Seminarium Fizyki Wysokich Energii, 2.XII.2011, Warszawa

PLAN

» Wstęp - Ciemna Materia

- » Wybrane wyniki eksperymentalne (detekcja bezpośrednia i pośrednia)
 - CRESST NEW 2011/IX arXiv:1109.0702v1
- » Super-Kamiokande
- » Poszukiwanie neutrin z anihilacji Ciemnej Materii w oparciu o dane z Super-Kamiokande
 - Poszukiwanie sygnału ze Słońca NEW 2011/XI arXiv:1108.3384
 - Poszukiwanie sygnału w rozproszonym strumieniu neutrin z całej Galaktyki
- NEW!

» Podsumowanie

Wstęp – Ciemna Materia

Ciemna Materia we Wszechświecie

Zagadkowy składnik masy Wszechświata. Postulowane słabe oddziaływania z materią. Grawitacyjny wpływ na otaczającą materię. Determinuje ewolucję Wszechświata.

Halo Ciemnej Materi

otaczajace Galaktyke

Obserwacje sugerujące istnienie Ciemnej Materii

- » Kinematyka układów galaktyk
- » Rozkład prędkości rotacji galaktyk

CM stanowi > 90% masy galaktyk

- » Soczewkowanie grawitacyjne
- » Rozkład niejednorodności mikrofalowego promieniowania tła
- » Formacja struktur wielkoskalowych
- Pomiar zawartości lekkich pierwistaków i modele nukleosyntezy

Metody poszukiwania Ciemnej Materii

SM: cząstka z Modelu Standardowego

>> Detekcja pośrednia:

- Poszukiwanie produktów anihilacji/rozpadu χ (cząstka Majorany) jak np. elektrony/pozytony, hadrony/anty-hadrony, neutrina, fotony
- >> Detekcja bezpośrednia:
 - Elastyczne rozpraszanie χ-jądro
- > Akceleratory (LHC)

Detekcja bezpośrednia

CRESST

Cryogenic Rare Event Search with Superconducting Thermometers

>> Gran Sasso, Włochy (4000 m w.e.)

Detektory CaWO₄ – drgania sieci krystalicznej (ΔT), scyntylacje

>>

- >> 1 moduł 300 g, działanie w temp. 10mK
- > 2011/IX publikacja danych z 8 modułów, 730 kg•dni (2009/VII – 2011/III)

CRESST

Cryogenic Rare Event Search with Superconducting Thermometers

- Dominujące w doświadczeniu cząstki tła (e/γ) rozpraszają się na elektronach (electron recoils)
- WIMPy, neutrony i α rozpraszają się na jądrach (nuclear recoils)
- "Light yield" zależy od typu rozpraszania

Kalibracja źródłem neutronów AmBe Dane dla 1 modułu

Normalizacja: 'light yield' = 1 dla $E\gamma$ = 122 keV

CRESST – wyniki

Wyniki z jednego modułu 🛶

W obszarze sygnału zaobserwowano łącznie 69 przypadków w 8 modułach

ŹRÓDŁA TŁA

- 1. e/γ o niskich energiach
- 2. cząstki lpha
- 3. neutrony (pojedn. rozpr.):
 - radioaktywność: spontaniczne rozszczepienie ²³⁸U, (α,n)
 - produkcja przez miony kosmiczne
- ²⁰⁶Pb: ²¹⁰Po→²⁰⁶Pb+α zanieczyszczenia w klamarach podtrzymujących detektory

referencja:arXiv:1109.0702v1

CRESST – wyniki

- Parametryzacja wpływu źródeł tła oraz sygnału
- » FIT: 'maximum likelihood'
- » Wynik dwa rozwiązania M1, M2
- » Rozwiązania bez WIMP-ów odrzucone: M1 4.7σ, M2 4.2σ

	M1	M2
e/γ -events	8.00 ± 0.05	8.00 ± 0.05
α -events	$11.5^{+2.6}_{-2.3}$	$11.2^{+2.5}_{-2.3}$
neutron events	$7.5^{+6.3}_{-5.5}$	$9.7^{+6.1}_{-5.1}$
Pb recoils	$15.0^{+5.2}_{-5.1}$	$18.7^{+4.9}_{-4.7}$
signal events	$29.4^{+8.6}_{-7.7}$	$24.2^{+8.1}_{-7.2}$
$m_{\chi} \; [\text{GeV}]$	25.3	11.6
$\sigma_{\rm WN}$ [pb]	$1.6 \cdot 10^{-6}$	$3.7 \cdot 10^{-5}$

referencja:arXiv:1109.0702v1

Detekcja bezpośrednia – stan badań

Parzysta liczba nukleonów → oddziaływania niezależne od spinu (SI); nieparzysta → zależne od spinu (SD)

SYGNAŁ

- DAMA/LIBRA (250 kg Nal, 0.82·10³ kg·lat)
- CoGeNT (Ge, 8.4 kg·dni)
- » CRESST (CaWO₄, 730 kg·dni)

BRAK SYGNAŁU

» Wszystkie pozostałe eksperymenty

Stan badań w zakresie oddziaływań zależnych od spinu → W DALSZEJ CZĘŚCI

- Iinie obszary wykluczone powyżej na poziomie ufności 90%
- » kontury jest sygnał, dopasowanie do wyników eksperymentów

Detekcja pośrednia

fotony

produkowane w wielu kanałach anihilacji w rozpadach π^0 , dobra informacja nt. kierunku i widma energii (w skali galaktyki)

antymateria: pozytny, anty-deuteron, antyproton

docierają z odległości kilku kpc, eksperymenty na satelitach lub balonowe

neutrina

bardzo dobra informacja nt. źródła (kierunek, energia) docierają z gęstych obszarów (Słońce, jądro Ziemii,Centrum Galaktyki)

P.Mijakowski

2.XII.2011 Warszawa

Detekcja pośrednia – stan badań

- » PAMELA (2009):
 - pomiar frakcji pozytonów w pierwotnym promieniowaniu kosmicznym -> niezgodność z przewidywaniem
 - Pomiar anty-protonów → zgodność z oczekiwaniami
- FERMI (2010) nadwyżka (e⁺ + e⁻)
- » Obserwacje możliwe do wyjaśnienia przez kilka czynników: (1) pobliski pulsar (2) niepoprawna ocena strum. prom. kosm. (3) anihilacja Ciemnej Materii

Czy CM anihiluje tylko w leptony (brak nadwyżki anty-protonów)? Jeśli tak to spodziewamy się również zaobserwować nadmiar neutrin.

Poszukiwanie neutrin z anihilacji Ciemnej Materii

» Główne tło doświadczalne w poszukiwaniach neutrin z anihilacji CM stanowią neutrina atmosferyczne

Super-Kamiokande

50kton wod

22.5kton FV

40m

Jak rejestrowane są oddziaływania neutrin? $\nu + N \rightarrow \mu/\tau/e + N' + ...$

Super-Kamiokande

Obserwatorium Kamioka, Japonia

 Fotopowielacze (PMT) rejestrują światło emitowane przez cząstkę naładowaną, która porusza się z V > c (w wodzie) → prom. Czerenkowa

światło → rekonstrukcja

energii neutrina i jego kierunku

- SK działa od 1996 r.
- rejestruje v atm./słon./ reaktorowe/kosmiczne
- SK odkrył zjawisko oscylacji neutrin atmosferycznych (1998)
- daleki detektor w T2K

20

Co mierzymy?

energia widzialna -> pęd leptonu

rozkład przestrzenny światła
 → kierunek leptonu

© Piotr Mijakowski

Dane z Super-Kamiokande

Upward-going muons

 » E_{vis} > 30MeV
 » słaba rekonstrukcja prawdziwego kierunku
 v dla E_v <1 GeV

- » możliwe odróżnienie e/ μ
- >> tylko częściowa informacja nt. energii leptonu/neutrina
 >> E_{vis} > 300MeV
- » miony lecące do dołu nie są uwzględniane
- >> brak informacji nt. E_v
- » znakomita rekonstrukcja kierunku v

Neutrina atmosferyczne w Super-K

- W zależności od energii neutrina przypadek jest klasyfikowany jako FC, PC lub UPMU
- » Rejestrowana liczba przypadków neutrin atmosferycznych:

FC = ~8.3 przyp./dzień PC = ~0.7 przyp./dzień

UPMU = ~1.5 przyp./dzień

Oczekiwana liczba przypadków oddz. neutrin atmosferycznych każdej kategorii

P.Mijakowski

2.XII.2011 Warszawa

Poszukiwania neutrin z anihilacji Ciemnej Materii w Super-Kamiokande

- Poszukiwanie sygnału z określonych kierunków (Ziemia, Słońce)
 - wynik na $\sigma_{\chi n}$, porównanie z DAMA/CoGeNT/CRESST
- 2. Poszukiwanie sygnału w rozproszonym strumieniu neutrin z całej Galaktyki
 - wynik na < σ_A V> , porównanie z PAMELA/ATIC/FERMI

Poszukiwanie neutrin z anihilacji CM w Słońcu

Publikacja XI/2011

- Czy jest nadwyżka neutrin z kierunku Słońca ponad tło neutrin atmosferycznych?
- DANE: przypadki mionów lecących od dołu detektora UPMU

stopping

- » Statystyka: 3109.6 dni, 1996-2008 r. (2 x więcej niż w poprzediej publikacji)
- Czułość na zakres mas >> WIMP-ów 10 GeV – 10 TeV

referencja: T.Tanaka et al., Astrophysical J. 742 78 (arXiv:1108.3384)

SŁOŃCE / przypadki UPMU

Limit na strumień lecących do góry mionów

Symulacja

Jak połączyć informację nt. strumienia neutrin z kierunku Słońca z masą WIMP-ów?

Limit: strumień mionów (UPMU) związanych z oddziaływaniem neutrin z anihilacji CM w Słońcu

Im mniejsza masa M_X tym szerszy kąt wokół Słońca trzeba uwzględniać ze względu na zachowanie prawdziwego kierunku neutrina przez mion

referencja: T.Tanaka et al., Astrophysical J. 742 78 (arXiv:1108.3384)

Limit na przekrój czynny $\sigma_{\chi N}$ (spin dependent)

- » Rozpraszanie χ w Słońcu na H (oddz. zależne spinu)
- » Równowaga pomiędzy wychwytem χ przez Słońce a ich anihilacją
- wychwyt = anihilacja

Oddz. z nukleonami

 σ_{χ} N

- » Wykluczenie wyników DAMY
- » Przyszłość SK → wyniki < 10 GeV</p>

Poszukiwania neutrin z anihilacji Ciemnej Materii w Super-Kamiokande

- Poszukiwanie sygnału z określonych kierunków (Ziemia, Słońce)
 - wynik na $\sigma_{\chi n}$, porównanie z DAMA/CoGeNT/CRESST
- 2. Poszukiwanie sygnału w rozproszonym strumieniu neutrin z całej Galaktyki
 - wynik na $<\sigma_A$ V> , porównanie z PAMELA/ATIC/FERMI

Poszukiwanie sygnału z anihilacji Ciemnej Materii w rozproszonym strumieniu neutrin

Idea analizy

- Poszukiwanie sygnału w danych Super-K zebranych w latach 1996-2008 livetime: FC/PC 2806 dni, UPMU 3109 dni
- » Symulacja sygnału i odpowiedzi detektora dla wszyskich zapachów neutrin $\nu_e,\,\nu_\mu,\,\nu_\tau$ dla różnych M_χ
- >> Dopasowanie sygnału i tła neutrin atm. do danych metodą minimalizacji χ^2

DANE = SYGNAŁ + V ATM

Monte Carlo

- >> Dwa podejścia dopasowanie na podstawie:
 - 1. rozkładów w kącie zenitalnym + rozkładów pędu

rozkładów w kącie względem Centrum Galaktyki + rozkładów pędu

Procedura dopasowywania

- >>> Dopasowywane parametry:
 - (1) normalizacja sygnału β
 - (2) Δm_{23}^2 , (3) $\sin^2 2\theta_{23} \rightarrow \text{parametry oscylacji neutrin atm., } N^{\text{atmv}}(\Delta m_{23}^2, \sin^2 2\theta_{23})$
 - + 122 $\epsilon_i \rightarrow$ wpływ 122 źródeł niepewności systematycznych

Niektóre z parametrów syst. spełniają rolę normalizacji ATM MC!

Wyniki dopasowania przykład dla $M_{\gamma} = 90$ GeV

Dopuszczalna liczba przypadków oddziaływań neutrin z anihilacji Ciemnej Materii w Super-K

FIT na podstawie rozkładów w kącie zenitalnym

- >> Wynik dopasowania dla neutrin mionowych v_{μ} + \overline{v}_{μ}
- >> Punkty nie są <u>niezależne</u> → za każdym razem te same dane; inne proprocje sygnału w próbkach FC, PC, UPMU
- » WYNIK:
- M_χ = 3 GeV 3 TeV brak obserwacji przypadków sygnału
- M_χ < 3 GeV, nadwyżka dla ok. 1 GeV i 600 MeV

Dyskusja – dopasowanie w kącie zenitalnym

- Nadwyżka przypadków dla **>>** niewielkich mas WIMP-ów na poziomie 2-3 sigma
- ... ale wówczas sygnał jest $\boldsymbol{>}$ dopasowywany na podstawie próbek SubGeV → DANE, ATM MC oraz SYGNAŁ są 'płaskie'
- ... dodatkowo dla tych próbek jest **>>** duża niepewność związana z całkowitą normalizacją

800 SubGeV e-like 0dcy e SubGeV µ-like 1dcy e SubGeV µ-like 0dcy 600 300 E 200 400 200 100 200 cosθ

P.Mijakowski

2.XII.2011 Warszawa

Alternatywne podejście – fit w rozkładach względem Centrum Galaktyki

» Możliwe efektywne dopasowanie sygnału dla małych Mχ > Główna trudność → redefinicja wpływu systematyki w nowym układzie (Fij)

Dopuszczalna liczba przypadków oddziaływań neutrin z anihilacji Ciemnej Materii w Super-K

Centrum Galaktyki

- Fit: normalizacja sygnału
 WIMP + niepewności syst.
- Wartości Δm²₂₃, sin²2θ₂₃ nie były dopasowywane w tym podejściu
- Bardzo silny wiąz → kształt sygnału
- Rozkłady DANYCH i ATM MC wyglądają podobnie dla wszystkich próbek (FC/PC/UPMU) → jednakowy wynik dla szerokiego zakresu Mχ

ZENIT

FIT: norm. WIMP, Δm²₂₃, sin²2θ₂₃
 + niepewności syst.

Ograniczenie na strumień neutrin z anihil. Ciemnej Materii

90% CL UPPER LIMIT

Limit na przekrój czynny na anihilację CM < σ_A V>

Podsumowanie 1/2

- >> Poszukiwanie Ciemnej Materii w Super-Kamiokande \rightarrow dwie analizy
 - 1. 'Punktowa' neutrina związane z anihilacją CM w różnych obiektach kosm.

Publikacja 2011/XI (Słońce) ale też i wcześniej 2004 (Słońce, Ziemia, GC)

2. 'Rozproszona' – poszukiwanie sygnału w rozproszonym strumieniu neutrin z całej Galaktyki. Tego w typu analiza przeprowadzona w Super-K po raz pierwszy (więcej w doktoracie P.Mijakowski http://neutrino.fuw.edu.pl/node/429)

>> Ad 2. \rightarrow Etapy analizy

- Symulacja sygnału od Ciemnej Materii
- Dopasowanie sygnału i tła neutrin atm. do danych Super-K
- Dwa podejścia fit w kącie zenitalnym oraz galaktycznym
- Dane Super-K zgodne z przewidywanym tłem, wkład od przypadków związanych z CM zgodny z 0 dla zakresu M χ ~0.5 GeV \rightarrow ~1 TeV
- Ograniczenie na strumień neutrin od CM, limit na $<\sigma_AV>$
- W tej chwili najlepsze na świecie ograniczenie na <σ_AV> uzyskane z eksperymentów neutrinowych
- Analiza 'punktowa' będzie wykorzystywać w przyszłości bardziej ogólne narzędzia analizy 'rozproszonej': globalny fit do wszystkich próbek SK + uwzględnienie systematyki

Podsumowanie 2/2

» Ciemna Materia

Detekcja bezpośrednia

- DAMA twierdzi że odkryła CM już przeszło 10 lat temu
- CRESST i CoGeNT obserwują sygnał dla M_γ ~ kilku kilkunastu GeV
- Pozostałe eksperymenty nie potwierdzają tych wyników

Detekcja pośrednia

- PAMELA/ATIC nadmiar pozytonów (oraz e⁺+e⁻) ponad spodziewane tło, przy energiach > 10 GeV (ATIC: 300-600 GeV) ... sytuacja trudna do wytłumaczenia anihilacją CM w ramach standardowych modeli i założeń
- FERMI nie potwierdza tak znaczącego efektu nadmiaru e⁺+e⁻

Super-Kamiokande poszukuje neutrin z anihilacji CM

- w Słońcu, jądrze Ziemi brak nadwyżki ponad spodziewane tło neutrin atmosferycznych, limit na $\sigma_{\gamma N}$
- w rozproszonym strumieniu z Galaktyki brak nadwyżki, limit na <σ_AV> w tej chwili najlepszy z eksperymentów neutrinowych
- Aby poznać naturę CM potrzebna będzie jej detekcja w eksperymentach różnych typów (akceleratorowych, bezpośrednich, pośrednich)

SLAJDY ZAPASOWE

DM self-annihilation cross section

– cross section averaged over the relative velocity distribution

 $\langle \sigma_A V$

Ciemna Materia we Wszechświecie

Zagadkowy składnik masy Wszechświata. Spodziewane słabe oddziaływania z materią. Grawitacyjny wpływ na otaczającą materię. Determinuje ewolucję Wszechświata.

Ciemna Materia stanowi ok 95-99% masy galaktyk

P.Mijakowski

2.XII.2011 Warszawa

Ciemna Materia we Wszechświecie

>> 1933 r. - Fritz Zwicky, gromada COMA. Prędkość obrotu galaktyk wokół wspólnego środka masy zbyt duża aby mogły one tworzyć układ związany.

Lata 70,80 – krzywe rotacji galaktyk; halo niewidzialnej materii (?)

ROZWIĄZANIA

Spherical dark matter halo encompassing galaxy

nieświecąca materia, tylko oddziaływania grawitacyjne
 modyfikacja prawa grawitacji? MOND (Modified Newtonian Dynamics)

P.Mijakowski

Bullet Cluster

- Analiza rozkładu masy w obszarze przechodzących przez siebie gromad galaktyk (1E0657-558) (*)
- Soczewkowanie grawitacyjne pomiar potencjału grawitacyjnego (obrazy z Hubble Space Telescope, European Southern Observatory VLT, Magellan) / fioletowy
- Promieniowanie X Chandra X-ray Observatory (NASA) /różowy
- Masa gazu typowo 2x większa od masy materii świecącej w galaktykach. Gaz oddziałuje E-M podczas kolizji
- » Wynik: koncentracja masy grawitacyjnej tam gdzie znajdują się galaktyki
- >> Obszary emisji prom. X: 10% całkowitej masy układu

- CIEMNA MATERIA - MOND

ΛCDM

ACDM – czołowy model kosmologiczny: promieniowanie mikrofalowe tła, struktury wielkoskalowe, przyśpieszanie ekspansji Wszechświata

Zawartość masy-energii we Wszechświecie

 $\rho_{crit} = \frac{3H_0^2}{8\pi G_N} = 5.6 \frac{GeV}{c^2} \frac{1}{m^3}$ Ω_{tot} ho_{crit} ρ_{crit} – gęstość krytyczna G_N – stała grawitacji H₀ – stała Hubble'a Całkowita gęstość masy-energii $\Omega_{tot} = 1.02 \pm 0.02$ Ptot ≥~m Ciemna Materia $\Omega_{\gamma} = 0.23 \pm 0.03$ Bariony $\Omega_{\rm b} \sim 0.045 \pm 0.003$ Ciemna Energia $\Omega_{\Lambda} = 0.73 \pm 0.03$

P.Mijakowski

Kandydat na cząstkę Ciemnej Materii

» Bardzo dobrze umotywowany teoretycznie kandydat

WIMP

(weakly interacting massive particle) Słabo Oddziałująca Masywna Cząstka

🔶 Neutralne

Długożyciowe

(z τ ~ czas życia Wszechświata)

• Masywne ($M_{\chi} \sim 100 \text{ GeV}$)

• Słabo oddziałujące z materią $\sigma \le 10^{-2}$ pb (10⁻³⁸ cm²)

>> Inni kandydaci

• Aksjon, grawitino, cząstka Kaluza-Klein... i wiele innych (bardziej egzotycznych)

taką cząstką jest neutralino χ

najlżejsza cząstka *supersymetryczna* LSP (Lightest Supersymmetric Particle)

$$\sim 6 \text{ GeV} < M_{\chi} < \sim 10 \text{ TeV}$$

LEP kosmologia

Przykładowe diagramy (neutralino)

Jungman, Kamionkowski, Griest, Phys. Rep., 267, 195 (1996)

Poszukiwanie neutrin z anihilacji Ciemnej Materii

Pomiar energii jąder odrzutu wieloma sposobami pozwala eliminować tło doświadczalne – odróżnienie rozpraszania na elektronach (np. elektronów lub fotonów) od rozpraszania neutronów/α/WIMP-ów na jądrach

P.Mijakowski

Energia odrzutu

>> Energia odrzutu zależy od:

- masy χ oraz masy jądra tarczy
- Energii kinetycznej WIMP-ów Tχ (model halo)

przykładowy model halo

 prędkość WIMP-ów w halo: rozkład Maxwella-Bolzmanna ze średnią prędkością względem centrum Galaktyki = 0, jej dyspersją ≈ 230 km/s, V_{esc} ≈ 600 km/s

- $V_{ukladu slon}$. \approx 230 km/s (względem halo) -> określa śred. T χ
- ρ gęstość WIMP-ów w halo galaktycznym (~ 0.3 GeV/c² · 1/cm³)
- » Np. (rozpraszanie w fali S):
 » Widmo energii jąder odrzutu dla ustalopej
 (Z=40)
 - Widmo energii jąder odrzutu dla ustalonej m_x jest ciągłe i ma charakter eksponencjalny

Ar
=40)
$$M_{\chi} = 50 \text{ GeV/c}^2 < T_{odrzutu} > = 14 \text{ keV}$$

 $M_{\chi} = 100 \text{ GeV/c}^2 < T_{odrzutu} > = 24 \text{ keV}$

Częstość zdarzeń

Liczba rejestrowanych przypadków (Rate):

 $R \sim \rho \cdot V \cdot \sigma$

 ρ - gęstość WIMP-ów w halo galaktycznym 0.3 GeV/c² ·1/cm³

♂ - elastyczny przekrój czynny zależny od materiału tarczy - rodzaju sprzężenia WIMP-nukleon (spinu) ... dla WIMP-ów spodziewamy się

 $\sigma_{\chi-\text{nukleon}} \sim \sigma_{\text{EW}} < 10^{-38} \text{ cm}^2$

Strumień WIMP-ów (
$$\phi_{\chi}$$
):

Przy założeniach:

$$\rho_{\chi} = 0.3 \ GeV/(c \cdot cm^3)$$
 $V_{\chi} = 230 \ km/s$ $M_{\chi} = 100 \ GeV/c$

 $\phi_{\chi} = \frac{\rho_x}{M} \cdot V_x$

Strumień WIMP-ów:

$$\phi_{\chi} \approx 7 \times 10^4 \ cm^{-2}s^{-1}$$

Np. dla dektora Ar oznacza to rejestrację ~1000 przyp./ kg /dzień przy $\sigma_{\chi-nukleon} = 10^{-38} \text{ cm}^2 (10^{-2} \text{ pb})$

Częstość zdarzeń. Efekt modulacji sezonowej

Liczba rejestrowanych przypadków (Rate): $R \thicksim \rho \cdot V \cdot \sigma$

 ρ – gęstość WIMP-ów w halo galaktycznym 0.3 GeV/c² ·1/cm³

 $\sigma-$ elastyczny przekrój czynny zależny od rodzaju sprzężenia WIMP-nukleon

prędkość WIMP-ów w halo: rozkład
 Maxwella-Bolzmanna ze średnią prędkością
 względem centrum Galaktyki = 0

 • V_{układu słon}. ≈ 230 km/s (względem halo) określa śred. energię kinetyczną WIMPów

 V – średnia prędkość cząstki
 WIMP względem nukleonu (tarczy) – ZALEŻY OD PORY ROKU!

Wypadkowa prędkość Ziemi względem Centrum Galaktyki:
Maksimum – 2 czerwiec - V ≈ 248 km/s
Minimum – 2 grudzień - V ≈ 219 km/s

Efekt modulacji sezonowej

» V – średnia prędkość cząstki WIMP względem nukleonu (tarczy) – ZALEŻY OD PORY ROKU!

Sumaryczna prędkość Ziemi i Słońca względem centrum Galaktyki:

Maksimum - 2 czerwiec - $V \approx 245$ km/s

Minimum - 2 grudzień - $V \approx 215$ km/s

P.Mijakowski

