Fizyka "do przodu" Część 2: przegląd wyników z CMS

Grzegorz Brona

Seminarium Fizyki Wielkich Energii

Warszawa, 23.03.2012

Do przodu czyli gdzie?

1

Fizyka do przodu = Zjawiska obserwowane pod małym kątem O

n można mierzyć nawet bez znajomości pędu i masy

Dlaczego do przodu?

- Istotna część informacji o oddziaływaniu nieelastycznym
- Informacja o oddziaływaniach dyfrakcyjnych
- Wybór przypadków z ekskluzywną produkcją
- Pomiar oddziaływań elastycznych
 → całkowity przekrój czynny
- Zjawiska związane z fizyką low-x

Dwa zderzające się protony: dystrybucje partonów (PDF)

za T. Sjöstrand, "Theory of Hadronic Collisions"

Oddziaływanie twarde: element macierzowy + rozpady rezonansów

za T. Sjöstrand, "Theory of Hadronic Collisions"

Radiacja ze stanów początkowych (ISR)

za T. Sjöstrand, "Theory of Hadronic Collisions"

Radiacja ze stanów końcowych (FSR)

za T. Sjöstrand, "Theory of Hadronic Collisions"

Oddziaływania wielopartonowe (MPI) – twarde lub miękkie + ich ISR i FSR (Oraz pozostałości protonów) _{za T. Sjöstrand, "Theory of Hadronic Collisions"}

Sygnatury oddziaływań dyfrakcyjnych

Sygnatury oddziaływań dyfrakcyjnych

η

10

10

RG

Centralna dyfrakcja (CD)

- Aktywność w centrum
- Brak aktywności do przodu oprócz

10

• Dwóch protonów b. do przodu

Wymiana wielu pomeronów (MPE)

- Kilka obszarów aktywnych
- Kilka obszarów rapidity gap

- Produkcja centralna (CP)
- Podobne do CD
- Również fotoprodukcja

Sygnatury oddziaływań dyfrakcyjnych

Ekskluzywna produkcja

Ekskluzywna produkcja

- LHC jako zderzacz fotonów
- Proces QED niezależny pomiar luminosity

Produkcja par dżetów

- σ ~ O(10) pb
- ale dodatkowe oddziaływania mogą zamaskować RG
- pomiar z pile-up trudny
- obserwacja w Tevatronie (Phys. Rev. D77, 05, 2004)

Ekskluzywna produkcja

Produkcja Higgsa

- Stan centralny przy detekcji protonów jest dobrze ustalony: J^{PC} = 0⁺⁺
- Rekonstrukcja masy z pomiaru protonów (niezależnie od kanału rozpadu)
- H -> bb (b-jets): S = 11, B = O(10) w 30 fb⁻¹
- Potrzeba doskonały pomiar protonów w stanie końcowym

Przekrój czynny pp

• Całkowity przekrój czynny na pp (σ_{tot}) – z twierdzenia optycznego:

• Nie ma potrzeby pomiaru świetlności

Jeśli znana św.

- Jednoczesny pomiar oddziaływań elastycznych i nieelastycznych
- Granica zerowego przekazu czteropędu odpowiada zerowemu odchyleniu protonów (η b. duże)

ietlność:
$$\sigma_{\rm tot}^2 = rac{16\pi}{1+
ho^2} \left. rac{{
m d}\sigma_{\rm el}}{{
m d}t} \right|_{t=0}$$

Fizyka małego x

Minimalny x próbkowany przez obiekt (dżet) emitowany w η (średnie 10x^{min})

Fizyka małego x

LHC parton kinematics

M = 1 TeV

HERA

10³

u-quark (Q² = 10 GeV²)

10⁻³ 10⁻² 10⁻¹

х

10²

ZEUS-2005 H1-PDF 2000 CTEQ6.5M

Alekhin02-NLO MRST-NLO 2001

gluon (Q² = 10 GeV²)

M = 10 TeV

fixed

target

10¹

10[°]

Fizyka małego x

Korelacje pomiędzy dżetami
 o dużej odległości w n

 Otwarta duża przestrzeń fazowa dla dodatkowych emisji gluonów

Eksperyment CMS

- Kalorymetr Hadronic Forward (HF)
- 11,2 m od punktu zderzenia
- Pokrycie: 3 < |n| < 5
- Segmentacja w η i φ: 0.175x0.175
- Bazujący na zjawisku Czerenkowa
 - włókna równoległe do wiązki
 - krótkie i długie włókna

- Możliwość pomiaru dżetów (nie ma det. śladowego)
- Depozyty energii
 - lub ich brak
- Użycie jako część trygera

- Kalorymetr CASTOR
- 14,3 m od punktu zderzenia
- Pokrycie -6.6 < η < -5.2
- Segmentacja w ϕ (16 sektorów)
- Segmentacja w z: 14 modułów (2EM+12HAD)

- Rekonstrukcja depozytów energii:
 - składowej EM i HAD
- Rekonstrukcja dżetów (bez det. śladowego)
- Modelowanie oddziaływania promieniowania kosmicznego \rightarrow 100 PeV

HF

Castor

ZDC

- Zero Degree Calorimeter (ZDC)
- 140 m od punktu zderzenia
- Pokrycie: |n| > 8.1
- Zjawisko Czerenkowa
- Oddzielna część EM i HAD
- Możliwość detekcji jedynie składowej neutralnej (γ , π^{0} , n)
- Pomiar centralności w zderzeniach ciężkich jonów
- Produkcja neutronów w pp

Pomiar 95% nieelastycznych oddziaływań

(99,5% niedyfrakcyjnych, 84% dyfrakcyjnych)

• Od końca 2011 synchronizacja danych z CMS i Totem

- Detektory Roman Pots eksperymentu Totem
- Dwie stacje odseparowane magnesem
- Pomiar protonów elastyczne rozpraszanie
- 1 mm od wiązki
- $|t| \sim 10^{-3} \text{ GeV}^2$

- 3 stacje detektorów scyntylacyjnych
- Pokrycie: 6 < |ŋ| < 8
- Detekcja rapidity gap
- Instalacja w 2011 roku
- Użyteczność tylko przy niskim pile-up

- High Precission Spectrometer (HPS)
- Dwie części: 240 m i 420 m od punktu zderzenia
- Detektor śladowy (w polu magn.) pęd protonu
- Detekcja czasu odseparowanie protonów z różnych wierzchołków
- Instalacja 2014 2018

Pomiar depozytów energii w binach n (HF)

- Próbka Minimum Bias ze zredukowaną dyfrakcją (tryger)
- Przepływ energii większy bliżej wiązki
- Silna zależność od energii podobna jak dla pomiarów krotności w centrum
- Pythia nie radzi sobie z najwyższymi n (nawet "tune" przygotowany dla LHC)

Pomiar depozytów energii w binach n (HF)

- Próbka Minimum Bias ze zredukowaną dyfrakcją (tryger)
- Żaden z modeli nie radzi sobie w pełnym obszarze.
- Dodanie MPI bardzo istotne

 $\frac{1}{N}\frac{dE}{d\eta}[GeV]$ Pomiar depozytów energii w binach η (HF)

Przypadki zawierające dwa twarde dżety w centralnej części:

• Znacznie wyższy przepływ energii do przodu

• Lepsza zgodność z przewidywaniami (PYTHIA, HERWIG)

Pomiar depozytów energii w binach n (HF)

31

Modele propagacji promieniowania kosmicznego powinny opisywać obszar do przodu w CMS (Glauber)

 $\frac{1}{N}\frac{dE}{d\eta}[GeV]$

Modele opisują dane

Miękka dyfrakcja

$$\sum \left(E_i + p_{z,i} \right)$$

Suma przebiega po wszystkich celach kalorymetru (również HF), ~ ξ oraz $\sigma(difr) \sim 1/\xi$ $\xi = (1)$

$$\xi = (M_x)^2 / S$$

32

dlatego maksimum przy małych wartościach

2) E_{HF} - Całkowita energia w HF
 Gdy RG w HF, przypadki
 dyfrakcyjne w pierwszym binie

3)
$$N_{HF}$$
 - ilość cel HF z depozytem

energii powyżej 4 GeV Gdy RG w HF, przypadki dyfrakcyjne w pierwszym binie

Miękka dyfrakcja

Wyraźny komponent dyfrakcyjny

Wraz ze wzrostem energii rosną różnice pomiędzy modelami

Następny krok – ilościowy pomiar komponentu dyfrakcyjnego

tower multiplicity HF-plus

Miękka dyfrakcja

Komponent dyfrakcyjny zwiększony → E(HF) < 8 GeV

Depozyty energii w HF nie są opisywane przez żaden z modeli

- Analiza: 2,7 nb⁻¹
- Wybór przypadków z parą dżetów pT>20 GeV, |n|<4,4
- Wybór przypadków z RG: cząstka najbardziej do przodu (tyłu) n_{max}<3 (n_{min}>-3)
 - Zmierzona dystrybucja cząstek naładowanych zgodna z odpowiednio znormalizowanym MC: PYTHIA6 i POMPYT

Modele nie zawierają oddział. łamiących faktoryzacje zmierzone prawd. przetrwania RG: 0.1-0.2

Ekskluzywna produkcja: $\gamma\gamma \rightarrow \mu\mu$

Nieredukowalne tło

Selekcja mionów: $p_T(\mu) > 4 \text{ GeV}, |\eta| < 2.1, m(\mu\mu) > 11.5 \text{ GeV}$ Przekrój czynny: $3.38^{+0.58}_{-0.55}(stat.) \pm 0.16(syst.) \pm 0.14(lumi) \text{ pb}$

Przewidywanie (LPAIR): 4.08 pb

Ekskluzywna produkcja: $\gamma\gamma \rightarrow ee$

Nieredukowalne tło

$$p_T(e) > 5.5 \,{
m GeV}, \, |\eta| < 2.5, \, m(ee) > 11.5 \,{
m GeV}$$

Przypadki z jednym wierzchołkiem

Process	nEvents
el-el	6.57±0.07 (theo.)±0.80 (syst.)
inel-el	8.37±1.68 (theo.)±0.90 (syst.)
inel-inel	1.51 ± 0.30 (theo.) ± 0.15 (syst.)
Total	16.5±1.7 (theo.)±1.2 (syst.)

Zarejestrowano 17 przypadków

Ekskluzywna produkcja: $gg \rightarrow \gamma\gamma$

- Inne procesy $qq \to \gamma\gamma$, $\gamma\gamma \to \gamma\gamma$ zaniedbywalne
- Identyczny proces (co do el. macierzowego) dla ekskluzywnej produkcji Higgsa
- Istotne rozkłady gluonów przy niskim x

$$\sigma_{\text{exclusive }\gamma\gamma}^{E_{\text{T}}(\gamma)>5.5\,\text{GeV},\,|\eta(\gamma)|<2.5}$$

< 1.30 pb

- Przy MSTW08-LO
 prawdopodobieństwo 0 kandydatów 23%
- CDF: $1.6^{+0.5}_{-0.3}$ (stat.) \pm 0.3 (syst.) pb dla znacznie niższych E_T

Całkowity przekrój czynny pp

Całkowity przekrój czynny pp

$\sigma_{ m tot}$	$(98.3 \pm 0.2^{\text{stat}} \pm 2.8^{\text{syst}}) \text{mb}$
$\sigma_{\rm el} = \int \frac{{\rm d}\sigma}{{\rm d}t} {\rm d}t$	$(24.8 \pm 0.2^{stat} \pm 1.2^{syst}) mb$
$\sigma_{\rm inel}$	$(73.5 \pm 0.6^{\text{stat}} + 1.8 \text{ syst}) \text{ mb}$
σ_{inel} (CMS)	$(68.0 \pm 2.0^{\text{syst}} \pm 2.4^{\text{lumi}} \pm 4^{\text{extrap}}) \text{ mb}$
σ_{inel} (ATLAS)	$(69.4 \pm 2.4^{exp} \pm 6.9^{extrap})$ mb
σ_{inel} (ALICE)	$(72.7\pm1.1^{model}\pm5.1^{lumi})$ mb

Dwa komplementarne pomiary:

- Przekrój czynny na produkcję dżetów do przodu: 3.2<|η|<4.7 → próbkowanie PDF przy x=10⁻⁴
- Przekrój czynny na produkcje par dżetów: centralny (|η|<2.5) do przodu
 → korelacje pomiędzy dżetami (BFKL)

Wybór:

 \rightarrow 3,14 pb⁻¹

 \rightarrow 35 GeV < $p_{_{\rm T}}$ < 150 GeV

- → Korekcja do poziomu hadronowego (PYTHIA, HERWIG)
- → porównanie: PYTHIA6, PYTHIA8, HERWIG6+JIMMY, HERWIG++ NLOJET++, POWHEG (PS PYTHIA, HERWIG) CASCADE (1/x), HEJ (duże kąty)

 \rightarrow główna niepewność eksperymentalna – skala energii

Dżety w detektorze:

Usunięcie wpływu detektora:

Inkluzywne spektrum dżetów:

Wniosek:

Modele LO, NLO, BFKL nie radzą sobie z opisem danych

Dodatkowe miękkie emisje? BFKL?

- Przypadki par dżetów "ekskluzywne": przypadki z tylko dwoma dżetami powyżej pT>35 GeV
- Przypadki par dżetów "inkluzywne": przypadki z dowolną ilością dżetów powyżej pT>35 GeV

$$R = \frac{\sigma_{dijet}(\text{inclusive})}{\sigma_{dijet}(\text{exclusive})}$$

- Przy dużych separacjach spodziewane pojawienie się efektów BFKL
- Dane eksperymentlne doskonale opisywane przez PYTHIE (DGLAP)!

Podsumowanie

Tunes

- MPI model included in PYTHIA. The parameters of the model can be tuned different sets of parameter values define different tunes.
- Avoid differgences in hard scattering and MPI:

• Where
$$p_{_{TO}}$$
 is parametrized:

attering and MPI:
$$\frac{1}{p_T^4} \rightarrow \frac{1}{(p_T^2 + p_{T0}^2)^2}$$
$$p_{T0}(\sqrt{s}) = p_{T0}(\sqrt{s_0}) \left(\frac{\sqrt{s}}{\sqrt{s_0}}\right)^{\epsilon}$$

• Different pdfs, cuts for ISR and FSR, fragmentation model

		D6T (108)	DW (103)	Pro-Q20 (129)	P0 (320)	
pdfs		CTEQ6L	CTEQ5L	CTEQ5L	CTEQ5L	
p _{t0}	PARP(82)	1.84 GeV	1.9 GeV	1.9 GeV	2.0 GeV	
E	PARP(89)	1.96 TeV	1.8 TeV	1.8 TeV	1.8 TeV	
ε	PARP(90)	0.16	0.25	0.22	0.26	
fragmentation	standard	standard	standard	professor LEP tune	professor LEP tune	
Q ² _{max} factor (ISR)	PARP(67)	2.5	2.5	2.65	1.0	
Q ² _{max} factor (FSR)	PARP(71)	4.0	4.0	4.0	2.0	

Tunes

 $\frac{1}{\hat{p}_{T}}^{4} \rightarrow \frac{1}{\hat{p}_{T}}^{2} + \hat{p}_{T}^{2}}{\hat{p}_{T}}(\sqrt{s}) = \hat{p}_{T}(\sqrt{s}_{0}) \cdot 0$

- Tunes of the PYTHIA generator (version 6.420): D6T, DW, Perugia-0 (P0), CW
- Pythia 8 (different model! only one tune along the lines of P0): version 8.135

PYTHIA regularization of the formal divergence of the leading order partonic scattering amplitude as the final state parton transverse momentum p_ approaches 0:

Regularization: can be interpreted as inverse of effective color screening length

energy dependence

 $s/\sqrt{s_0}^{\epsilon}$ Reference value: e.g. at CDF $\sqrt{s_0} = 1.8 \text{TeV}$, $\hat{p}_{T_0} = 2.0 \text{GeV}/c$

Same
parameter
regularize
both MPI and
hard
scattering:
more MPI
activity is
predicted for
smaller values
of p _r ^o

Tune	p ₇ ⁰(1.8TeV)	e	details
D6T	1.8 GeV/c	0.16	Consider ATLAS and LHCb studies on multiplicity at SPS; CTEQ6LL Parton distributions
DW	1.9 GeV/c	0.25	Consider 630GeV & 1.8TeV CDF resultsCTEQ5L parton distributions
P0	P0 2 GeV/c 0.26		As above + New PYTHIA MPI model; PT ordered showers;
CW	1.8 GeV/c	0.3	Ad hoc for 900GeV CMS data, maximizing MPI but still compatible with Tevatron; default PYTHIA color reconnection; Parton distributions CTEQ5L