Pierwszy pomiar wskazujący na łamanie symetrii CP w rozpadach cząstek powabnych w eksperymencie LHCb

> Seminarium Fizyki Wielkich Energii 9 grudnia 2011

Artur Ukleja (Narodowe Centrum Badań Jądrowych)

Zarys

• Motywacja:

- mieszanie D⁰-anty-D⁰
- sposoby łamania symetrii CP
- argumenty dlaczego interesujemy się fizyką powabu
- LHCb i sposoby pomiaru łamania symetrii CP w rozpadach cząstek powabnych
 - detektor LHCb
 - fizyka powabu w LHCb
 - wyniki pomiarów łamania symetrii CP w LHCb
 - w rozpadach $D^0 \rightarrow K^+K^- vs \ D^0 \rightarrow \pi^+\pi^-$
 - w rozkładzie Dalitza dla rozpadów D⁺ \rightarrow K⁻K⁺ π ⁺
- Podsumowanie

Mieszanie i łamanie symetrii CP

Dwa stany zapachu: $i\frac{\partial}{\partial t} \begin{pmatrix} D^{0}(t) \\ \overline{D}^{0}(t) \end{pmatrix} = \left(\hat{M} - \frac{i}{2}\hat{\Gamma}\right) \begin{pmatrix} D^{0}(t) \\ \overline{D}^{0}(t) \end{pmatrix}$

 $m \equiv (m_1 + m_2)/2$ $\Gamma \equiv (\Gamma_1 + \Gamma_2)/2$

Propagują się w przestrzeni dwa stany własne masy (m₁, m₂): $|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D^0}\rangle$

Dwa parametry opisują mieszanie:

różnica mas x:

$$x \equiv \frac{m_2 - m_1}{\Gamma} = \frac{\Delta m}{\Gamma}$$

 $\frac{\Delta m}{\Gamma}$ $y \equiv \frac{\Gamma_2 - \Gamma_1}{2\Gamma} = \frac{\Delta \Gamma}{2\Gamma}$

- Δm częstość mieszania (oscylacji)
- Δm , $\Delta \Gamma$ mierzone eksperymentalnie
- M_{12} , Γ_{12} , ϕ parametry teoretyczne

 $\phi \equiv \arg(-M_{12}/\Gamma_{12})$

różnica szerokości rozpadów y:

$$\begin{split} \Delta m &= M_H - M_L = 2|M_{12}|(1 + \frac{1}{8}\frac{|\Gamma_{12}|^2}{|M_{12}|^2}sin^2\phi + \dots)\\ \Delta \Gamma &= \Gamma_H - \Gamma_L = 2|\Gamma_{12}|cos\phi(1 - \frac{1}{8}\frac{|\Gamma_{12}|^2}{|M_{12}|^2}sin^2\phi + \dots) \end{split}$$

Jeśli: $D^0 \longrightarrow anty-D^0 \neq anty-D^0 \longrightarrow D^0$ to łamanie symetrii CP wtedy stany własne m₁,m₂ zawierają różną domieszkę stanów D⁰ i anty-D⁰

Faza łamania CP: $\phi_D \neq 0$ lub $|q/p| \neq 1$

Mieszanie neutralnych D, B_d i B_s

Status eksperymentalny

Łamanie symetrii CP jeśli Φ_D≠0 lub |q/p|≠1

Brak dotychczas eksperymentalnego potwierdzenia łamania symetrii CP w rozpadach cząstek powabnych

Sposoby łamania symetrii CP

Lнср гнср

(pośrednie)

Trzy sposoby łamania symetrii CP:

1. w mieszaniu: różnice przejść-oscylacji

 $D^0 \longrightarrow anty - D^0 \neq anty - D^0 \longrightarrow D^0$

- w MS łamanie symetrii CP w mieszaniu jest bardzo małe i trudne do policzenia
- i uniwersalne między stanami własnymi CP

 $\Delta m \sim 1\%$ $\Delta \Gamma \sim 1\%$

• Z pomiarów eksperymentalnych wiemy, że $\Delta\Gamma \sim \Delta m$

Sposoby łamania symetrii CP

 w amplitudach rozpadów: rozpady cząstki i antycząstki nie są takie same (bezpośrednie)

Jeżeli fazy diagramów drzewowego i pingwinowego są różne to symetria między cząstkami i anty-cząstkami jest łamana \longrightarrow A ≠ anty-A

- W MS łamanie symetrii CP w rozpadach może być większe niż w mieszaniu i zależy od stanu końcowego (szacuje się ~10⁻³)
 - → Łamania symetrii CP należy szukać wszędzie, gdzie jest to możliwe, np. D→hh, D→hhh, D→hhhh

A.Ukleja

Sposoby łamania symetrii CP

3. interferencja:

między łamaniem symetrii CP w mieszaniu i w rozpadach (pośrednie)

Dlaczego fizyka powabu jest interesująca?

- Pierwszy pomiar mieszania D⁰-anty-D⁰, 2007, Belle, BaBar
- rozszerzyło to możliwości badania łamania symetrii CP w rozpadach cząstek powabnych
 - dotychczas brak było eksperymentalnego potwierdzenia asymetrii CP
 - → następny krok: potwierdzenie istnienia łamania symetrii CP w rozpadach cząstek powabnych
- Oczekiwane tutaj łamanie symetrii CP w MS jest małe (<10⁻³)
 - mniejsze niż w rozpadach cząstek pięknych
 - → doskonałe miejsce dla poszukiwań Nowej Fizyki (bo tło od MS małe)
- Łącznik do fizyki B
 - wiele mezonów B rozpada się na cząstki c (b→c) ~50% przejść

Metody pomiaru łamania symetrii CP w rozpadach D

Dwie klasy analiz:

- pomiary zależności czasowej (dostarczają informacji o łamaniu symetrii CP w mieszaniu i interferencji)
- pomiary wycałkowane po czasie (dostarczają informacji o łamaniu symetrii CP w rozpadach i w mieszaniu)

Dwa przykłady pomiarów w LHCb

- $D^0 \rightarrow K^+K^- vs \ D^0 \rightarrow \pi^+\pi^-$
- $D^+ \rightarrow K^- K^+ \pi^+$

Cząstki powabne w LHCb

LHCb został zbudowany dla badań fizyki b:

- precyzyjnych badań łamania parzystości CP w rozpadach cząstek B
- i rzadkich rozpadów B.

Zmierzone w LHCb przekroje czynne:

7 TeV pp: $\sigma(b\overline{b}) \sim 0.3 \ mb$ $\sigma(c\overline{c}) \sim 20 \times \sigma(b\overline{b}) \sim 6 \ mb$

- duży przekrój czynny → bardzo dużo produkowanych cząstek powabnych
- duże możliwości bardzo precyzyjnych pomiarów także dla cząstek powabnych
- badania cząstek powabnych są konkurencją dla badań cząstek pięknych → problem ograniczonych możliwości zapisu danych

Detektor LHCb

Kalorymetry elektromagnetyczny (ECAL) i hadronowyLHCb (HCAL) do identyfikacji elektronów, hadronów i cząstek neutralnych oraz pomiaru ich energii

Detektory śladowe do pomiaru kątów i pędów cząstek nałądowanych **Detektor Zewnetrzny** 250/300 mrad w 1/3 zbudowany M2 M3 M4 M5 ECAL HCAL w Warszawie Magnes RICH2 M1 RICH1 TT wiazka wiązka Vertex protonowa ocator 15 mrad protonowa 15m Krzemowy detektor wierzchołka do dokładnego pomiaru punktów **Detektory promieniowania Czerenkowa** (RICH 1 i 2) produkcji i rozpadu cząstek pięknych do identyfikacji mezonów π i K oraz protonów

i powabnych
 VELO – wysoka precyzja: rozdzielczość IP: 38 μm dla 1 GeV
 System rekonstrukcji torów – dokładność czasu życia ~ 50 fs: 0.1 τ(D⁰)
 RICH - bardzo dobra identyfikacja cząstek π i K: błędna identyfikacja < 5 %

A.Ukleja

Łamanie CP w rozpadach cząstek powabnych

Układ wyzwalania i cząstki powabne

Asymetria cząstka-antycząstka

Chcemy zmierzyć asymetrię między cząstkami a antycząstkami

$$\begin{split} A_{CP} &\equiv \frac{N_{CP}(D^0 \to h^- h^+) - N_{CP}(\bar{D}^0 \to h^- h^+)}{N_{CP}(D^0 \to h^- h^+) + N_{CP}(\bar{D}^0 \to h^- h^+)} \\ \text{gdzie h=K,} \pi \end{split}$$

- Konieczne jest zidentyfikowanie cząstek D⁰ i anty-D⁰
- W tym celu używamy rozpadów naładowanych D*± (znak wolnego pionu służy do oznaczenia zapachu D⁰):

 $D^{*+} \rightarrow D^0 \pi^+{}_s$ $D^{*-} \rightarrow anty - D^0 \pi^-{}_s$

Mierzona asymetria między D⁰ a anty-D⁰:

$$\begin{split} A_{RAW}(f)^* &\equiv \frac{N(D^{*+} \to D^0(f)\pi^+) - N(D^{*-} \to \bar{D}^0(\bar{f})\pi^-)}{N(D^{*+} \to D^0(f)\pi^+) + N(D^{*-} \to \bar{D}^0(\bar{f})\pi^-)} \\ f = \mathsf{K}^-\mathsf{K}^+, \, \pi^-\pi^+ \end{split}$$

A.Ukleja

 D^0 -vertex

(wolny pion)

 π_s

 D^* -vertex

Pomiar ∆A_{CP} w LHCb

Asymetrie detektorowe dla K⁻K⁺ i π ⁻ π ⁺ kasują się bo stany końcowe symetryczne $A_D(K^-K^+) = A_D(\pi^-\pi^+) = 0$

Asymetrie detektorowa $A_D(\pi_s)$ i produkcji $A_P(D^*)$ skasują się jeżeli odejmiemy asymetrie mierzone A_{RAW} dla K⁻K⁺ i $\pi^-\pi^+$ (dlatego mierzymy ich różnicę)

$$\Delta A_{CP} \equiv A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = A_{RAW}(K^+K^-)^* - A_{RAW}(\pi^+\pi^-)^*$$

Wybór bezpośrednich D*± (D⁰)

Używamy D*± wyprodukowanych w wierzchołku pierwotnym Do rozdzielenia D*± bezpośrednich i pochodzących z rozpadów B używamy χ²(IP) Dwa typy produkcji D*± (D⁰):

Kryteria wyboru przypadków

 $D^{*^+} \rightarrow D^0 \pi^+_s$ $D^{*^-} \rightarrow \overline{D}^0 \pi^-$

- Jakość rekonstrukcji parametru zderzenia dla D⁰: χ² IP(D⁰)<9
- Jakość rekonstrukcji wierzchołka D⁰ (D*)

 $D^{*+} \rightarrow D^0 \pi^+_{s}$, $D^{*-} \rightarrow anty - D^0 \pi^-_{s}$

- Jakość rekonstrukcji torów trzech cząstek K⁻K⁺ π^{\pm}_{s} , $\pi^{-}\pi^{+}\pi^{\pm}_{s}$
- Pęd poprzeczny D⁰: p_T(D⁰)>2 GeV
- Czas życia D⁰: ct>100 μm
- Identyfikacja K i π
- Akceptacja wolnych π_s : tylko π_s rekonstruowane w centralnej części detektora

h -

٥ D

 $D^0 \rightarrow K^-K^+$, $D^0 \rightarrow \pi^-\pi^+$

Procedura pomiaru ΔA_{CP} w LHCb

- Asymetrie mierzone $A_{RAW}(K^+K^+)$ i $A_{RAW}(\pi^+\pi^+)$ są otrzymane z jednoczesnego dopasowania funkcji do obu rozkładów (D⁰ i anty-D⁰) $\delta m = m(D^0\pi^+) m(D^0) m(\pi^+)$ w **216 przedziałach**:
 - 54 przedziały kinematyczne: $p_T(D^*), \eta(D^*), p(\pi_s)$
 - asymetrie produkcji i detektorowa mogą zależeć od p_T i η
 - również efektywność rekonstrukcji
 K⁻ i K⁺ oraz π⁻ i π⁺ może być różna
 - x 2 = 108 przedziałów dwie polaryzacje pola magnetycznego
 - x 2 = 216 przedziałów dwa okresy zbierania danych, przed i po przerwie technicznej: 350pb⁻¹, 230 pb⁻¹
 - 432 niezależne dopasowania funkcji dla $D^0 \rightarrow K^-K^+$ i $D^0 \rightarrow \pi^-\pi^+$

Przykład: pierwszy przedział

 $D^0 \rightarrow K^-K^+$, MagUp

Zależność od zmiennych kinematycznych

Mierzone ΔA_{CP} w trzech zmiennych $\eta(D^*)$, $p_T(D^*)$ i $p(\pi_s)$

Niepewności systematyczne

Niepewności systematyczne, które mają największy wkład:

- Dopasowanie funkcji: **0.08** %
 - pomiar ΔA_{CP}, gdy liczba D⁺ i D⁻ uzyskana przez odjęcie uśrednionego tła w rozkładzie δm
- Przypadki z kilkoma kandydatami na rozpad: 0.06 %
 - jeżeli dla przypadków, które zawierają kilku kandydatów wybierze się jednego kandydata losowo
- Podział na przedziały: 0.02%
 - jeśli porównamy <u>A</u>_{CP} wyznaczoną globalnie z wyznaczoną z przedziałów kinematycznych

Całkowita niepewność systematyczna: **0.11%**

Pomiar ΔA_{CP}

Średnia ważona (LHCb 2011, **580 pb⁻¹**):

$$\Delta A_{CP} = [-0.82 \pm 0.21^{stat} \pm 0.11^{syst}]\%$$

znaczącość: **3.5** σ

Prawdopodobieństwo, że nie ma łamania symetrii CP: 0.15%

Dodatkowe sprawdzenie

Wszystkie zmiany są w granicach niepewności statystycznych i systematycznych

Interpretacja pomiaru ∆A_{CP}

Ponieważ łamanie symetrii CP w mieszaniu jest uniwersalne i nie zależy od stanu końcowego, to wkład tego łamania powinien się skasować przy odjęciu, ale jest niezerowa różnica czasów własnych mezonów D⁰ w użytych próbkach K⁻K⁺ i $\pi^{-}\pi^{+}$:

$$\frac{\Delta\langle t\rangle}{\tau} = \frac{\langle t_{KK}\rangle - \langle t_{\pi\pi}\rangle}{\tau} = (9.8 \pm 0.9)\%$$

Wkład od łamania symetrii CP w mieszaniu kasuje się w ~90%

W przybliżeniu jest to pomiar różnicy łamania symetrii CP w rozpadach

A.Ukleja

Pomiar ∆**A**_{CP}: porównanie

Pierwszy pomiar asymetrii CP w rozpadach cząstek powabnych Dotychczas najważniejszy wynik z LHC

LHCb 2011, 580 pb⁻¹:

 $\Delta A_{CP} = [-0.82 \pm 0.21^{stat} \pm 0.11^{syst}]\%$

znaczącość: 3.5 σ

LHCb 2011 całkowite 1.1 fb⁻¹ (pozostałe 500 pb⁻¹ jest analizowane)

A.Ukleja

Łamanie CP w rozpadach cząstek powabnych

25

Łamanie symetrii CP w rozpa

Znalezienie łamania symetrii CP w rozpadach D⁰→···· uaje inauzieję ina znalezienie tej asymetrii także w innych rozpadach, np. D[±]→hhh

Rozpady D→hhh:

- produkty rozpadu tworzą wiele pośrednich stanów rezonansowych, widocznych na rozkładach Dalitza
- duże różnice faz silnych między stanami rezonansowymi są warunkiem koniecznym, abyśmy obserwowali łamanie symetrii CP

 \mathbf{D}^+

1900

 $m_{K^{-}\pi^{+}\pi^{+}}$ (MeV/c²)

1850

1800

$$Asym_{CP} \sim |A_1||A_2|sin(\phi_1 - \phi_2)sin(\delta_1 - \delta_2)$$
różnica różnica różnica

różnica faz silnych

Mamy nadzieję na obserwację lokalnych asymetrii ładunkowych

faz słabych

Łamanie symetrii CP w rozpadach D[±]

- Lokalne asymetrie ładunkowe mogą zmieniać znak przy przejściach przez maksimum rozkładu masy utworzonego stanu rezonansowego
- Asymetria ładunkowa może być mierzalna lokalnie w obszarach wydzielonych z rozkładów Dalitza
- W danym obszarze rozkładu Dalitza asymetria ładunkowa może być dodatnia, a w innym ujemna. Przy całkowaniu po całej przestrzeni fazowej, wartość asymetrii ładunkowej może być rozmywana lub jej efekty mogą być całkowicie kasowane

W celu znalezienia asymetrii porównujemy rozkłady Dalitza dla D⁺ i D⁻ lokalnie

Łamanie symetrii CP w rozpadach D[±]

- Dla przedziałów z danego obszaru rozkładu Dalitza mierzymy lokalną asymetrię ładunkową
- Zamiast: $\Delta(i) \equiv \frac{N^i(D^+) N^i(D^-)}{N^i(D^+) + N^i(D^-)}$ obliczamy S_{CP} (procedura Mirandy):

 $S_{CP}^{i} \equiv \frac{N^{i}(D^{+}) - N^{i}(D^{-})}{\sqrt{N^{i}(D^{+}) + N^{i}(D^{-})}}$

[Bediaga et al. Phys.Rev.D80(2009)096006]

- S_{CP} jest miarą znaczącości różnicy między D⁺ i D⁻ 1
- Po raz pierwszy zastosowana do poszukiwania lokalnych sygnałów w astronomii [Astr. Jour. 272:317, 1983]
 - metodę opracowano w celu wyodrębnienia oryginalnych asymetrii od fluktuacji statystycznych
- Nie zależy od modelu

Jeżeli nie ma łamania symetrii CP (tylko fluktuacje statystyczne), to S_{CP} jest rozkładem Gaussa (μ=0, σ=1)

Można zastosować także test $\chi^2 = \Sigma S_{CP}^{i}^{2}$ → Wartość P – prawdopodobieństwo otrzymania wartości testa równej lub większej, niż otrzymane przez has, przy założeniu, że hipoteza zerowa jest spełniona

- Metody są równoważne
- W LHCb metodę użyto dla rozpadów trzyciałowych, hp. D* (s) →h⁻h⁺h⁺

Rozpady $D^+_{(s)} \rightarrow h^-h^+h^+$ (h=K, π) Rozpady, które badamy można podzielić na trzy klasy: faworyzowane – Cabibbo favoured (CF) **pojedynczo tłumione** – singly Cabibbo suppresed (SCS) podwójnie tłumione – doubly Cabibbo suppresed (DCS) • może być kwark s: $1 \rightarrow \lambda$ (SCS) W+ \mathbf{T}^{1} W-→K⁻π⁺π⁺ CF D. π^+ TT Π Π. $D_{s}^{+} \rightarrow K^{-}K^{+}\pi^{+}$ **K**⁺ K-CF D⁻ D⁺s K-**K**⁺

Rozpad pojedynczo tłumiony

- dodatkowo rozpad SCS może zachodzić przez diagram pingwinowy
- dla SCS wkład od diagramu pingwinowego nie może być zaniedbany, jak dla CF
- amplitudy na rozpad drzewowy i pingwinowy mogą interferować
- przewidywania MS łamania symetrii CP w rozpadach ~0.1 %
- tam gdzie są pętle mogą być wymieniane nowe cząstki

Diagram pingwinowy otwiera możliwości szukania Nowej Fizyki

Sygnał: D⁺ \rightarrow K⁻K⁺ π^+ Rozpady kontrolne (CF): D⁺_s \rightarrow K⁻K⁺ π^+ , D⁺ \rightarrow K⁻ $\pi^+\pi^+$

Rekonstrukcja rozpadów D⁺_(s)→h⁻h⁺h⁺ w LHCb

Analiza przeprowadzona na danych 2010: 38 pb⁻¹

D⁺ᢆ→K⁻π⁺π<u>†</u>;_3.4mĺn, czystość ~98%

 10^{3}

LHCb

nanie CP w rozpadach cząstek powabnych

GeV²/c⁴)

Pomiar asymetrii

Jeżeli zmierzymy różnicę między D⁺ a D⁻, to metoda nie mówi co jest jej przyczyną.

Zmierzona asymetria może pochodzić od:

- asymetrii produkcji
- asymetrii detektorowych (np. inaczej oddziałujące K⁺ i K⁻, asymetrie efektywności w rekonstrukcji cząstek i antycząstek)
- asymetria tła
- asymetrii CP
- Najlepiej usunąć asymetrie zanieczyszczające:

W celu pozbycia się asymetrii globalnych (np. asymetrii produkcji) normalizujemy rozkłady Dalitza dla D⁺ i D⁻.

$$S_{CP}^{i} \equiv \frac{N^{i}(D^{+}) - \alpha N^{i}(D^{-})}{\sqrt{N^{i}(D^{+}) + \alpha^{2} N^{i}(D^{-})}} \qquad \alpha = \frac{N(D^{+})}{N(D^{-})}$$

 Pozostałe asymetrie zanieczyszczające można oszacować przez porównanie wyników metody dla różnych rozpadów

Test metody

W celu sprawdzenia metody, użyto modelu Monte Carlo z CLEO-c

- Uwzględniono stany rezonansowe, które mogą mieć duży wkład w rozkładzie Dalitza: K*(890), K*₀(1430), κ(800), K*₂(1430), φ(1020)
- Sprawdzono odpowiedź metody: gdy w MC nie ma łamania symetrii CP oraz gdy w MC wprowadzono łamanie CP

Test liczby przedziałów

Kolejnym pytaniem jest na ile przedziałów podzielić rozkład Dalitza, aby metoda miała wysoką czułość na pomiar łamania symetrii CP

• Problem:

- każdy dodatkowy przedział to dodatkowy stopień swobody. Jeśli w danym przedziale wartość łamania symetrii CP jest stała, to jeżeli podzielimy go na dwa przedziały, to nie zwiększymy sygnału (χ²), ale zwiększymy tło (ndf),
- ale jeżeli asymetria zmienia znak w danym przedziale, to zbyt mała liczba przedziałów może rozmyć asymetrię

• Testowano różne wersje przedziałów:

- przedziały o tej samej szerokości, a różnej liczbie przypadków
- przedziały o różnej szerokości i podobnej liczbie przypadków
 - bo obszary, w których są rezonanse można podzielić na więcej
 przedziałów

Wylosowano 100 takich samych eksperymentów i zliczono ile razy otrzymano odchylenie 3σ

A.Ukleja

Asymetrie zanieczyszczające

Pojawienie się lokalnych asymetrii może być imitowane przez następujące źródła:

 Przekrój czynny na oddziaływanie K⁻ i K⁺ z protonami jest inny.
 K⁻ będą szybciej oddziaływały w detektorze niż K⁺ (głównie dla małych pędów)

Efektywność rekonstrukcji K⁻ będzie mniejsza niż K⁺

- Jakiekolwiek asymetrie w budowie detektora mogą spowodować, że rekonstrukcja cząstek będzie inna niż antycząstek
- Tego typu efekty badamy w rozpadach kontrolnych $D^+ \rightarrow K^-\pi^+\pi^+$, $D^+_s \rightarrow K^-K^+\pi^+$ oraz w obszarach tła

i porównujemy z rozpadem sygnału D⁺ \rightarrow K⁻K⁺ π ⁺, gdzie oczekujemy łamanie symetrii CP

A.Ukleja

Rozpad kontrolny $D_{s}^{+} \rightarrow K^{+}K^{+}\pi^{+}$

- Dynamika na rozkładzie Dalitza jest tu bardzo podobna jak dla rozpadu sygnału $D^+ \rightarrow K^- K^+ \pi^+$
- Asymetria detektorowa dla K⁻ i K⁺ kasuje się, zostaje asymetria od π
- Jeżeli zmierzymy tutaj asymetrię, to możemy przypuszczać, że jest to asymetria detektorowa, którą należy odjąć od asymetrii jaką zobaczymy dla sygnału

Rozpad kontrolny $D^+ \rightarrow K^- \pi^+ \pi^+$

Rozpad CF, nie spodziewamy się sygnału, ale możliwa asymetria detektorowa pochodząca od K i π , jeśli niezerowa – powinniśmy ją zobaczyć

Test metody – tło sygnału D⁺ \rightarrow K⁻K⁺ π ⁺

Przeprowadzone testy

- Sprawdzono, jak metoda pracuje:
 - nie daje sygnału tam, gdzie go nie oczekujemy
 - daje sygnał tam, gdzie jest oczekiwany (test na Monte Carlo)
- Dla rozpadów kontrolnych i tła nie obserwuje się asymetrii
 - asymetrie detektorowa, produkcji i tła są pod kontrolą

Możemy zastosować metodę dla rozpadu, w którym spodziewamy się sygnału od łamania symetrii CP, dla rozpadu sygnału D⁺ \rightarrow K⁻K⁺ π ⁺

Pomiary dla D⁺ \rightarrow K⁻K⁺ π ⁺ (sygnał)

Różna i identyczna szerokość oraz różna liczba przedziałów na rozkładzie Dalitza

 Rozkłady S_{CP} zgodne ze standardowym rozkładem Gaussa (μ~0, σ~1)

```
    Wartości P są
większe od 10 %
```

Brak potwierdzenia łamania CP na danych 2010: 38 pb⁻¹

42

Dane 2011: rozpady $D^+ \rightarrow K^-K^+\pi^+$ (sygnał)

2010: 38 pb⁻¹, 370k przypadków

• brak potwierdzenia łamania CP

2011: 1.1 fb⁻¹ (30 razy więcej przypadków)

... but there is much more to come

Plany

Ponieważ metody zależne od liczby przedziałów są czułe na ich liczbę, to

- testowane są różne metody, m.in. metoda najbliższych sąsiadów (kNN)
 - rozkład Dalitza traktowany jest jako przestrzeń, w której są obliczane odległości między przypadkami (x = m²_{ab}, y = m²_{cb})
 - dla każdego przypadka znajduje się n_k najbliższych sąsiadów
 - obliczany jest test statystyczny

$$T = \frac{1}{n_k(n_a + n_b)} \sum_{i=1}^{n_a + n_b} \sum_{k=1}^{n_k} I(i,k)$$

 jeżeli dany najbliższy sąsiad ma ten sam znak ładunku, to /=1, jeżeli nie, to /=0
 [JINST5.P09004(2010)]

44

Podsumowanie

W eksperymencie LHCb zmierzono różnicę asymetrii CP ΔA_{CP} między rozpadami D⁰→K⁻K⁺ a D⁰→π⁻π⁺ na danych 2011, L = 580 pb⁻¹ (LHCb-CONF-2011-061, LHCb-PAPER-2011-023)

$$\Delta A_{CP} = [-0.82 \pm 0.21^{stat} \pm 0.11^{syst}]\%$$

Ζnaczącość 3.5σ

- ♦ Pierwszy pomiar łamania symetrii CP w rozpadach cząstek powabnych
- ♦ Jest to pomiar łamania symetrii CP w rozpadach (wkład od łamania CP w mieszaniu jest ~10%)
- ♦ Pozostałe dane 500 pb⁻¹ są analizowane
- Nie zaobserwowano łamania symetrii CP w rozpadach D⁺→K⁺K⁺π⁺ na danych 2010, L = 38 pb⁻¹ (LHCb-PAPER-2011-017)
 - ♦ Dane 2011, 1.1 fb⁻¹ są analizowane
 - ♦ W badaniach bierze udział grupa warszawska
- Ponieważ badania cząstek powabnych są także interesujące i ważne, to LHCb LHCbc ?

Backup

$$V_{\rm CKM} = \begin{pmatrix} V_{\rm ud} & V_{\rm us} & V_{\rm ub} \\ V_{\rm cd} & V_{\rm cs} & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix} = \begin{pmatrix} 1 & \lambda & \lambda^3 \\ -\lambda & 1 & \lambda^2 \\ -\lambda^3 & -\lambda^2 & 1 \end{pmatrix}$$

Przejścia:
w tej samej generacji ~1
między 1-2 generacji ~10⁻¹
między 2-3 generacji ~10⁻²
między 1-3 generacji ~10⁻³

Pomiar parametru y

$$\hat{\Gamma}(D^0 \to K^+ K^-) = \Gamma \left[1 + R_m (y \cos \phi - x \sin \phi)\right],$$
$$\hat{\Gamma}(\overline{D^0} \to K^+ K^-) = \Gamma \left[1 + R_m^{-1} (y \cos \phi + x \sin \phi)\right],$$
$$\hat{\Gamma}(D^0 \to K^- \pi^+) = \hat{\Gamma}(\overline{D^0} \to K^+ \pi^-) = \Gamma.$$
$$\left|\frac{q}{p}\right| = R_m$$

D⁰→K⁺K⁻ jest stanem własnym CP (Cząstka i antycząstka rozpadają się do tego samego stanu)

 $D^0 \rightarrow K^-\pi^+$ nie jest stanem własnym CP (Cząstka i antycząstka rozpadają się do innego stanu)

[Bergmann et all. Phys.Lett. B486 (2000)418-425]

$$\begin{split} y_{CP} &\equiv \frac{\hat{\Gamma}(D^0 \to K^+ K^-)}{\hat{\Gamma}(D^0 \to K^- \pi^+)} - 1 = \frac{1}{2} (R_m + R_m^{-1}) y cos\phi - \frac{1}{2} (R_m - R_m^{-1}) x sin\phi \\ R_m^{\pm 2} &= 1 \pm A_m \end{split} \qquad \mathsf{A}_{\mathsf{m}} - \mathsf{parametr} \text{ } \mathsf{amania} \ \mathsf{CP} \end{split}$$

Przy założeniu, że A_m<< 1 (czyli R_m nie różni się znacząco od 1), to:

$$y_{CP} \equiv \frac{\hat{\Gamma}(D^0 \to K^+ K^-)}{\hat{\Gamma}(D^0 \to K^- \pi^+)} - 1 \approx y \cos\phi - \frac{A_m}{2} x \sin\phi$$

Pomiar parametru y (zależność czasowa)

Porównując czasy życia dwóch rozpadów:

- będącego stanem własnym CP f_{CP} (D⁰ \rightarrow K⁺K⁻) cząstka i antycząstka rozpadają się do tego samego stanu końcowego D⁰ \rightarrow K⁺K⁻ anty-D⁰ \rightarrow K⁺K⁻ $\hat{\Gamma}(D^0 \rightarrow K^+K^-) \neq \hat{\Gamma}(\bar{D^0} \rightarrow K^+K^-) \neq \Gamma$
- względem rozpadu nie będącego stanem własnym CP f_{non-CP} (D⁰ \rightarrow K⁻ π^+) cząstka i antycząstka rozpadają się do różnych stanów końcowych D⁰ \rightarrow K⁻ π^+ anty-D⁰ \rightarrow K⁺ $\pi^ \hat{\Gamma}(D^0 \rightarrow K^-\pi^+) = \hat{\Gamma}(\bar{D^0} \rightarrow K^+\pi^-) = \Gamma$

$$y_{CP} \equiv \frac{\hat{\Gamma}(D^0 \to f_{CP})}{\hat{\Gamma}(D^0 \to f_{non-CP})} - 1 = \frac{\hat{\Gamma}(D^0 \to K^+ K^-)}{\hat{\Gamma}(D^0 \to K^- \pi^+)} - 1$$

$$\begin{split} \hat{\Gamma}(D \to f) &= \Gamma(1+z) & \begin{array}{c} \Gamma & - \operatorname{odwrotność} \operatorname{czasu} \dot{z} \text{ycia} \\ z < 1 - \operatorname{miara} \operatorname{odchylenia} \operatorname{od} \operatorname{rozkładu} \\ e \text{ksponencjalnego} \end{split}$$

Gdyby D **tylko rozpadało** się to jego "znikanie" miałoby charakter **eksponencjalny**, ale dodatkowo D **oscyluje** i "zanika" szybciej (**nieeksponencjalnie**).

Pomiar y_{CP} – pomiar odchylenia od rozkładu e^{- Γ t} \rightarrow pomiar mieszania

A.Ukleja

Łamanie CP w rozpadach cząstek powabnych

Sposób pomiaru y

Pomiar odchylenia od rozkładu eksponencjalnego \rightarrow pomiar mieszania (ale możliwe łamanie CP)

 A_m – parametr łamania CP w mieszaniu (A_m << 1, bo wielkość łamania CP jest mała)

Jeśli nie ma łamania CP (ϕ =0, A_m=0): **y**_{CP}=**y** (pomiar "czystego" mieszania) Niezerowa różnica y_{CP}-y jest sygnałem łamania CP

BaBar: $y_{CP} = (11.6 \pm 2.2 \pm 1.8) \times 10^{-3}$ Belle: $y_{CP} = (13.1 \pm 3.2 \pm 2.5) \times 10^{-3}$ zgodne ze średnią światową y=(7.5±1.2)x10-3

Dodatkowo: rozpad $D^0 \rightarrow K^+K^-$ opisany diagramami drzewowym i pingwinowym, a rozpad $D^0 \rightarrow K^-\pi^+$ opisany tylko diagramem drzewowym

D

A.Ukleja

Łamanie CP w rozpadach cząstek powabnych

51

Sposoby pomiaru łamania CP (A_{Γ})

Asymetria czasów życia między D⁰ a anty-D⁰ rozpadających się na K⁺K⁻ (**SCS**) • będącego stanem własnym CP f_{CP} (D⁰ \rightarrow K⁺K⁻, anty-D⁰ \rightarrow K⁺K⁻)

$$\begin{array}{ll} \mathbf{D^{0} \longrightarrow f=anty}\text{-}\mathbf{f} = anty}\text{-}\mathbf{f} = anty}$$

Jeśli nie ma łamania CP (ϕ =0, A_m=0): A_r=0 Pomiar wymaga oznaczenia zapachu: D⁰ i antyD⁰

BaBar: A_{Γ} =(2.6±3.6±0.8)x10⁻³ Belle: A_{Γ} =(0.1±3.0±1.5)x10⁻³ zgodne z zerem (brak wskazania łamania CP)

Brak dotychczas eksperym. potwierdzenia łamania CP w sektorze C (a LHCb?)

A.Ukleja

Pomiary dla D⁺ \rightarrow K⁻K⁺ π ⁺ (sygnał, SCS)

Różna i identyczna szerokość oraz różna liczba przedziałów Na osi z wartości S_{CP}

Łamanie CP w rozpadach cząstek powabnych

Zdolność rozdzielcza IP

IP_x Resolution Vs 1/p₋ **VELO** 100wysoka precyzja w rekonstrukcji √s = 7 TeV 2011 Data wierzchołków – punktów produkcji i 80 rozpadów cząstek 70rozdzielczość IP: 60E_ 50 $38 \,\mu\text{m}$ dla 1 GeV p_T wzrasta to rozdzielczość IP lepsza 30 20System rekonstrukcji torów LHCb VELO Preliminary σ = 13.2 + 24.7/p₊ μm 10 – dokładność czasu życia ~ 50 fs 0.51/p_ [c/GeV] $0.1 \tau(D^0)$

Identyfikacja cząstek

RICH

- bardzo dobra identyfikacja cząstek π i K
- błędna identyfikacja < 5 % dla mierzonego zakresu pędów

Test statystyczny χ^2

- Innym sposobem porównania rozkładów Dalitza dla D⁺ a D⁻ jest Test Statystyczny χ²:
 - w każdym przedziale rozkładu Dalitza obliczamy χ_i^2
 - sumujemy χ_i^2 po wszystkich przedziałach $\Sigma \chi_i^2$
 - liczba stopni swobody ndf pomniejszona o 1, bo normalizacja we wszystkich przedziałach jest taka sama
 - z zsumowanego χ²/ndf obliczamy prawdopodobieństwo P otrzymania wartości testu równej lub większej, niż otrzymanej przez nas => Test hipotezy, że nie ma łamania CP