Fizyka "do przodu". Część I: przegląd fenomenologii

Barbara Badełek Uniwersytet Warszawski

Seminarium Zakładu FCiOF

Warszawa, 16.III. 2012

Barbara Badelek (University of Warsaw) Forward physics. Part I: phenomenology

Warsaw, 16.III.2012 1/34

< 6 b

Hadron - hadron interactions

Total and elastic cross sections

Regge model

- Naive Quark–Parton Model (QPM)
- 5 Low x region in QCD

イロト イポト イヨト イヨト

Hadron - hadron interactions

- 2) Total and elastic cross sections
- 3 Regge model
- 4 Naive Quark–Parton Model (QPM)
- 5 Low x region in QCD
- Diffraction

イロト イポト イヨト イヨト

Hadron – hadron interactions

- QCD theory of quark-quark interactions at high momentum transfers while hadron–hadron interactions involve many partons at small momentum transfers.
- Two approaches: S matrix theory (amplitudes and phases of waves analogously to optics) and Regge model (single particle exchanges).
- Features of those interactions:

- inelastic processes dominate
- average multiplicity grows logarithmically with energy
- average transverse momentum is low, $\langle p_T \rangle \sim 0.4$ GeV, and independent of energy
- most of particles emitted from the cms "central region" (low p_L); some diffractive.

Hadron – hadron interactions,...cont'd

• Particle production is constant as a function of rapidity, y.

$$y = \frac{1}{2} \ln \left(\frac{E + p_{\mathbf{z}}}{E - p_{\mathbf{z}}} \right)$$

- Under a boost in z to a frame with velocity β , $y \rightarrow y \tanh^{-1} \beta$...
- …hence shape of rapidity, dN/dy is invariant as are differences in rapidity ⇒ y is preferred over polar angle θ in hadron collider physics.
- "Forward" in a hadron–hadron collider experiment means close to the beam axis, i.e. high pseudorapidity, |η|, where

$$\eta = \frac{1}{2} \ln \left(\frac{|\vec{p}| + p_{z}}{|\vec{p}| - p_{z}} \right) = -\ln \left[\tan \left(\frac{\theta}{2} \right) \right]$$

• $\eta \Rightarrow y$ for $v \approx c$ or $m \approx 0$, η can be measured when m and p unknown.

$$\eta = 0$$

$$\theta = 90^{\circ}$$

$$\eta = 0.88$$

$$\theta = 45^{\circ}$$

$$\eta = 2.44$$

$$\theta = 0^{\circ} \rightarrow \eta = 2.44$$

Total and elastic cross sections

3 Regge model

- 4 Naive Quark–Parton Model (QPM)
- 5 Low x region in QCD

6 Diffraction

< ロト < 同ト < ヨト < ヨト

Total cross section data

Cross sections (slowly) grow with energy (curves: Donnachie and Landshoff).

Particle and antiparticle cross sections equal at high energy.

Barbara Badelek (University of Warsaw) Forward physics. Part I: phenomenology

Total and elastic cross section

- Pomeranchuk theorem: at high energies, $\sigma_{tot}(ab) = \sigma_{tot}(\bar{a}b)$, if ReA/ImA < 1. Manifestation of crossing symmetry. Confirmed experimentally.
- Froissart bound: asymptotically $\sigma_{tot}(s)$ cannot increase faster than $\ln^2 s$ (unitarity, analyticity).
- Simplest scattering/absorption model: a black disk of radius *R*.
- Partial wave decomposition gives: $\sigma_{\rm el} = \pi R^2$ $\sigma_{\rm in} = \pi R^2$ $\sigma_{\rm tot} = 2\pi R^2$
- σ_{el} = σ_{in} ⇒ diffraction (seen in data albeit wrong proportions; R ~ 1 fm):

$$\frac{\mathrm{d}\sigma_{\mathrm{el}}(\mathrm{black\ disk})}{\mathrm{d}q^2} = \pi R^4 \left| \frac{J_1(Rq)}{Rq} \right|^2 \approx \frac{\pi R^4}{4} \exp\left(-\frac{R^2 q^2}{4}\right)$$

- At high energies, radius *R* grows slowly with energy (seen in data).
- Data: $\sigma_{\rm el}/\sigma_{\rm tot}\ll$ 0.5 and decreases with energy.
- Better description \implies Regge model.

Barbara Badelek (University of Warsaw)

Forward physics. Part I: phenomenology

elastvczne π-D

2) Total and elastic cross sections

3 Regge model

- 4 Naive Quark–Parton Model (QPM)
- 5 Low x region in QCD

6 Diffraction

< ロト < 同ト < ヨト < ヨト

A concept of Regge exchange

- Cross section for two-body process: ab→cd is strongly dominated by small t (or small θ).
- Successfuly described by exchange of a particle with appropriate quantum numbers.
- Regge "pole" (of given quantum numbers) exchange: a generalisation of a single particle exchange, where angular momentum is complex and continuous.

A D b 4 A b

Regge model and partons

Regge poles (singularities !) exchange represented in terms of partons of different virtuality t and spin α .

DUALITY

< 6 k

 "pomeron", ℙ = Regge pole carrying quantum numbers of vacuum (→ diffractive scattering). No known particles associated with it!

• "reggeons", \mathbb{R} = other Regge poles with $q\bar{q}$ structure. Sometimes no known particles associated with it.

Regge trajectory

• Regge trajectory: $\alpha(t)$,

t-dependent position of a pole of f_l in the (Im *l*, Re *l*)–plane in the *t*-channel. Whenever $\alpha(t) = n$, n = 1, 2, 3, ...or n = 1/2, 3/2, ...

there should exist a particle of spin *n* and mass $M_n = \sqrt{t}$.

Figure 14: The experimental ρ , f and a trajectories .

- H.e. behaviour of a 2-body amplitude due to \mathbb{R} exchange: $A(s,t) \sim s^{\alpha(t)}, \quad \alpha(0) =$ "intercept"
- Optical theorem: $\operatorname{Im} A_{\mathrm{el}}(0) = s\sigma_{\mathrm{tot}},$ $\sigma_{\mathrm{tot}} \sim s^{\alpha(0)-1}$ for a + b \rightarrow anything.

• Known trajectories: $\alpha_{\mathbb{R}}(0) \lesssim 1/2$ but $\alpha_{\mathbb{P}}(0) \approx 1$??? \mathbb{P} should be able to describe h.e. cross section ($\sigma_{tot} \approx const, s \nearrow$) and the shrinkage of the pp diffractive peak.

- Hadron hadron interactions
- 2) Total and elastic cross sections
- 3 Regge model
- 4 Naive Quark–Parton Model (QPM)
- 5 Low x region in QCD

6 Diffraction

< ロト < 同ト < ヨト < ヨト

DIS and definitions of variables

- Inclusive interaction: $e + p \rightarrow e' + X$ via one γ^* exchange
- At a given energy the cross section described by 2 variables, e.g.: x, Q²

$$Q^{2} = -q^{2} = -(k - k')^{2}$$

$$x = \frac{q^{2}}{2P \cdot q}, \quad 1 \le x \le 1$$

• Observe that the resolution of the γ^* sond:

$$\Delta r \sim \frac{\hbar c}{\sqrt{Q^2}}$$

• The ep $\rightarrow e' X$ cross section:

$$\left(\frac{\mathrm{d}^2\sigma}{\mathrm{d}Q^2\mathrm{d}x}\right)_{\mathrm{ep}} = \sum_i \int_0^1 \mathrm{d}\eta f_i(\eta) \left(\frac{\mathrm{d}^2\sigma}{\mathrm{d}Q^2\mathrm{d}x}\right)_{\mathrm{ei}} ~\sim~ F_1(x,Q^2) + F_2(x,Q^2)$$

is a sum of $\gamma^* - q$ interactions. Observe: σ factorisation into short- and long range processes!

• "Structure functions" F_1 and F_2 taken from measurements.

• In the QPM:
$$F_2(x) = \sum_i e_i^2 x q_i(x)$$
, and $2xF_1 = F_2$.

Regge model in DIS

•
$$s = (P+q)^2 = W_{\gamma*p}^2 \equiv W^2$$

• DIS: $Pq \to \infty$, $Q^2 \to \infty$, but $x = Q^2/(2Pq) \to$ finite and $x \sim O(1)$

- Small x limit of DIS: $2Pq \gg Q^2$ (or $s \gg Q^2$) yet Q^2 is still large, $Q^2 \gg \Lambda^2_{QCD}$.
- Regge limit: scattering energy \gg masses, momentum transfers. In DIS: $2Pq \gg Q^2$, i.e. small x limit.
- Regge behaviour of structure functions in the parton model: $F_2 \sim x^{-\lambda}$ where $\lambda \equiv \alpha(0) 1$. Thus

$$q_{\text{sea}}(x) \sim \frac{1}{x}$$
 \mathbb{P} exchange, $\alpha_{\mathbb{P}}^{\mathrm{B}}(0) = 1$
 $q_{\text{val}}(x) \sim \frac{1}{\sqrt{x}}$ \mathbb{R} exchange, $\alpha_{\mathbb{R}}(0) \approx \frac{1}{2}$

• Same processes lead to gluon and sea distr^s, thus: $G(x) \sim \frac{1}{x}$

200

- Hadron hadron interactions
- 2) Total and elastic cross sections
- 3 Regge model
- Naive Quark–Parton Model (QPM)
- 5 Low *x* region in QCD

6 Diffraction

< ロト < 同ト < ヨト < ヨト

Low x region in QCD

- At low x, energy in the γ^{*}p cms is large (large gluon cascades): W²_{γ*p} = Q²(1 − x)/x.
- Contributions from large $\alpha_s \ln \frac{1}{x}$ terms \Rightarrow new evolution equations: BFKL, CCFM.

Warsaw, 16.III.2012

17/34

- At low *x*: strong increase of gluon density with decreasing *x* (cf. HERA data) ⇒ gluon recombination (saturation).
- At $Q^2 \ll Q_{sat}^2$ nonlinear effects of parton saturation must be considered.

Barbara Badelek (University of Warsaw) Forward physics. Part I: phenomenology

QCD cascades at low x

Barbara Badelek (University of Warsaw)

Forward physics. Part I: phenomenology

Warsaw, 16.III.2012 18 / 34

э

Pomeron

- Geometrically: diffraction corresponds at most to scattering on an expanding black disk with radius growing no faster than ln s. At finite energies σ_{tot}(s) ~ s^{α_P(0)-1}, α_P(0) > 1 is possible (later slowed down).
- Pomeron of Donnachie–Landshoff, $\alpha_{\mathbb{P}}(0) = 1.08$
- This is a "soft" pomeron.
- In QCD, LL(1/x) (\equiv LL(s)) approximation \rightarrow bare pomeron, $\alpha_{\mathbb{P}}^{B}(0) > 1$
 - \implies violation of Froissart bound
 - \implies find unitarisation procedure.
- Ladder diagrams of "reggeised" gluons.
- In the BFKL: a "hard" pomeron of $\alpha_{\mathbb{P}}^{\mathrm{B}}(0) \approx 1.5$, $\implies xG(x,Q^2) \sim x^{1-\alpha_{\mathbb{P}}^{\mathrm{B}}(0)}$.

Resolved photon

When

Resolved γ^* ($k_t^2 \gg Q^2$)

$$t_{\rm fluct} = \frac{2E_{\gamma}}{m_{\rm q\bar{q}}^2 + Q^2}$$
When $Q^2 \to \infty$, $t_{\rm fluct} \to 0$ BUT $t_{\rm fluct} = \frac{1}{2Mx}$ = large at low x !!
Barbara Badelek (University of Warsaw) Forward physics. Part I: phenomenology Warsaw, 16.III.2012 20/34

HERA data at low x. Inclusive measurements

Barbara Badelek (University of Warsaw)

Forward physics. Part I: phenomenology

Warsaw, 16.III.2012 21/34

イロト イポト イヨト イヨト

Low x region in QCD

HERA data at low x. Inclusive measurements

Barbara Badelek (University of Warsaw)

Forward physics. Part I: phenomenology

Warsaw, 16.III.2012 22 / 34

HERA data at low x. Inclusive measurements..cont'd

イロト イポト イヨト イヨト

HERA data at low x. Inclusive measurements..cont'd

• From DGLAP (DLLA approximation): xg(x) grows faster than any power of $\ln \frac{1}{x}$; partons do not necessarily overlap.

• From BFKL:
$$xg(x) \sim x^{-\lambda} \Rightarrow F_2 \sim x^{-\lambda}, \quad \lambda \approx 0.5$$

Low \boldsymbol{x} region in QCD

HERA data at low x. Hadron final states

- At low x parton probed by γ* comes from a cascade initiated by a parton of a large longitudinal momentum.
- No kt ordering of this cascade in BFKL
 ⇒ more hard gluons (→ hadrons) in the forward and central region.
- Measured: transverse energy flow, p_T hadrons, forward hadrons and jets, multijets, azimuthal correlations between energetic jets,...

• Conclusions:

NLO DGLAP + resolved photon describe data fairly well.

BFKL effects not conclusive (too short cascade?)

Low x @ LHC

Barbara Badelek (University of Warsaw)

Forward physics. Part I: phenomenology

æ

→ E > < E >

- Hadron hadron interactions
- 2) Total and elastic cross sections
- 3 Regge model
- 4 Naive Quark–Parton Model (QPM)
- 5 Low x region in QCD

< ロト < 同ト < ヨト < ヨト

Diffraction in optics...

Fresnel difffraction on an opaque disk

and edge

Barbara Badelek (University of Warsaw) Forwar

Forward physics. Part I: phenomenology

...and in the scattering theory

Diffraction = a purely geometric effect $\implies \sigma_{\rm el} \neq 0$

In a black disk limit: $\sigma_{\rm el} = 0.5 \; \sigma_{\rm tot}$

Warsaw, 16.III.2012 29 / 34

→ Ξ →

Definition of diffraction

- No quantum number exchange in a process (no ℝ or γ^{*} exchange). Target (or both hadrons) emerges intact. Pomeron exchange.
- Cross section not decreasing with energy.
- Secondary features: small t and large Δy in final state hadrons.

- Diffractive PDF, $f_i^D = f_i^D(x, Q^2, x_{\mathbb{P}}, t)$. Within "vertex factorisation", $f_i^D(x, Q^2, x_{\mathbb{P}}, t) = f_{\mathbb{P}/p}(x_{\mathbb{P}}, t) \cdot f_i(\beta = x/x_{\mathbb{P}}, Q^2)$

Diffraction: brief experimental status

• ISR (pp, $\sqrt{s} = 23 - 63$ GeV): σ_{el} had exponential slope and diffractive minimum; shrinkage; pomeron/double pomeron exchange.

- SppS/UA8 ($\sqrt{s} = 630 900$ GeV): first observation of hard diffraction.
- HERA (ep, \sqrt{s} = 320 GeV): factorisation(s) holds; DPDFs.

Diffraction: brief experimental status,...cont'd

From this analysis: $\alpha_{\mathbb{P}}(0) = 1.118 \pm 0.008$ (exp.)

Barbara Badelek (University of Warsaw)

Forward physics. Part I: phenomenology

▷ < E > < E > E
Warsaw, 16.III.2012

32/34

Image: A matrix

Diffraction: brief experimental status,...cont'd

■ Tevatron (pp̄, √s = 550 - 1960 GeV): diffraction in hadron-hadron scattering more complicated; hard diffractive factorisation broken by multiple interactions.

Gap survival problem??

• LHC predictions (pp, $\sqrt{s} = 14\ 000\ \text{GeV}$): inclusive single diffraction and double pomeron exchange also with dijets, vector bosons, heavy quarks.

Barbara Badelek (University of Warsaw) Forward physics. Part I: phenomenology

Warsaw, 16.III.2012 33 / 34

Expectations for LHC in the area of forward physics

- Signatures for the BFKL evolution.
- Parton saturation taming (two nucleon scales?)...
- ...enhanced in collisions of nuclei $(Q_{\rm sat}^2 \sim A^{1/3})$.
- Meaning of the (soft, hard) pomeron, also in diffraction.
- Colour Glass Condensates.
- Meaning of geometric scaling.
- Diffraction, predicted to amount up to 50% of σ_{tot} together with elastic scattering: an interplay between soft and hard physics.

How to probe the PDF structure, evolution and diffraction?

via: jets, dijets, Drell-Yan process, prompt γ , heavy quarks, vector bosons,...

\implies p. dr G.Brona.