	2010-12

"Circumstances Beyond Our Control"

- The fire (March $4^{\text {th }}$)
$\rightarrow 6$ months delay
- The "Lehman" effect
- Reduced CERN budget
 2011-2015
(Lehman: 16/9/08 CERN impact 16/6/10)

Combined ILC/CLIC working groups

CLIC \& ILC roadmaps

Ph.Lebrun

ILC (250 GeV)-

From the LOls to the DBDs- Coverage of Higgs Studies -

Benchmarks for the LOIs 2009
Roman Pöschl
$e^{+} e^{-} \rightarrow h^{0} Z^{0}: 120 \mathrm{GeV}$ Higgs @ 250 GeV

- Based on compelling arguments for a light Higgs
- Production at threshold
- Precision measurements to pin down nature of Higgs boson
detailed baseline design (DBD)
- Higgs-strahlung cross section and recoil mass
=> Coupling Modifications wrt. SM?
Precision in Higgs Mass (?? ??),
Currently no direct "application" for $\sigma_{\mathrm{Mn}} \sim 30 \mathrm{MeV}$
- Branching ratios into heavy quarks (and gluons)

Scaling with quark mass, crucial test of nature of Higgs boson
Letters of Intents (LOls)

Precision in ILD and SiD LOI

$h \rightarrow b b: 1-3 \%$
$\mathrm{h} \rightarrow \mathrm{cc}: 10 \%$ (SID), 12% (ILD, shown at LCWS10)
Reminder - Results LOI 2009

Muon Channel

Very Precise Measurement
S/B $=8$ in Peak Region

Total energy 250 GeV
Electron Channel

Less Precise
Bremsstrahlung in detector material
Combined: $\Delta M_{H}=0.035 \mathrm{GeV}, \Delta \sigma_{\mathrm{HZ}} / \sigma_{\mathrm{HZ}}=0.027$

$$
\sigma_{H Z} \sim g_{H Z Z}^{2}
$$

\Rightarrow Precision in g_{HzZ} coupling 1-2\%
Sensitivity to 15\% deviations SM prediction of cross section

ZH Branching Ratio measurement

Higgs BR study at Ecm $=250 \mathrm{GeV}$ is one of the benchmark process in LOI Higgs BR at Ecm $=350 \mathrm{GeV}$ is also the new benchmark process for DBD

SM Higgs production cross section

Cross section	Ecm=250GeV	Ecm= $350 G \mathrm{GeV}$
$\mathrm{ffH}(\mathrm{w} /$ beam pol $)$	$319.4 \mathrm{fb}^{-1}$	$274.9 \mathrm{fb}-1$

Simulation setup and signal samples

Event generation : whizard
Simulation and analysis : ilcsoft v01-06
H.Ono

Detector model : ILD_00 full simulation
Beam parameter : RDR(LOI 250 GeV), SB2009 w/ TF (350 GeV) Data samples : DST sample produced in KEK (A. Miyamoto) Ifn:/grid/ilc/users/miyamoto/CDS/reconstructed/LLD_00/CMS_350

(Complicated) Final States of the Higgs Boson I
Higgs properties via ee $\rightarrow \mathrm{ZH} \rightarrow \mathrm{ff} \pi \quad$ e.g. CP violating Higgs: $g \bar{\tau}\left(\cos \psi+i \sin \psi \gamma_{5}\right) \tau$ Look at hadronic decays of the T lepton: $\tau^{ \pm} \rightarrow v_{T} \pi^{ \pm} \quad \tau^{ \pm} \rightarrow v_{\tau} \rho^{ \pm} \rightarrow v_{T} \pi^{ \pm} \pi^{0}$

Information on CP violating phase can be extracted via (azimuthal) angles between decay mesons in tau restframe and flight direction of T
(nice exercise on kinematics and frame transformation)
PID based on photon counting in SiW electromagnetic calorimeter (of ILD)

$Z \rightarrow \mu^{+} \mu^{-}$
$Z \rightarrow \mu^{+} \mu^{-}$ $\mathrm{e}^{+} \mathrm{e}^{-}$ $q \bar{q}$ $4=4,4.5$
x^{2} fit with the function

$$
\mathrm{W}_{\text {fit }}(\Delta \phi)=\mathrm{a}(1-\mathrm{b} \cos (\Delta \phi-2 \mathrm{c}))
$$

Net result: CP violatina phase larcer than wi/8 can be excluded at 4.5 siama level
(Complicated) Final States of the Higgs Boson II

Top Yukawa Coupling
Benchmark scenario $\sqrt{s} @=1 \mathrm{TeV}$
Here preliminary study at $\sqrt{ } s=500 \mathrm{GeV}$ with fast simulation

Mass plot

Top Mass
Higgs Mass

Beam Polarisation: $(\mathrm{Pe}-\mathrm{Pe}+)=(-0.8,+0.3)$
Main Conclusion: Top Yukawa Coupling can be measured to 10\% accuracy Needs, however confirmation in full simulation!!!

$\mathscr{L}_{B S M}$

$$
\mathscr{L}_{\text {Gays }}+\mathscr{L}_{\text {ligs }}+\mathscr{L}_{\text {Yutura }}
$$

Relativistic Quantum Fieli Theory
Relation betwean mass and coupling constant with Hibgs

Higege aelf coupling will be teated at ~ 600 Gev where ete-> ZHH crost section attains its maximum.

Our motivation is to confirm the untested pillar by measuring TopYukawa coupling at 500 GeV (1st stage of II.() concurrently to meacuring Higgs
2. ablf coupling.

Complicated Final States of the Higgs boson III

(Anomalous) couplings: $\mathrm{H} \rightarrow \mathrm{W}^{*} \mathrm{~W}$

Study @ $\sqrt{s}=250 \mathrm{GeV}$ for $\mathrm{m}_{\mathrm{H}}=120 \mathrm{GeV}$
Likelihood analysis to cope with considerable background

study of Hig̊gs Selfcouplings at ILC

J. Tian (Tsinghua U.)

Y. Takubo (Tohuko U.)
K. Fujii (K.EK)
Y. Gao (Tainghua U.)

Measurement of hhh coupling

Measurement of hhh coupling at collider experiment

- LHC (SLHC) $\quad q q \rightarrow h h$

- ILC $e^{+} e^{-} \rightarrow$ Zhh
$\sqrt{s}=500 \mathrm{GeV}$

- ILC/CLIC $e^{+} e^{-} \rightarrow h h \bar{\nu} \nu$

$$
\sqrt{s} \geq 1 \mathrm{TeV}
$$

- Photon Collider (PLC) $\quad \gamma \gamma \rightarrow h h$

- a new interaction (non-gauge interaction).
- the non-trivial probe of the Higgs potential, offer a direct independent determination.
- accurate test of this coupling may reveal the extended nature of Higgs sector, like 2HDM and SUSY.
- difficult to measure at LHC for a light Higgs.

Measurement of the trilinear Hisgs self-coupling @ ILC

- double Higgs-strahlung (dominate at lower energy)
- WW fusion (dominate at higher energy)

total cross section

status of the simulation (preliminary)

$$
e^{+}+e^{-} \rightarrow Z H H \quad e^{+}+e^{-} \rightarrow \nu \nu H H \quad M(H)=120 \mathrm{GeV} \quad \int L d t=2 \mathrm{ab}^{-1}
$$

Energy (GeV)	Modes	Fast Simulation	Full Simulation
500	$Z H H \rightarrow(\bar{l} \overline{)}(b \bar{b})(b \bar{b})$	2.5σ	3.60
500	$Z H H \rightarrow(\nu \bar{\nu})((\bar{b})(b \bar{b})$	0.8σ	1.30
500	$Z H H \rightarrow(q \bar{q})(b \bar{b})(b \bar{b})$	2.0σ	2.0σ
500	$Z H H \rightarrow(q \bar{q})(\bar{b})\left(W W^{*}\right)$	0.050	-
1,000	$\nu D H H \rightarrow(\nu \bar{D})(b \bar{b})((b \bar{b})$	2.50	-

- from LCWS2010, full simulations of 11 HH and $v v H H$ were investigated (today's topic).
- qqHH analysis was presented at ALCPG09 by Takubo-san.
- improvement in full simulation comes from b tagging and background specification.
$e^{+}+e^{-} \rightarrow Z H H \rightarrow(l \bar{l})(b \bar{b})(b \bar{b}) \rightarrow 2$ leptons +4 bjets
full simulation 6500 GeV

pre-selection:

- two isolated charged leptons (the pair nearest to Z mass is selected)
* force the other particles(PFOs) to four jets
- combine the four jets by minimizing

$$
\chi^{2}=\frac{\left(M(b, \bar{b})-M_{H}\right)^{2}}{\sigma_{H_{1}}^{2}}+\frac{\left(M(b, \bar{b})-M_{H}\right)^{2}}{\sigma_{H_{2}}^{2}}+\frac{\left(M(l, \bar{l})-M_{Z}\right)^{2}}{\sigma_{Z}^{2}}
$$

do not effect minimization
requirement implied in the pre-selection:

```
* |M(II)-M(Z)|<40 GeV
```

* $|\mathrm{M}(\mathrm{j})-\mathrm{M}(\mathrm{H})|<80 \mathrm{GeV}$

$$
e^{+}+e^{-} \rightarrow Z H H \rightarrow(l \bar{l})(b \bar{b})(b \bar{b}) \rightarrow 2 \text { leptons }+4 \text { bjets }
$$ (preliminary)

- 4.93 signal events with 0.50 background events:
* ZHH excess significance: 3.6σ
- 68% confidence level: $5.4-2.3 .5 \quad 54 \%$ for cross section
- precision for Higgs self-coupling: 97\%
- llbbH not considered: as rough estimation, 1.0 event could be involved.
- statistics of llbb backgrounds is not enough (we are generating more samples)

CLIC Study at 3 TeV of Heavy Higgs Bosons

e+e- \rightarrow HOAO \rightarrow bbbb in Dark Matter motivated SUSY
Battaglia

Scenario 1) (S Martin, CLIC Study Group)
MSSM model
with non-unified gaugino masses
$\mathrm{M}_{1}=780 \mathrm{GeV}, \mathrm{M}_{2}=940 \mathrm{GeV}, \mathrm{M}_{3}=540 \mathrm{GeV}$
$\mathrm{m}_{0}=303 \mathrm{GeV}, \mathrm{A}_{0}=-750 \mathrm{GeV}, \tan \beta=24$,
$\mu>0$
$M_{\mathrm{A}}=902.6 \mathrm{GeV} \mathrm{M} \mathrm{H}_{\mathrm{H}}=902.4 \mathrm{GeV}$

Scenario 2) (Point K' of MB et al, Eur. Phys. J. C33 (2004))
cMSSM model

$$
\begin{aligned}
& \mathrm{m}_{1} / 2=1300 \mathrm{GeV}, \mathrm{~m}_{\mathrm{v}}=1001 \mathrm{GeV}, \\
& \mathrm{~A}_{\mathrm{o}}=0, \tan \rho=46, \mu<0 \\
& \mathrm{M}_{\mathrm{A}}=1139.2 \mathrm{GeV} \mathrm{M}_{\mathrm{H}}=1143.8 \mathrm{GeV}
\end{aligned}
$$

Study employing full detector simulation and reconstruction

Higgs Mass Reconstruction ($3 \mathrm{TeV}, 2 \mathrm{ab}^{-1}$)

7-par Fit $\left(\mathrm{M}_{\mathrm{A}}, \Gamma, \mathrm{N}_{\mathrm{ses}}\right.$, Bkg shape $)$
$\mathrm{M}_{\mathrm{A}}=(906.2+/-3.3$ (stat) $) \mathrm{GeV}$

$$
\begin{gathered}
\text { 7-par Fit } \\
\mathrm{M}_{\mathrm{A}}=(1141.0+/-6.0 \text { (stat) }) \mathrm{GeV}
\end{gathered}
$$

Precision measurement
Robust against w background

Conclusion

- Linear Collider is (still) the ideal machine to study the properties of the Higgs boson
- Most analyses start from a light Higgs with $m_{H} \sim 120 \mathrm{GeV}$
- Most of the properties of the Higgs can be measured or determined in current energy range of the ILC
- e.g. here CP violatiing Higgs or not
- (anomalous) couplings to Fermions and gauge bosons
(I think) turn towards 1 TeV starts after IWLC10
- A machine operated at higher energies need to prove that these Higgs properties can be determined with the same precision
- CLIC would have a "final" word on Higgs compositeness
- CLIC would see directly heavy Higgs states as suggested/required by/in SUSY scenarios
- Most of the analyses look directly into the Higgs decay

Little use of the advantages of Model Independent determination of Higgs properties

- Question to community. What to do with ee $\rightarrow \mathrm{HZZ}$?

Planned activities to investigate the impact of LHC results on the futu strategy of particle physics and possible input for the update of the European Strategy - Michelangelo Mangano (CERN)

Suppose the LHC does not find evidence for new physics with 1 fb-1 at 7 TeV : what is the remaining parameter space of new physics models and what does this imply for future prospects and for the LHC run at 14 TeV in 2013? - Michael Peskin (SLAC)

Suppose there is evidence for a (or several) new particle(s) at the LHC with $1 \mathrm{fb}-1$ at 7 TeV : how well would one know the properties of such a new state from the early data? - Oliver Buchmueller (Imperial College London)

Once a Higgs candidate has been detected, how precisely does one need to measure the properties (mass, couplings, ...) of such a state? Gian Giudice (CERN), Georg Weiglein (DESY)

Preparing the LHC input to the 2012 CERN Council Strategy Group
 Michelangelo L. Mangano, CERN PH-TH

Strategy Group:

- Council expected to complete the definition of the process and the SG composition by June 2011
- Current planning foresees an open Symposium around Febr 2012, a SG workshop in Summer 2012, and the final discussion by Council in the Fall 2012

Task assigned by CERN's DG: Assessment and documentation of the LHC findings, during the 2010-11 run, in the search for the Higgs boson and for new physics

This document will be submitted to the Strategy Group by Winter 2012, for its evaluation of the implications for the update of the European Strategy

- Common statistical tools, to combine input from all experiments
- Agreed benchmarks for input theory ingredients (crosssections, BR's, etc)
- Representation of experimental results
- model specific (e.g. cross-section limits/values for given model-parameter points)
- model independent (e.g. cross-section limits/values for given production/decay topologies and selection cuts)
- RooStat: statistical tools
(see e.g. https://indico.desy.de/getFile.py/access?contribld $=128$ sessionld $=\mid$ \&res/d $=0$ \&material $\mid d=$ slides\&confld $=3079$)
- ATLAS/CMS combined statistics forum http://indico.cern.ch/categoryDisplay.py?categ/d=1579
- "Characterization of new physics" Working Group htte://indico.cern.ch/conferenceDisplay.py?confld=107769
htup://www-conf.slac.stanford.edu/topologies $10 /$
- SUSY/BSM Fit Working Group (includes tools like Gfitter, Fittino, HiggsBounds, Mastercode, SPheno, etc.)
htups:/it-indico4.desy.de/conferenceOtherViews.py?view=standard\&confld=3079
- Higgs cross-section Working Group
https//twikicern.ch/twiki/bin/view/LHCPhysics/CrossSections

If no new physics appears at the LHC in 2011,
 is there a case for the ILC ? expensive as LHC

The scientific case for the ILC based on precision measurements of the Higgs boson is very strong,
but for presidents and legislators, more might be needed.
The LHC has discovered new particles that cannot be a part of the Standard Model of particle physics. These particles indicate new laws of physics which we must know to understand the form and structure of the universe. We need a tool to advance our knowledge of these new particles beyond what can be learned at the LHC.

The appearance of new particles at the LHC will provide a magical moment of discovery when we will have the world's attention, from ministers to the man and lady on the street.

In conventional wisdom, what follows from this is the following:
1.) If new particles are found at 7 TeV and $1 \mathrm{fb}-1$, their energy scale is likely to be about 500 GeV . Then the ILC is the tool that we need.
2.) If the new particles are not found at 7 TeV , their energy scale is higher, and ILC is not the right machine.

If we are lucky, new particles will be found in 2011,
but the real expectation is simply that these particle have masses at the TeV energy scale and will be found in the longer LHC program.

There are two important caveats, recognized by everyone:

A light Higgs boson \cdot of the type found in the Standard Model and most viable BSM models $\cdot-$ will not be found in the 2011 LHC run.

But, there is a deeper problem with point 2 . The statment is completely wrong !

It asks the wrong question. The right question is:

When we discover new particles at LHC and are mystified by their properties, when energy must we have in e+eto obtain information that will solve the mystery ?

Particle physicists will always ask for higher energies. But, what we really want is better knowledge.

Example of a Z^{\prime} :

LHC can find Z^{\prime} boson up to about 5 TeV. The reach in 2011 is about 1.5 TeV .

If a resonance is discovered, don't we want to go there?

The immediate question will be to learn the full set of helicity-dependent couplings of the Z^{\prime} to fermions. These can be measured by observing the interference with γ, Z in polarized

$$
\begin{aligned}
& e^{+} e^{-} \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}, \tau^{+} \tau^{-} \\
& e^{+} e^{-} \rightarrow q \bar{q}, c \bar{c}, b \bar{b}
\end{aligned}
$$

500 GeV and high luminosity is already sufficient.

> We will not want an ultimate-energy machine. We will want the machine that gives the answers to these urgent questions.

> In this talk, I have given several examples in which the LHC discovery involves particles of high mass, but new information from a Linear Collider requires only 500 GeV .

> This is the logic that motivated the ILC proposal in the first place. That logic is still correct.

Peskin
one final point:
There is a significant opportunity for the discovery of new particles in the 2011 LHC run at 7 TeV . In this case, the magic moment of discovery will come in 2011 or 2012.

Presidents, legislators, and journalists have an attention span of years, not decades. We should be ready with a case for a new collider that addresses the physics questions raised by this discovery and can be implemented immediately.

In 2012, the only LC technology on the table will be ILC. To take advantage of the opportunity, we have be ready, as a community, to go forward with the ILC.

The Linear Collider Roadmap

The next years

Important steps in the coming years

- CDR for CLIC 2011
- TDR for ILC 2012
- ICFA Seminar at CERN 3-6 October 2011 use this occasion to
- layout exciting future prospects in particle physics
- synchronize regional strategies/roadmaps
- Update of European strategy for particle physics start: EPS 2011, finalize Sept. 2012
- IEEE 2012 special event to promote LC

