Implications of CMS searches for the Constrained MSSM -A Bayesian approach

Y-L Sming Tsai

BayesFITs Group

(A. Fowlie, K. Kowalska, S. Munir, L. Roszkowski, E. Sessolo, S. Trojanowski and A. Kalinowski, M. Kazana, K. Nawrocki, P. Zalewski)

National Center for Nuclear Research (NCBJ)

Outline

- 1. Constrained MSSM (CMSSM)
- 2. Bayesian statistics in a nutshell
- 3. Impact of CMS alphaT 1.1/fb and XENON100 limits
- 4. Summary

Fowlie, Kalinowski, Kazana, Roszkowski, Tsai (arXiv:1111.6098) Roszkowski, Sessolo, Tsai (arXiv:1202.1503)

Constrained Minimal Supersymmetric Standard Model

G. L. Kane, C. F. Kolda, L. Roszkowski and J. D. Wells, Phys. Rev. D 49 (1994) 6173

At $M_{\rm GUT} \simeq 2 \times 10^{16} \, {\rm GeV}$:

- ${oldsymbol{9}}$ gauginos $M_1=M_2=m_{\widetilde{g}}=m_{1/2}$
- 🥒 scalars
 - $m_{\widetilde{q}_i}^2 = m_{\widetilde{l}_i}^2 = m_{H_b}^2 = m_{H_t}^2 = m_0^2$

) 3–linear soft terms
$$A_b = A_t = A_0$$

radiative EWSB $\mu^2 = \frac{m_{H_b}^2 - m_{H_t}^2 \tan^2 \beta}{\tan^2 \beta - 1} - \frac{m_Z^2}{2}$

- five independent parameters: $m_{1/2}, m_0, A_0, \tan\beta, \operatorname{sgn}(\mu)$
- well developed machinery to compute masses and couplings
- neutralino χ mostly bino

Comparison of experimental data and model prediction

Traditional chi-square method:

$$\chi^2 = \sum \frac{(\text{prediction} - \text{measurement})^2}{(\text{error})^2}$$

As long as experimental central value and error are given, one can use chi-square method to compare the experimental data and model predictions.

Alternatively...

Bayesian Statistics...

Bayes theorem:

$Posterior = \frac{Prior \times Likelihood}{Evidence}$

Likelihood: the probability of obtaining data if hypothesis is true.

Prior: what we know about hypothesis BEFORE seeing the data.

Evidence: normalization constant, crucial for model comparison.

Posterior: the probability about hypothesis AFTER seeing the data.

There is no single, ``right'' statistics...

Frequentist: "probability is the number of times the event occurs over the total number of trials, in the limit of an infinite series of equiprobable repetitions"

Bayesian: "probability is a measure of the degree of belief about a proposition"

Bayesian statistics is very popular in many branches of science (astronomy, cosmology, etc.).

For example, The Wilkinson Microwave Anisotropy Probe (WMAP) analysis of cosmic microwave background (CMB) spectrum:

Prior dependence

- If the Likelihood is well-peaked, the posterior follows the Likelihood
- Otherwise, it follows the prior.

Take a single observable $\xi(m)$ that has been measured

- c central value, σ standard exptal error
- define

$$\chi^2 = rac{[\xi(m)-c]^2}{\sigma^2}$$

assuming Gaussian distribution ($d \rightarrow (c, \sigma)$):

$$\mathcal{L} = p(\sigma, c | \xi(m)) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{\chi^2}{2}\right]$$

when include theoretical error estimate τ (assumed Gaussian):

$$\sigma \rightarrow s = \sqrt{\sigma^2 + \tau^2}$$

TH error "smears out" the EXPTAL range

for several uncorrelated observables (assumed Gaussian):

$$\mathcal{L} = \exp\left[-\sum_{i} \frac{\chi_i^2}{2}\right]$$

 $(e.g., M_W)$

Upper/lower limit for null result: exclusion.

• Use error function to smear the bound!

• Can add theory error as well.

SUSY search at CMS

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

Poisson distribution to characterize counting experiments.

$$\mathcal{L} = \prod_{i} \frac{e^{-(s_i + b_i)} (s_i + b_i)^{o_i}}{o_i!}$$

 o_i : observed events in LHC.

 b_i : expected SM background events.

$$s_i : s_i = \epsilon_i \times \sigma \times \int L.$$

$$\epsilon_i : N_i(\alpha_T > 0.55) / N_{\text{total}}$$

$$i = 1, 2, 3..., 8.$$

Our approximate Efficiency maps

 $\epsilon_i : N_i(\alpha_T > 0.55)/N_{\text{total}}$

Fowlie, Kalinowski, Kazana, Roszkowski, Tsai (arXiv: 1111.6098)

Limit from CMS alphaT 1.1/fb

Fowlie, Kalinowski, Kazana, Roszkowski, Tsai (arXiv:1111.6098)

SUSY: Summary of constraints

	Observable	Mean	Exp. Error	Theor. Error	Likelihood Distribution
Davis Matter wells, dava its	Non-LHC:				
Dark Matter relic density	$\Omega_{\chi}h^2$	0.1120	0.0056	10%	Gaussian
	$\sin^2 \theta_{eff}$	0.231160	0.00013	15.0×10^{-5}	Gaussian
anomalous magnetic	M_W	80.399	0.023	0.015	Gaussian
moment of the muon	$\delta(g-2)^{SUSY}_{\mu} \times 10^{10}$	30.5	8.6	1	Gaussian
Favour physics	$\mathcal{BR}(\bar{B} \to X_s \gamma) \times 10^4$	3.6	0.23	0.21	Gaussian
	$\mathcal{BR}(B_u \to \tau \nu) \times 10^4$	1.66	0.66	0.38	Gaussian
	ΔM_{B_s}	17.77	0.12	2.4	Gaussian
	$\mathcal{BR}(B_s \to \mu^+ \mu^-)$	$< 1.5 \times 10^{-8}$	0	14%	Upper limit — Error fn
	LEP — 95% Limits				
	m_h	> 114.4	0	3	Lower limit — Error fn
	ζ_h^2	$< f(m_h)$	0	0	Upper limit — Step fn
	m_{χ}	> 50	0	5%	Lower limit — Error fn
	$m_{\chi_1^{\pm}}$	> 103.5 (92.4)	0	5%	Lower limit — Error fn
We include all important constraints.	$m_{\tilde{e}_R}$	> 100 (73)	0	5%	Lower limit — Error fn
	$m_{\tilde{\mu}_R}$	> 95 (73)	0	5%	Lower limit — Error fn
	$m_{\tilde{\tau}_1}$	> 87 (73)	0	5%	Lower limit — Error fn
	$m_{\tilde{\nu}}$	> 94 (43)	0	5%	Lower limit — Error fn
	LHC CMS $\alpha_T 1.1/$	fb analysis			
Deule weetten eineneli	α_T	See text	See text	0	Poisson
Dark matter search	XENON100				
	$\sigma_p^{SI}(m_\chi)$.	$< f(m_{\chi})$ — see text	0	1000%	Upper limit — Error fn
	Nuisance				
	$1/\alpha_{em}(M_Z)^{\overline{MS}}$	127.916	0.015	0	Gaussian
	m_t^{pole}	172.9	1.1	0	Gaussian
	$m_b(m_b)^{\overline{MS}}$	4.19	0.12	0	Gaussian
	$\alpha_s(M_Z)^{\overline{MS}}$	0.1184	0.0006	0	Gaussian

Including all the constraints into likelihood, we can conduct a random scan with prior range:

- $100 \text{ GeV} \leq m_0 \leq 4000 \text{ GeV}$
- $100 \text{ GeV} \le m_{1/2} \le 2000 \text{ GeV}$
- $-2000 \text{ GeV} \leq A_0 \leq 2000 \text{ GeV}$

 $3 \leq \tan \beta \leq 62.$

Impact of the alphaT limit on CMSSM

non-LHC experiments only.

CMS α_T 1.1/ fb analysis and by the non-LHC experiments.

General trend:

- favoured ranges are now pushed up.
 - poorer fit, but
- best fit point remains just above the CMS 95% CL limit

Direct searches of dark matter

currently best limit from XENON100

XENON100 limit not applied here

Impact on CMSSM

DM XENON100 limit has small additional effect
 LHC limits on CMSSM are stronger

Also: large theoretical uncertainties (~ factor of 10) in evaluating sigma_p

Impact of Xenon100 detection

• The Xenon100 limit shows that DM searches are still marred by large (~ factor of 10) theoretical uncertainties.

- Even if reduce them to ~1 will make little difference.
- Current LHC limits are much stronger.

Some examples:

- Posterior pdf CMSSM, $\mu > 0$ Log priors Non-LHC + $\alpha_T 1.1$ fb 1 and 2σ CR • Posterior mean × Best fit 100 110 120 130

 m_h (GeV)

~

BayesFirts (2011)

Mass (GeV)	68%	95%	68%	95%	
	Non-LHC		Non-LHC + CMS α_T 1.1/fb limit + XENON100		
m_h	(112.3, 116.5)	(110.1, 118.4)	(114.4, 117.8)	(112.2 <u>, 119.4</u>)	
m_{χ}	(56, 291)	(53,356)	(250, 343)	(128, 390)	
$m_{\chi_1^{\pm}}$	(110, 554)	(104,676)	(475, 651)	(181,738)	
mą	(326, 808)	(254, 1172)	(434, 761)	(398, 1302)	
mğ	(403, 1576)	(384, 1885)	(1380, 1825)	(879, 2043)	

Summary

- With 1.1/fb at LHC: improved limits on SUSY particle masses.
- The CMSSM has become severely constrained but not excluded.
- Constraints from direct detection of dark matter are currently weaker. One reason: still large theoretical uncertainties.
- Our method is completely general. It can be applied to other models (SUSY or not).
- We have developed a framework based on Bayesian approach to include limits and future signals from the LHC.
- Work in progress: updated limits including Razor 5/fb and impact of possible Higgs signal.

The End. Thank you for your attention.