

Neutrino oscillations in

first results

Justyna Łagoda

(NCBJ, Warsaw)

on behalf of the T2K collaboration

Outline

- neutrinos and oscillations
- the T2K experiment
- the analysis method
- v_e appearance analysis
- v_{μ} disappearance analysis
- future plans

The neutrinos

• interactions of neutrinos charged current (**CC**)

- flavor eigenstates are the linear combinations of mass eigenstates → Pontecorvo-Maki-Nakagawa-Sakata matrix
 - parametrized by 3 mixing angles and CP-violating phase $\delta_{_{CP}}$

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \cdot \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{-i\delta_{CP}} & 0 & \cos \theta_{13} \end{pmatrix} \cdot \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

The oscillation phenomenon

• (two flavours approximation) the oscillation probability depends on mixing angle θ , neutrino energy E_v , traveled distance L and squared mass difference Δm^2

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{4E_{\nu}}$$

- 3 neutrinos \rightarrow 2 independent Δm^2 ("solar" and "atmospheric")
- neutrino mass hierarchy

The oscillation parameters

- • • solar sector"
 - v_e disappearance (SNO, KamLAND, SuperK and others)
 - 0.84<sin²2θ₁₂<0.89, 7.38·10⁻⁵<Δm²₁₂(eV²)<7.80·10⁻⁵
- $\theta_{_{23}}$ "atmospheric sector"
 - ν_u disappearance (SuperK, K2K, MINOS)
 - ν_τ appearance (OPERA, SuperK)
 - $0.92 < \sin^2 2\theta_{23} < 1.0, 2.3 \cdot 10^{-3} < |\Delta m^2_{23}| (eV^2) < 2.56 \cdot 10^{-3}$
- **θ**₁₃ sector
 - only upper limit known (снооz, міхоз)
 - $\sin^2 2\theta_{13} < 0.13 \oplus 90\%$ CL (2010)
 - δ_{CP} uknown

The T2K experiment

- long baseline oscillation experiment
- collaboration: ~500 members, 58 institutes, 12 countries

• the main goals:

the measurement of the $\nu_{\mu} \rightarrow \nu_{e}$ oscillation

precise measurement of v_{μ} disappearance

BK

Kamioka

Toka

PARC

The beam line

- proton accelerator chain at J-PARC
 - 30 GeV proton beam, 8 bunches,
 3 s pulse period
 - power achieved 145kW, designed 750kW

- position, profile and intensity of the beam monitored
- graphite target, 3 horns focusing positively charged hadrons
- 96 m decay tunnel, beam dump

The v beam

for angles $\neq 0$ the dependence of E_{v} from E_{π} is reduced

narrow spectrum, tuned at the first oscillation maximum

the direction must be precisely controlled (<1mrad to keep peak energy stable δE/E ~2% at far detector)

Advantages of the off-axis beam TZR

- increase statistics in the interesting region
- high energy tails reduced
 - background from intrinsic ν_e reduced (ν_e at peak ~0.5%)
 - background from π^0 reduced
 - CCQE sample enhanced

Near detectors – on axis

- Muon monitor
 - measures beam direction and intensity on spill-by-spill basis, with <u>high-energy</u> <u>muons</u> from pion decays, to guarantee the stability
 - ionization chambers and semiconductor arrays

- On-axis Interactive Neutrino GRID (INGRID)
 - monitors the intensity, profile and direction of the beam ^{but not spectrum!} with <u>v interactions</u>
 - 16 identical cubic modules, iron/scintillator sandwich

Near detector – off axis

- ND280 multi-purpose detector with magnetic field
 - UA1/NOMAD magnet (magnetic field 0.2 T)
- measures the beam before the oscillation occurs
- reconstructs final states to study neutrino interactions and beam properties
 - measures v interaction rates and flavour $\rightarrow v_{\mu}$ and v_{e} spectra
- focused on specific backgrounds

12

ND280 detector

Electromagnetic calorimeters

surround inner detectors (P0D, FGDs, TPCs) 13 modules of plastic scintillator/lead XY planes

π^0 detector

Scintillator planes interleaved with water and lead/brass layers

Side Muon Range **Detector**

Scintillator planes inserted in magnet yoke

all scintillator detectors use Hamamatsu Multi Pixel Photon Counter for read-out (1.3x1.3mm², 667 pixels)

Tracker

3 Time Projection Chambers

Events in ND280

Far detector: Super Kamiokande

- 50 kton water Cherenkov detector
 - 22.5 kton fiducial volume, ultrapure water
- inner and outer detector
 - 11,000 20" PMT for ID
 - (40% photo coverage)
 - 2,000 outward facing 8" PMT for OD
 - veto cosmics, radioactivity, exiting events
- operated since 1996, well understood,
- since 2006 with new readout electronics
- particle identification capability:
 - muons misidentified as electrons <1%
- ν energy resolution ΔE/E~10% for two-body kinematics Justyna Łagoda, NCBJ

Events in Super Kamiokande

Collected data

- experiment started to take physics data in January 2010
- two physics run (2010+2011), 1.43·10²⁰ protons on target delivered (2% of final goal)
 - targeting efficiency stable at over 99%
 - beam profile and absolute rate stable and consistent with expectations

Beam stability

beam direction (INGRID)

stability of v interaction rate normalized by POTs (INGRID)

INGRID v int. rate stability Run1+2/Run1 < 1%

Justyna Łagoda, NCBJ

Earthquake on March 11th

- 9 magnitude
 - at Tokai 6+, avoided tsunami
 - power cut
 - water leaks, drops of ground
 - no <u>serious</u> damages in accelerator, beamline and ND280 area
- Data taking stopped, but the
- analysis continued

Earthquake damages

Flux prediction method

- knowledge of the **ν flux** is crucial!
- the flux is computed using the beam Monte Carlo
 - data from near detectors allow to refine the simulation

Predicted fluxes at Far Detector

Cross sections

- v cross sections from NEUT generator (and GENIE)
- the uncertainties evaluated from:
 - comparison of models to MiniBooNE, SciBooNE and others
 - comparison between models

 (i.e. relativistic Fermi gas vs. spectral function for CCQE at low energies)

₃ (cm²)

variation of model parameters

dominant: final state interactions of pions

Source syst. error on N_{SK}^{exp}
$ \frac{5}{2} \text{ shape} \\ \frac{5}{2} \text{ shape} \\ \frac{2.2\%}{2.2\%} \\ \frac{5}{2.2\%} \\ \frac{5}{2.2\%} \\ \frac{5}{2.2\%} \\ \frac{10.3\%}{2.2\%} \\ \frac{10.1\%}{2.3\%} \\ \frac{14.0\%}{2.3\%} \\ $
_

Near detector analysis

- based on Run1 data only (2.9-10¹⁹ POT)
- FGD+TPC used in the analysis
 - select interactions with vertex in FGD and at least 1 negative track in the downstream TPC
 - track momentum measured in the TPC
 - particle identification based on dE/dx in the TPC

nt number : 24083 | Partition : 63 | Run number : 4200 | Spill : 0 | SubRun number :6 | Time : Sun 2010-03-21 22:33:25 JST |Trigger: Beam Spill

Inclusive CC v_{μ} event rate

- selection of negative μ-like tracks (TPC ID)
 - 90% purity and 38% efficiency
 - 1529 events selected
 - dominant systematic error: dE/dx PID, TPC-FGD matching
 - good agreement of MC and data

$$R_{ND}^{\nu_{\mu}DATA}/R_{ND}^{\nu_{\mu}MC} = 1.036 \pm 0.028(stat.)_{-0.037}^{+0.044}(det.syst.) \pm 0.038(phys.syst.)$$

(neutrino interaction model)

Reconstructed neutrino energy distribution assuming CCQE kinematics and using the muon candidate momentum and angle in selected events compared to MC (flux prediction and NEUT).

v_e beam component

- selection of e-like tracks
 - background from misidentified muons, conversion of photons (coming from outside or from the decay of π⁰ produced in neutrino interaction)
 - likelihood fit on electron momentum to measure the number of observed $\nu_{\rm e}$

$$R_{\nu_{e}/\nu_{\mu}} = (1.0 \pm 0.7(stat.) \pm 0.3(syst.))\%$$

$$R_{\nu_{e}/\nu_{\mu}}^{data} / R_{\nu_{e}/\nu_{\mu}}^{MC} = 0.6 \pm 0.4(stat.) \pm 0.2(syst.)$$

observed ratio consistent with expectations

with fitted signal and background components

v_e appearance analysis

- reminder:
 - CCQE interactions dominate in the T2K peak region
 - signal: single electron-like rings (proton invisible)
 - main background: intrinsic $\nu_{_{e}}$ contamination, NC events with misidentified $\pi^{_{0}}$
- selection criteria fixed with Monte Carlo studies before data were collected (efficiency 66%, background reduction 99% for NC events, 77% for beam v_e events)
- observed number of events compared to expectations, based on neutrino flux and cross-section predictions
 - null oscillation hypothesis
 - various sets of oscillation parameters

$$P(v_{\mu} \rightarrow v_{e}) = \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\sin^{2}\frac{\Delta m_{23}^{2}L}{4E_{v}} + \text{subleading terms}$$

Number of expected events

In 3-flavor neutrino oscillation scenario the expected number of events is 1.5 ± 0.3 (syst.)

with $|\Delta m_{23}^2| = 2.4 \cdot 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{23} = 1$, $\sin^2 2\theta_{13} = 0$

renormalized with data/MC ratio measured by ND280

		$\sin^2 2\Theta_{13} = 0$	$\sin^2 2\theta_{13} = 0.1$		
	Beam total	1.4	1.3		
	beam $v_{e}^{}$ CC	0.8	0.7		
	all NC	0.6	0.6		
	$V_{\mu} \rightarrow V_{e}$	0.1 ^{solar} term	4.1 solar tern + signal	1	
	Total	1.5	5.4		
 systematic 	errors		sin²2θ ₁₃ = 0	$\sin^2 2\theta_{13} =$	0.1
ν flux	dominated by hadron	production	±8.5%	±8.5%	
v cross section	by FSI and $NC\pi^{\scriptscriptstyle 0}$ unce	rtainties	±14.0%	±10.5%	
near detector	reconstruction efficier	ncy	+5.6% -5.2%	+5.6% -5.2%	Smaller
far detector (signal/background)	ring counting (3.9%/8 π^0 mass cut (5.1%/8.7	.3%), PID (3.8%/8. ′%), NC1πº eff (/3.6	0%), ±14.7%	±9.4%	cross-section and SK
near detector statistics			±2.7%	±2.7%	uncertainties
total			+22.8% -22.7%	+17.6%	events 28

Event selection – common cuts

- the first steps are common for v_{μ} and v_{e} analysis
 - beam timing
 - reduces background from atmospheric neutrinos
 - minimal activity in outer detector
 - fully contained (FC) (121 events)
 - allows to measure the energy of the particle
 - starting in fiducial volume (FCFV)
 - reduces background from cosmic muons and radioactivity
 - difficult to reconstruct the vertex near the wall (→ 88 events)
 - single ring
 - enriched CC QE sample (\rightarrow 41 events)

Selection cuts for v_e analysis (1)

- single ring e-like (→ 8 events)
- E_{vis} >100MeV (\rightarrow 7 events) rejects NC background and electrons from muon decay
- no delayed electron (→ 6 events)
 rejects invisible (below thr

rejects invisible (below threshold) muons and pions

Justyna Łagoda, NCBJ

Selection cuts for v_e analysis (2) TZR

- forced 2^{nd} ring and invariant mass <105MeV (\rightarrow 6 events) rejects NC π^0 background
- reconstructed $E_v < 1250 \text{MeV} (\rightarrow 6 \text{ events})$

rejects beam $\nu_{_{e}}$ from K decays

$6 v_{e}$ events observed

v_e appearance candidate

Evis :	381.8 MeV
Ndecay-e :	0
2γ Inv. mass:	29.9 MeV/c ²
E_{v}^{rec} :	485.9 MeV

v_e events distributions

events clustered at large R (near the edge of the fiducial volume)

33

Possible sources

- reconstruction algorithm?
 - checked with the distribution of atmospheric neutrinos (SK IV sub-GeV+T2K-like cuts)
 - good agreement between data and MC
- contamination from outside ID?

- expected beam-induced background with true vertex outside the inner detector
 - MC with events produced up to 550 cm outside the ID wall

Sampla	Expected	Sou	MC truth	truth*		
Sample	true vertex outside ID	mis-id muon	pi0 photon	neutron	K-long	K-short
Nue Analysis Sample (w/ FV cut) To	3.16E-03 o significant contribu	9% Ition Ited	78%	11%	0.01%	<0.01%
Nue Analysis Sample (w/o FV cut)	0.30	4%	75%	3%	<0.01%	<0.01%
		*percentage Ex	es do not total to pectation assum	o 100% because $\sin^2 \theta_{13} = 0$	the list here is not $0.1, \ \Delta m^2 = 2.4$	$\times 10^{-3} \text{ eV}^2$

Vertices distributions

v_ sample

FC sample

Kolmogorov-Smirnov test

- finding the maximum distance between two normalized distributions
- more reliable at lower statistics than $\chi 2$
- distributions of max. distances obtained from toy MCs, by randomly selecting the same number of events as in data, using T2K MC distribution as p.d.f.

distribution	6 FCFV Events	7 FC Events
Dwall	3.7%	20.6%
Fromwall	0.14%	1.4%
Fromwall to Beam	1.1%	5.1%
R ²	3.1%	10.9%

v_e appearance result

- if $\sin^2 2\theta_{13} = 0$, the probability to observe six or more candidate events is 0.7% for an expected background of 1.5 ± 0.3 events (equivalent to 2.5σ significance)
- the data are consistent with

Best fit: **0.03 (0.04) < \sin^2 2\theta_{13} < 0.28 (0.34)** Best fit: **0.11** for normal (inverted) hierarchy, 90% C.L. $\sin^2(2\theta_{23}) = 1.0, \Delta m_{23}^2 = 2.4 \times 10^{-3} \text{ eV}^2, \delta_{CP} = 0$

confidence intervals produced using Feldman-Cousins unified method
 *

Comparison with MINOS 2011 results

- T2K:
 0.03 (0.04)

 < sin²2θ₁₃ <
 0.28 (0.34)
 best fit 0.11 (0.14)
- MINOS 2011:
 - expectation $49.5 \pm 7.0(stat) \pm 2.8(syst)$
 - observation62 candidates
 - limit sin²2θ₁₃ < 0.12 (0.19) at 90% CL

Justyna Łagoda, NCBJ

v, disappearance analysis

fit with 2 flavor model $P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2 \frac{\Delta m_{32}^2 L}{4E_{\odot}}$

Method A: Maximum likelihood with fitting of the systematics parameters:

 $L(\sin^2 2\theta, \Delta m^2, \overrightarrow{f}) = L_{norm}(\sin^2 2\theta, \Delta m^2, \overrightarrow{f}) \cdot L_{shape}(\sin^2 2\theta, \Delta m^2, \overrightarrow{f}) \cdot L_{syst}(\overrightarrow{f})$

 $\begin{array}{l} \mathsf{L}_{norm} \rightarrow \mathsf{Poisson} \ distribution \ of \ the \\ total \ number \ of \ events \\ \mathsf{L}_{shape} \rightarrow un\ binned \ spectrum \ shape \\ \mathsf{f} \ - \ parameter \ representing \ systematic \ errors \end{array}$

	N _{exp.} error table	
Error source	$\sin^2 2\theta = 1.0, \Delta m^2 = 2.4$	Null Oscillation
SK Efficiency	$+10.3\% \ 10.3\%$	+5.1% $-5.1%$
Cross section and FSI	+8.3% $-8.1%$	+7.8% -7.3%
Beam Flux	+4.8% -4.8%	+6.9% $-5.9%$
ND Efficiency and Overall Norm.	+6.2% $-5.9%$	+6.2% $-5.9%$
Total	+15.4% -15.1%	+13.2% $-12.7%$

NSK amon table

103.6 events expected without oscillations

Two independent methods to extract oscillation parameters

Method B:

Comparison of the observed spectrum with the expected spectrum varying oscillation parameters to minimize:

$$\begin{split} \chi^2 &= 2 \sum_{i=1}^N \left[n_i^{obs} \cdot ln \left(\frac{n_i^{obs}}{n_i^{exp}} \right) + n_i^{exp} - n_i^{obs} \right] \\ \text{i} = \text{bin number in SK energy} \\ n_i^{obs(exp)} \text{ number of observed (expected)} \\ \text{events in the i-th bin} \\ \text{In this method systematic } f \text{ parameters} \\ \text{are not fitted} \end{split}$$

Selection cuts for v_{μ} analysis

30

20

10

0

0

1

2

Number of events

- Selection cuts
 - common cuts, already presented
 - μ -like ring

Data

v CĆ NC

(MC w/ 2-flavor osc.)

-10

 $v_{\mu} + \overline{v}_{\mu} CC QE$

v_+v_ CC non-QE

0

particle identification parameter

10

10

8

6

4

2

0

Number of events

- less than 2 decay electrons
- momentum > 200MeV/c
- 31 candidates

Oscillation pattern

- 103.6 v_{μ} expected without oscillations
- $31 v_{\mu}$ candidates observed
- null-oscillation hypothesis excluded at 4.5σ level
- v_{u} energy spectrum \rightarrow the oscillation pattern clearly visible

method A (method B) 68% CL

v_u disappearance results

90% C.L:

$$\sin^{2}2\theta_{23} > 0.85 \ (0.84)$$

 $2.1 \cdot 10^{-3} < |\Delta m_{23}^{2}| (eV^{2}) < 3.1 \cdot 10^{-3}$

very good agreement between analyses main difference is due to the fit to systematics (in method A)

unified method used to find confidence intervals

0.8

0.9

 $sin^2(2\theta)$

∆ m²[eV²] Feldman-Cousin

Comparison with other measurements

good agreement with MINOS and SK

Aim: firmly establish v_e appearance

more data needed!

- Experiment recovery in progress
 - activity in J-PARC (accelerator+neutrino facility) by December 2011
 - neutrino facility ready by November
 - beam for physics as soon as possible after re-commisioning of the accelerators
- Analysis improvements
 - new analysis method for $\nu_{\rm e}^{},$ using the reconstructed energy, are under development
 - ν_{μ} CCQE events measured in ND280 allow to better constrain the uncertainties of the flux and cross sections

Not so near future

- we aim to accumulate 10²¹ POT in summer 2013
 - confirm the non zero θ_{13}
 - more than 5σ discovery at present best fit for θ_{13}
- then
 - $2 \cdot 10^{21}$ POT 3σ for $\sin^2 2\theta_{13} > 0.04$, within few years
 - $8 \cdot 10^{21}$ POT 3σ for $\sin^2 2\theta_{13} > 0.02$, approved goal
- Full dataset of T2K (8·10²¹ POT) allows to get sensitivity 20 times better than CHOOZ
- If non-zero θ_{13} will be confirmed (and sufficiently large) the possibilities to study the mass hierarchy and CP violation in lepton sector are open

Summary

- T2K experiment completed two oscillation analyses, based on data collected in 2010 and 2011 (with 1.43·10²⁰ protons on target)
- v_e appearance analysis
 - indication of $v_{\mu} \rightarrow v_{e}$ appearance observed in data (2.5 σ)
 - best fit sin²2θ₁₃=0.11 (0.14), 0.03 (0.04)<sin²2θ₁₃<0.28 (0.34) at 90% C.L., for normal (inverted) hierarchy
 - published in PRL 107, 041801 (2011)
- v_{μ} disappearance analysis
 - null oscillation hypothesis excluded at 4.5σ,
 - $\sin^2 2\theta_{23} > 0.85$, $2.1 \cdot 10^{-3} < |\Delta m_{23}^2| (eV^2) < 3.1 \cdot 10^{-3}$ at 90% C.L.
- experiment is recovering after the earthquake, J-PARC will restart operation in December 2011

T2K collaboration

Canada

U. Alberta U. B. Columbia U. Regina U. Toronto TRIUMF U. Victoria York U.

France

CEA Saclay IPN Lyon LLR E. Poly. LPNHE Paris INFN, U. Bari INFN, U. Napoli INFN, U. Padova INFN, U. Roma

Ital

ICRR Kamioka ICRR RCCN KEK Kobe U.

Kyoto U. Miyaoi U. Edu Osaka City U. U. Tokyo

Near & Far sites: KEK/JAEA Poland

NCBJ, Warsaw H.Niewodniczanski Cracow U. Silesia, Katowice T. U. Warsaw U. Warsaw U. Warsaw

Russia

Chonnam N.U. Uongshin U. Seoul N.U.

INR

🐞 Spain

IFIC, Valencia U. A. Barcelona

Switzerland ETH Zurich U. Bern U. Geneva

Imperial C. L. Lancaster U. Liverpool U. Queen Mary U. L Oxford U. Sheffield U. STFC/RAL STFC/Datesbury Warwick U.

Boston U. B.N.L. Colorado S. U. U. Colorado Duke U. U. C. Irvine Louisiana S. U. U. Pittsburgh U. Rochester Stony Brook U. U. Washington S

Backup slides

Justyna Łagoda, NCBJ

NA61/SHINE

- spectrometer and time of flight detectors
 - TOF and dE/dx allow for particle identification
 - the same beam proton energy and target material as in T2K
 - the pion production data used in the T2K beam simulation
 - 5-10% systematic error on each data point

accepted by Phys.Rev.C (2011)

2.3% normalization error

Vertex positions

V	SYS	tem	ati	CS
- e			••••••	•••

v systematics $T_2 \hat{K}$									
e - J - C - C				with ND)				
numbers of a				normal	izati	ion .			
	expected ev	ents		r		S	ignal+ba	ickgrou	nd
			\sin^2	$2\theta_{13} = 0$		\sin^2	$2\theta_{13} = 0.1$		
Error source		N_{ND}	N_{SK}	N_{SK}/N_N	D	N_{SK}	N_{SK}/N_N	ID	
SK Norm.	f^{SKnorm}	$\pm \ 0.0$	± 1.4	± 1	.4	± 1.4	± 1	.4	
SK Energy Scale	f^{Energy}	$\pm \ 0.0$	± 1.1	± 1	.1	± 0.6	± 0).6	
SK Ring Counting	$f^{N_{ring}}$	$\pm \ 0.0$	\pm 8.1	± 8	3.1	\pm 5.0	± 5	5.0	
SK PID Muon	$f^{PID\mu}$	$\pm \ 0.0$	$\pm \ 0.9$	± 0	9.9	± 0.3	± 0).3	
SK PID Electron	f^{PIDe}	$\pm \ 0.0$	\pm 7.8	\pm 7	.8	\pm 4.9	± 4	.9	
SK POLfit Mass	f^{POLfit}	$\pm \ 0.0$	\pm 8.5	± 8	3.5	\pm 6.0	± 6	6.0	
SK Decay Electron	$f^{N_{dcy}}$	+ 0.0	± 0.3	+ 0	.3	+ 0.2	+ ().2	
SK π^0 Efficiency	$f^{\pi^0 eff}$					$\sin^2 2\theta$	$\theta_{13} = 0$	\sin^2	$2\theta_{13} = 0.1$
CC QE shape	$f^{CCQEshape}$	Error	source	N_{ND}	N_S	SK = N	V_{SK}/N_{ND}	N_{SK}	N_{SK}/N_{ND}
$CC 1\pi$	$f^{CC1\pi}$	SK E	fficiency	± 0.0	± 1	4.7	± 14.7	\pm 9.4	± 9.4
CC Coherent π	f^{CCcoh}	Cross	section	\pm 8.3	± 1	3.5	\pm 14.0	\pm 9.8	$\pm \ 10.5$
CC Other	$f^{CCother}$	Beam	Flux	± 15.4	± 1	6.1	\pm 8.5	\pm 14.9	\pm 8.5
NC $1\pi^0$	$f^{NC1\pi^0}$	ND E	Officiency	+5.6	± (0.0	+5.6	± 0.0	+5.6
NC Coherent π	f^{NCcoh}	Overa	all Norm.	± 0.0	± (0.0	± 2.7	$\pm \ 0.0$	± 2.7
NC Other	$f^{NCother}$	Total		\pm 18.4	± 2	5.6	$^{+22.8}_{-22.7}$	$\pm~20.2$	$^{+17.6}_{-17.5}$
$\sigma(\nu_e)$	$f^{\sigma(u_e)}$	< 0.1	\pm 3.4	土む	.4	\pm 0.5	± 0).ð	
FSI	f^{FSI}	$\pm \ 0.0$	\pm 10.1	± 10).1	\pm 5.4	± 5	5.4	
Beam Norm.	$f^{\phi}_{SK/ND}$	\pm 15.4	\pm 16.1	± 8	3.5	\pm 14.9	± 8	3.5	
ND Efficiency	$f^{\epsilon_{ND}^{'}}$	$^{+5.6}_{-5.2}$	$\pm \ 0.0$	+	$5.6 \\ 5.2$	± 0.0	+	$5.6 \\ 5.2$	
Overall Norm.	f^{norm}	± 0.0	$\pm \ 0.0$	± 2	2.7	± 0.0	± 2	2.7	
Total		\pm 18.4	\pm 25.6	$^{+22}_{-22}$	2.8 2.7	\pm 20.2	$^{+1}_{-1}$	7.6 7.5	52

10-1

Confidence intervals

 10^{-1}

$\boldsymbol{v}_{\!\!\mu}$ systematics

		change of N_{\exp}^{SK}	change of N_{\exp}^{SK}	change of N_{\exp}^{SK}
	Source of systematic errors	$(\sin^2 2\theta = 1.0, \Delta m^2 = 2.4)$	$(\sin^2 2\theta = 1.0, \Delta m^2 = 2.32)$	(Null Osc.)
2	f^{SK}_{CCQE0}	+1.0% $-1.0%$	+1.0% $-1.0%$	+1.4% $-1.4%$
fficien	f_{CCQE1}^{SK} different E_{vis} f_{CCQE2}^{SK}	+3.2% -3.2%	+3.2% -3.2%	+3.1% $-3.1%$
e	f_{CnCOE}^{SK}	+6.5% $-6.5%$	+6.5% $-6.5%$	+3.3% $-3.3%$
Ч Ч	f_{NC}^{SK}	+7.2% $-7.2%$	+7.0% -7.0%	+2.0% $-2.0%$
be	$f^{SK}_{CC u_e}$	+0.0% $-0.0%$	+0.0% $-0.0%$	+0.0% $-0.0%$
Su	$f_{E-scale}^{SK}$	+0.0% $-0.0%$	+0.0% $-0.0%$	+0.0% $-0.0%$
	f^{ND}	+6.2% $-5.9%$	+6.2% $-5.9%$	+6.2% $-5.9%$
SL	f_{CCQE}^{Xsec}	+2.5% $-2.5%$	+2.4% $-2.4%$	+4.1% $-4.1%$
jo	$f_{CC1\pi}^{Xsec}$	+0.4% $-0.5%$	+0.5% $-0.6%$	+2.2% $-1.9%$
IJ	$f_{CCothers}^{Xsec}$	+4.1% $-3.6%$	+4.1% $-3.7%$	+5.3% $-4.7%$
Se	f_{NC}^{Xsec}	+0.9% $-0.9%$	+0.8% $-0.8%$	+0.8% $-0.8%$
SS	$f_{ u_e/ u_\mu}^{Xsec}$	+0.0% $-0.0%$	+0.0% $-0.0%$	+0.0% $-0.0%$
Ö	f^{FSI}	+6.7% $-6.7%$	+6.6% $-6.6%$	+3.2% $-3.2%$
U	$f_{SK/ND}^{Flux}$	+4.8% -4.8%	+4.7% $-4.7%$	+6.9% $-6.9%$
1	Total	+15.4% $-15.1%$	+15.2% $-14.9%$	+13.2% $-12.7%$