

J. Ciborowski

A tachyon is a particle moving with velocity always v>c as seen in any reference frame ->emission and detection of a tachyon are separated by a space-like interval In Special Relativity one would write: $E^{2} - p^{2} = -\kappa^{2}$

Why about tachyons?

Regards fundamental aspects of Nature

- why only v<c, v=c ? why not v>c ? curiosity
- (OPERA only opportunity to talk about) luck
- v_e mass measurement (³T decay) m² <0
- v_{μ} mass measurement (π^+ decay) affects imagination

 $m^2 = -0.016 \pm 0.023 MeV^2$

 surprisingly rich consequences of theoretical investigations

What tachyons are NOT

(1):

c remains the limiting velocity

(2):

TACHYONS ARE NOT PARTICLES THAT:

-- have negative or imaginary mass

FALSE COMMON IDEAS

- -- have negative kinetic energy
- -- allow to reach into the past

(3):

If TACHYONS existed, that would **NOT** imply that Einstein's Special Relativity be invalidated

History of the concept

Sudarshan, Bilanyuk, Deshpande 1962: serious difficulties to describe tachyons within Einstein's SR:

- Causality violation
- Negative energies, backward time arrow
- Kinematical singularities
- Vacuum instability
- Infinite dimensional spinors for halfinteger spin tachyons
- Problems with quantisation

Focus on causality violation in SR

Time transformation in SR reads:

 $\Delta \mathbf{t}' = \gamma \Delta \mathbf{t} - \mathbf{V} \gamma \Delta \mathbf{x}$

- simultaneity ($\Delta t = 0$) is not absolute
- Δ t' may change sign for space-like intervals
 (interval = emission and detection of a tachyon)

SR does not describe tachyons

Hint:

LT: $\Delta t' = \gamma \Delta t - V \gamma \Delta x$ If one could only achieve: $\Delta t' = (...) \Delta t$ causality would be preserved if (...) > 0

Possible -- owing to a different clock synchronisation procedure

- Reichenbach, Grunbaum, Winnie
- SR test theories: Robertson, Mansouri & Sexl, Will, Lammerzahl, Zhang
- Chang, Tangherlini

Examples of clock synchronisation in Einstein's SR

Easy to show:

$$c_{AB} = c_{BA} = c$$
$$\frac{1}{2} \left(\frac{1}{c_{AB}} + \frac{1}{c_{BA}} \right) = \frac{1}{c}$$

Notation:

c_{AB} – one way velocity of light

from A to B

Velocity of light in SR

Over a closed path

- one clock (no conventions for synchronisation)
- result: c

Over an open path (from A to B): c_{AB}

- two clocks
- clock synchronisation procedure needed
- result c
- one-way velocity c_{AB} is not measurable using light

In Nature, one-way velocity of light A→ B may be different from B→A we are not able to measure neither -- but c over a closed path (using light or v<c particles)</p>

Either we obtain directly c or we must admit additional assumptions !

Roemer ...

Beyond Einstein's synchronisation

 Derivation of transformation laws in 1+1 dimension (simple demonstration of the idea)
 Notation: subscript E
 t_E – coord. time in Einstein synchronisation (also v_E, γ_E)
 t -- coord. time in arbitrary synchronisation

 $0 < \varepsilon_R < 1 - \text{Reichenbach coefficient}$ **its value tells of synchronisation procedure** $\Delta t_E = \Delta t_{\varepsilon_R} + (1 - 2\varepsilon_R) \frac{\Delta x}{c}$ **redefine** $\Delta t_E = \Delta t + \varepsilon \frac{\Delta x}{c} - 1 < \varepsilon < 1$ Relations between velocities:

$$v_E = \frac{\Delta x}{\Delta t_E}$$
 $v = \frac{\Delta x}{\Delta t}$

$$v_E = rac{v}{1 + \varepsilon v/c}$$
 $v = rac{v_E}{1 - \varepsilon v_E/c}$

Derive transformation laws for Δt and Δx (in arbitrary synchronisation)

Start from the Lorentz transformation $(\Delta x_E = \Delta x)$:

$$\Delta t'_E = \gamma_E (\Delta t_E - V_E \Delta x/c^2) \qquad \Delta x'_E = \gamma_E (\Delta x - V_E \Delta t_E)$$

Note: $\Delta t'_E = \Delta t' + \varepsilon' \frac{\Delta x'}{c}$ (ε transforms too)

Substitute above relations to obtain:

$$\Delta t' = \gamma \Delta t \left[1 + \frac{\varepsilon' V/c}{1 + \varepsilon V/c} \right] + \gamma \frac{\Delta x}{c} \left[\varepsilon - \varepsilon' - (1 - \varepsilon \varepsilon') \frac{V/c}{1 + \varepsilon V/c} \right]$$
$$\Delta x' = \gamma \frac{\Delta x - V \Delta t}{1 + \varepsilon V/c} \qquad \gamma = \frac{1 + \varepsilon V/c}{\sqrt{(1 + \varepsilon V/c)^2 - (V/c)^2}}$$

To satisfy ABSOLUTE SIMULTANEITY, $\Delta t' \propto \Delta t$, request:

$$\left[\varepsilon - \varepsilon' - (1 - \varepsilon \varepsilon') \frac{V/c}{1 + \varepsilon V/c}\right] = 0$$

In consequence we have the following transformation laws:

$$\Delta t' = \Delta t \sqrt{(1 + \varepsilon V/c)^2 - (V/c)^2}$$

$$\Delta x' = \frac{\Delta x - V\Delta t}{\sqrt{(1 + \varepsilon V/c)^2 - (V/c)^2}}$$
$$\varepsilon' = \varepsilon - (1 - \varepsilon^2)V/c$$

$$v' = \frac{v - V}{(1 + \varepsilon V/c)^2 - (V/c)^2}$$

Velocity of light

In a moving frame:

- $\varepsilon' = -V/c$ defines the procedure of clock synchronisation
- velocity of light is direction dependent: $c_+ = c/(1 + V/c)$ and $c_- = c/(1 - V/c)$ satisfying: $1/c = \frac{1}{2}(1/c_+ + 1/c_-)$

i.e. average velocity over a closed path equals c

Definition of the preferred frame

Notice that in a reference frame in which $\varepsilon = 0$, one has:

• Einstein clock synchronisation applies $t_E(B) = t_E(A) + \frac{1}{2}\Delta t_{ABA}$

Preterren Fram

• Velocity of light is constant and isotropic

Call this reference frame:

Preferred Frame

Fully covariant description – basic formulae

J. Rembieliński, Int. J. Mod. Phys. A12 (1997) 1677

 $u = (u^0, \vec{u}) -$ four-velocity of PF w.r.t. \mathcal{O}

$$\varepsilon(\vec{n}, \vec{u}) = \frac{1}{2} \begin{bmatrix} 1 - \vec{n}\vec{u}u^0 \end{bmatrix} \quad \text{Preferred Synchronisation}$$
$$\vec{c}(u) = \frac{c\vec{n}}{1 - \vec{n}\vec{u}u^0} \qquad \qquad \frac{1}{u^{0^2}} - \vec{u}^2 = 1.$$

 \vec{n} – direction of light propagation

Transformation of coordinates between O and O':

$$\mathrm{d}x^{\prime\mu}(u^{\prime}) = \mathbf{D}^{\mu}{}_{\nu}(W, u) \,\mathrm{d}x^{\nu}(u),$$

$$\left[\mathbf{D}^{\mu}_{\nu}\right](W,u) = \left(\begin{array}{c|c} 1/W^{0} & 0\\ \hline -\overrightarrow{W} & I + \frac{\overrightarrow{W} \otimes \overrightarrow{W}^{T}}{1 + \sqrt{1 + \overrightarrow{W}^{2}}} - \overrightarrow{W} \otimes \overrightarrow{u}^{T} u^{0} \end{array}\right),$$

W - four-velocity of \mathcal{O}' w.r.t. \mathcal{O} and $(\overrightarrow{a} \otimes \overrightarrow{b}^T)_{ij} = a_i b_j$.

$$W^{0}(u, u') = \frac{u^{0}}{u'^{0}} \qquad \overrightarrow{W}(u, u') = \frac{(u^{0} + {u'}^{0})(\vec{u} - \vec{u'})}{1 + u^{0} {u'}^{0}(1 + \vec{u} \, \vec{u'})}$$

Relativity Principle broken but Lorentz covariance valid

Velocity of \mathcal{O}' as seen from \mathcal{O} :

$$\overrightarrow{V} = \frac{\overrightarrow{W}}{W^0}$$

Velocity of \mathcal{O} as seen from \mathcal{O}' :

$$\overrightarrow{V'} = -W^0 \overrightarrow{W}$$

 $V' \neq V$ – breaking of the Reciprocity Principle (V' = -V)Inverse transformation:

$$\mathbf{D}_{\mu}^{\nu}(W,u) = \left(\begin{array}{c|c} W^{0} & 0 \\ \hline \overrightarrow{W} & I - \frac{\overrightarrow{W} \otimes \overrightarrow{W}^{T}}{W^{0} \left(1 + \sqrt{1 + \overrightarrow{W}^{2}}\right)} + \frac{u^{0}}{W^{0}} \left(\overrightarrow{W} \otimes \overrightarrow{u}^{T}\right) \end{array}\right)$$

 $\mathbf{D}(W', u') = \mathbf{D}^{-1}(W, u)$

Metric tensor depends on u

$$g(u) = \left(\begin{array}{c|c} 1 & u^0 \vec{u}^T \\ \hline u^0 \vec{u} & -I + \vec{u} \otimes \vec{u}^T u^{0^2} \end{array} \right) \quad \begin{array}{l} \text{Diagonal in PF} \\ \textbf{u}=(1,0,0,0) \end{array}$$

Invariants for covariant and contravariant four-vectors:

$$a_0^2 - \left(\underline{a} - u^0 \vec{a} a_0\right)^2 = a^2 \qquad \left[b^0 + u^0 \left(\vec{u} \vec{b}\right)\right]^2 - \vec{b}^2 = b^2$$

Resolving SR problems

In kinematics:

- NO causality violation $D_0^0 > 0$ $D_k^0 = 0$
- NO negative energies, NO backward time arrow
- NO kinematical singularities
- NO vacuum instability

Correspondence

A new principle of relativity

For light and v<c particles:

Any inertial reference frame may be assumed the preferred frame

If tachyons*** existed

There would exist a preferred frame of reference in Nature as well as the preferred clock synchronisation procedure

*** or other superluminal phenomena

PFM offers a description mathematically equivalent to SR for light and v<c particles **DESCRIPTION SUMMARY Tachyons** – **PFM only Bradyons, light -- PFM or SR equivalently** (but for practical reasons choose SR)

Einstein's SR remains valid

Tachyon in PF

Dispersion relation:

A simple example

$$E^2 - \vec{p}^2 = -\kappa^2$$

- κ tachyonic mass
- $E \text{tachyon energy} \equiv \text{kinetic energy}$ (no rest energy)
- \vec{p} tachyon momentum, rest-momentum $|\vec{p}| = \kappa$ when $v \to \infty$

$$E(v) = \frac{\kappa}{\sqrt{v^2 - 1}} \to 0 \text{ as } v \to \infty$$

$$E(v) \to \infty$$
 as $v \to c$ $(v > c)$

Velocity of light if tachyons*** existed

Over a closed path - as in SR: c

Over an open path (from A to B): c_{AB}

- two clocks
- synchronised using tachyons with v → infinity one-way velocity of light would be measurable using tachyons

No obstacles for superluminal transmission of information (if technically feasible)

How to discover the PF?

- measure one way velocity of light using absolute clock synchronisation (tachyons)
- measure processes sensitive to the four-vector u

Natural candidate: Cosmic Background Radiation ?

Velocity of Earth w.r.t. CMBR -- order of 10⁻³

Advantages of the PFM

- Covariant position operator, spin operator, probability current -- can be defined
- Non-local QM phenomena can be covariantly described
 (e.g. quantum spin correlations) IMPORTANT
- Covariant statistical classical and quantum thermodynamics can be formulated

Other superluminal phenomena? YES

EPR quantum spin correlations

MAY 15, 1935

PHYSICAL REVIEW

VOLUME 47

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. EINSTEIN, B. PODOLSKY AND N. ROSEN, Institute for Advanced Study, Princeton, New Jersey (Received March 25, 1935)

Correlated although separated by a space-like interval

Fermionic tachyons $(\lambda = \frac{1}{2})$

'Dirac'- like equation as in relativistic QM Similar method of derivation

Important differences in results!!!

 γ matrices in absolute synchronisation:

 $\gamma^{\mu} = T(u)^{\mu}_{\
u} \gamma^{
u}_E$ $\gamma^{
u}_E$ - standard Dirac matrices $(\gamma^5 = \gamma^5_E).$

$$\{\gamma^{\mu},\gamma^{\nu}\}=2g_{\mu\nu}$$

The Klein-Gordon equation to be fulfilled: $\left[g_{\mu\nu}(u)\partial_{\mu}\partial_{\nu}-\kappa^{2}\right]\psi=0.$

Helicity condition to be fulfilled:

$$\hat{\lambda}(u)\psi(u,k)=\lambda\psi(u,k)$$

 $\hat{\lambda}(u)$ – helicity operator

Analogue of the Dirac equation:

$$\left[\gamma^5 \left(i\gamma\partial\right) - \kappa\right]\psi = 0.$$

Here: γ -matrices expressed by Dirac matrices

The bispinor field ψ is eigenvector of the helicity operator with eigenvalue 1/2:

tachyons $\lambda = -1/2$, antitachyons $\lambda = 1/2$

Argument 1: excess of counts

in Tritium

$${}^{3}H \rightarrow {}^{3}He + e^{-} + \bar{\nu}_{e} \quad (+18.6 \text{ keV})$$

Electron differential energy spectrum near end-point

$$\frac{\mathrm{d}N}{\mathrm{d}E} \propto (E_0 - E)\sqrt{(E_0 - E)^2 - m_{\nu}^2}$$

Linearised differential:

$$\propto \left[(E_0 - E) \sqrt{(E_0 - E)^2 - m_{\nu}^2} \right]^{1/2}$$

Electron integral energy spectrum near end-point:

$$N \propto \int_{E}^{E_0} (E_0 - \xi) \sqrt{(E_0 - \xi)^2 - m_{\nu}^2} \,\mathrm{d}\xi$$

Linearised integral:

$$N^{1/3} \propto \left[\int_{E}^{E_0} (E_0 - \xi) \sqrt{(E_0 - \xi)^2 - m_{\nu}^2} \,\mathrm{d}\xi \right]^{1/3}$$

 E_0 – end-point energy (unknown, fitted), E – electron energy

Electron energy spectrum

Credit: H. Drexlin

Differential spectrum

Integral spectrum

Integral spectrum

Step due to restmomentum of a tachyonic neutrino

PHASE SPACE factor

J. R, J. C. Eur. Phys. J. C8 (1999) 157

Explanation of excess if due to tachyonic neutrinos

\rightarrow exp. smeared

Step at endpoint

- Tachyonic neutrino 'rest' momentum at endpoint = κ (not 0 like for massive neutrino)
- Very rapid step like -- rise of phase space with decreasing electron energy owing to non-vanishing tachyonic neutrino momentum vector (despite zero neutrino energy)

FUTURE: Experiment KATRIN (any time now)

Argument 2: tachyon -- helicity 1/2 antitachyon -- helicity -1/2

- Coincides with experimental observations for neutrinos
- No need to introduce ad hoc the $(1-\gamma^5)$ term in the (weak) current -- the above property of spinors follows from the 'Dirac' equation for tachyons (i.e. from first principles)

Comment 3:

- Tachyonic neutrino cannot be Majorana-type
- Observation of neutrinoless 2β decay would invalidate the tachyonic hypothesis

• Not discovered to date

- Tachyons cannot be described within Einstein's SR
- PFM given by J. Rembieliński is a unified description of v<c, c and v>c particles and phenomena
- **PFM is equivalent to SR for light and v<c particles**
- Tachyons can be described and quantised only within PFM
- If tachyons exist the Preferred Frame and the preferred synchronisation procedure must have been chosen by Nature
- Signals (information) could be transmitted with superluminal velocity

- PFM allows to settle several unsolved problems in QM
- Tachyon has helicity 1/2, antitachyon + 1/2
- There are arguments favouring neutrinos as tachyonic candidates
- If tachyons do not exist, PF is still desirable: PFM remains a valid option in view of non-local quantum phenomena like EPR correlations

Mainz runs 1997 - 2001

no.	$\Theta_{\rm max}$	t	pt	ft	\bar{b} [mHz]	$m^2(u_e)$	U_0 [V]
		[d]		[nm]		$[eV^2]$	
Q1	45°	6		20.8		test measurement	
Q2	45°	26	50	96.7	16.7 ± 0.3	-11.2 ± 6.0	18573.5 ± 0.3
Q3	45°	24	64	49.3	12.7 ± 0.2	-14.8 ± 4.6	18574.0 ± 0.2
Q4	45°	38	64	49.5	11.7 ± 0.2	-3.9 ± 4.7	18574.5 ± 0.2
Q5	45°	46	64	47.5	21.6 ± 0.2	$-3.5{\pm}6.0$	18574.4 ± 0.2
Q6	62°	38	33	43.0	12.5 ± 0.2	$+0.4\pm7.2$	18575.7 ± 0.2
Q7	62°	29	33	43.2	14.3 ± 0.2	-2.4 ± 4.9	18575.4 ± 0.2
Q8	62°	54	39	45.5	16.5 ± 0.2	-0.9 ± 4.8	18576.2 ± 0.3
Q9	62°	56	39	44.4	18.6 ± 0.3	-10.9 ± 3.2	18575.1 ± 0.2
Q10	62°	35	45	45.5	$16.6 {\pm} 0.3$	-6.1 ± 4.8	18574.6 ± 0.2
Q11	45°	31	45	48.2	$12.6{\pm}0.2$	$+1.3\pm5.8$	18576.7 ± 0.2
Q12	62°	19	45	48.5	12.6 ± 0.2	-1.0 ± 6.0	18576.6 ± 0.2

Selected for final results: Q5-Q8