

Paweł Przewłocki Warszawska Grupa Neutrinowa Narodowe Centrum Badań Jądrowych

NOWOŚCI W FIZYCE OSCYLACJI NEUTRIN: WYNIKI Z DAYA BAY

O czym będę mówił

- Oscylacje neutrin
- Neutrina reaktorowe
- Eksperyment Daya Bay i jego odkrycie
- O Potwierdzenie z eksperymentu RENO
- Spojrzenie w przyszłość

Skąd się biorą neutrina

Reaktory

Oscylacje neutrin

• Przy założeniu oscylacji dwuzapachowych mamy dwa tzw. parametry oscylacji: kąt mieszania, kwadrat różnicy mas

$$\begin{pmatrix} v_x \\ v_y \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

$$P(v_x \rightarrow v_y) = \sin^2(2\theta)\sin^2\left(1.27\frac{\Delta m^2 L}{E}\right)$$

Dwa zestawy rezultatów: 'atmosferyczne' (małe L/E) i 'słoneczne' (duże L/E)

Oscylują 3 zapachy

(K2K and MINOS) experiments.

Schwetz et al. arXiv:0808.2016v3 [hep-ph]

Co dotąd chcieliśmy zmierzyć

• I etap

 zwiększenie precyzji pomiarów uprzednio zmierzonych parametrów oscylacji

Ο Pomiar θ₁₃

II etap (potrzebny pomiar θ₁₃>0)

- Zbadanie symetrii CP w sektorze neutrinowym, hierarchii mas, efektów materii
- Potrzebne neutrina i antyneutrina

Realizacja celów – 2 podejścia

 Eksperymenty reaktorowe (Double Chooz – Francja, Daya Bay – Chiny)

 Silne wiązki akceleratorowe (T2K – Japonia, Nova – USA), możliwość badania hierarchii mas (efekty materii) i CP

Jak mierzymy θ_{13}

Eksperymenty reaktorowe:

 $P_{ee} ≈ 1 - sin^2 2θ_{13} sin^2 (1.27 Δm_{13}^2 L/E) -$

 $\cos^{4}\theta_{13}\sin^{2}2\theta_{12}\sin^{2}(1.27\Delta m_{12}^{2}L/E)$

Eksperymenty akceleratorowe z długą bazą:

 $P_{vac}(v_{\mu} \rightarrow v_{e}) = \sin^{2} 2\vartheta_{13} \cdot \sin^{2} \vartheta_{23} \cdot \sin^{2} \frac{1.27\Delta m_{13}^{2} \cdot L}{E} + f(\delta_{CP}, \operatorname{sgn}(\Delta m_{13}^{2}))$

 $\nu_{\mu} \rightarrow \nu_{e}$

 $\overline{V_{\rho}} \rightarrow \overline{V_{\rho}}$

Neutrina reaktorowe:

- \blacktriangleright Czysty sygnał bez wpływów δ czy efektów materii
- Relatywnie tanie eksperymenty

Antyneutrina reaktorowe

- Antyneutrina elektronowe emitowane w rozpadach beta minus materiałów promieniotwórczych w reaktorze (izotopy uranu i plutonu)
- Ok. 4.5% energii wyzwalanej w rozpadach ucieka w lux Expectationstaci neutrin
 - Rejestrujemy spektrum o energiach rzędu kilku MeV

Fig. 1.4. Yield of antineutrinos per fission for the several isotopes. These are determined by converting the corresponding measured β spectra [33].

iscuaciesneutlin Reactors reaktorowych

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

- Dwie częstości oscylacji związane z /

Oscylacje o

- zaobserwowane przez eksperyment KamLAND, bliższe minimum badane przez Chooz, Daya Bay, RENO
- Detektor bliski w celu redukcji błędów systematycznych związanych z niepewnością strumienia neutrin z reaktorów

∆m²sol 0.9 0.8 θ12 0.7L~1-2 km 60 kn 0.6 Daya Bay 0.5 KamLand 0.4 10 100 **Baseline** (km)

Daya Bay

First proposed by L. A. Mikaelvan and V.V. Sinev, Phys. Atomic Nucl. 63 1002 (2000)

 \mathbf{S}^{\dagger}

3

far/near \overline{v}_{a} ratio

 $N_{\rm f}$

 $N_{\rm n}$

target mass distances

∠v_{p,f}

efficiency oscillation deficit

 $\epsilon_{\rm f}$

 $P_{\rm sur}(E, L_{\rm f})$

Pomiary w przeszłości

Palo Verde & Chooz: brak sygna

 $Sin^{2}2\theta_{13} < 0.15 @ 90\%C.L.$ if $\Delta M^{2}_{23} = 0.0024 \text{ eV}^{2}$

• T2K: 2.5 σ 0.03 < Sin²2 θ_{13} < 0.28 @ 90%C.L. for NH 0.04 < Sin²2 θ_{13} < 0.34 @ 90%C.L. for IH

• Minos: 1.7σ • $0 < Sin^2 2\theta_{13} < 0.12$ @ 90%C.L. NH • $0 < Sin^2 2\theta_{13} < 0.19$ @ 90%C.L. IH

• Double Chooz: 1.7 σ

 $\sin^2 2\theta_{13} = 0.086 \pm 0.041 (\text{stat}) \pm 0.030 (\text{sys})$

0.2

0.3

 $\sin^2 2\theta_{13}$

0.4

0

0.1

Palo Verde (excluded)

0.5

0.6

Elektrownie atomowe Dàyà Bay (大亚湾) i Ling ào (岭澳)

- A Powerful Neutrino Source
- 3 elektrownie, w każdej 2 reaktory
- Razem do 17.4 GW mocy
- Usytuowane w sąsiedztwie gór wygodne miejsce dla umiejscowienia detektorów pod ziemią, tak aby zminimalizować tło od mionów kosmicznych

Daya Bay: Cele i środki

Precyzja poprzednich eksperymentów:

• Moc reaktora: $\sim 1\%$

Cel eksperymentu Daya Bay: precyzja rzędu ~ 0.4%

- Jak obniżyć błędy systematyczne:
 - Identyczne bliski i daleki detektor
 - Wiele identycznych modułów detekcyjnych
 - Trójstrefowe moduły detekcyjne
 - Wystarczająco głębokie laboratorium i ekranowanie detektorów
 - Dwa uzupełniające się systemy detekcji mionów
 - Przenośne moduły detekcyjne

Mechanizm detekcji

- Medium: scyntylator domieszkowany gadolinem
- Proces: odwrotny rozpad beta
- Sygnał natychmiastowy dawany przez pozyton
- Sygnał opóźniony wychwyt neutronu
- dzięki domieszkowaniu Gd
 - wyższy przekrój czynny na wychwyt
 - krótszy czas wychwytu (ok. 30 μs)
 - wyższa energia emitowanych fotonów 8 MeV (dzięki temu lepiej się to odróżnia od naturalnej radioaktywności)

 $E_{\overline{v}} \cong (T_{e^+}) + T_n + (M_n - M_p) + m_{e^+}$ 10-40 keV 1.8 MeV: próg

 $n + p \rightarrow d + \gamma$

 e^+

+n

 $\bar{\nu}_e + p \longrightarrow$

Sygnał i tło

- Sygnał:
 - Natychmiastowy (prompt): e⁺, 1-10 MeV,
 - Opóźniony (delayed): n, 2.2 MeV@H, 8 MeV @ Gd
 - Wychwyt po 28 ms w 0.1% Gd-LS
- Tło:

 $\overline{v}_e + p \rightarrow e^+ + n$

• Nieskorelowane: przypadkowe koincydencje $\gamma\gamma$, γ n, nn

o γ from U/Th/K/Rn/Co... in LS, SS, PMT, Rock, ...

- o n from α -n, μ -capture, μ -spallation in LS, water & rock
- Skorelowane:
 - Fast neutrons: prompt—n scattering, delayed—n capture
 - ⁸He/⁹Li: prompt— β decay, delayed—n capture
 - Am-C source: prompt $-\gamma$ rays, delayed -n capture
 - ο α-n: ¹³C(α,n)¹⁶O

Two-zone ultrapure water Cherenkov detector

produkować neutrony spalacyjne w AD

- spowalnia neutrony i pochłania gammy pochodzące ze skał
- płaszczyzna RPC
 - komory RPC ułożone na zakładkę, nasuwane na basen z wodą i detektorami

Detektory i ich właściwości

- 3 zagnieżdżone w sobie akrylowe pojemniki
 - Tarcza:Scyntylator+0.1% Gd(20t)
 - Łapacz gamm: Scyntylator (21t)
 - Olej mineralny (37t)
- 3 moduły kalibracyjne
 - LED + źródełka promieniotwórcze
- 192 8-calowych fotopowielaczy

Instalacja bliskich detektorów

Dane i wyniki Published Data Periods

Daya Bay Collab. arXiv:1202:6181 (2012) accepted in NIMA

Daya Bay Collab.

Two Detector Side-by-Side Comparison

- Sep. 23, 2011 Dec. 23, 2011
- Side-by-side comparison of 2 detectors
- Demonstrated detector systematics 2x better than requirements
- Detector-related relative uncertainty: 0.2%

Current Oscillation Analysis

- Dec. 24, 2011 Feb. 17, 2012
- All 3 halls (6 ADs) operating
- DAQ uptime: >97%
- Antineutrino data: ~89%
- observed 6% deficit in detected $\overline{v_e}$ at far site

Czy dobrze rozumiemy co się dzieje w detektorach? Stainles PMTs: 40

Stainless Steel: U/Th chains PMTs: ⁴⁰K, U/Th chains Scintillator: Radon/U/Th chains

- Wedle projektu: ~50Hz powyżej 1 MeV
- Dane: ~60Hz powyżej 0.7 MeV, ~40Hz powyżej 1 MeV
- Wkłady od poszczególnych źródeł:
 - ~ 5 Hz z SSV
 - ~ 10 Hz z LS
 - ~ 25 Hz z PMT
 - ~5 Hz ze skał
- Zgodność pomiędzy modułami detekcyjnymi

Spektrum pojedynczych sygnałów w detektorach

Antineutrino Candidates (Inverse Beta Decay)

Wybieramy sygnał

• Antiselexcitrino Candidates (Inverse ¹Beta Decay) • Reject Flashers

- Reject Triggers within (-2 µs, 200 µs) to a tagged water pool muon
- Wybór przypadków neutrinowych
 - Ciecie na krotność
 - Prompt-delayed pairs within a time interval of 200
 - No triggers(E > 0.7MeV) before the prompt signal and after the delayed signal by 200 us
 - Weto mionowe
 - 1s after an AD shower muon
 - *Ims* after an AD muon
 - **0.6ms** after an WP muon
 - 0.7MeV < E_{prompt} < 12.0MeV
 - $6.0MeV < E_{delayed} < 12.0MeV$
 - $1\mu s < \Delta t_{e^+-n} < 200\mu s$

Daya Bay Data Set Summary Dane - podeumowanie

Tło

	AD1	AD2	AD3	AD4	AD5	AD6
Antineutrino candidates	28935	28975	22466	3528	3436	3452
DAQ live time (day)	49.55	530	49.4971		48.9473	
Veto time (day)	8.7418	8.9109	7.0389	0.8785	0.8800	0.8952
Efficiency	0.8019	0.7989	0.8363	0.9547	0.9543	0.9538
Accidentals (/day)	9.82±0.06	9.88±0.06	7.67±0.05	3.29±0.03	3.33±0.03	3.12±0.03
Fast neutron (/day)	0.84±0.28	0.84±0.28	0.74±0.44	$0.04{\pm}0.04$	0.04 ± 0.04	0.04 ± 0.04
⁸ He/ ⁹ Li (/day)	3.1±	1.6	1.8±1.1		0.16±0.11	
Am-C corr. (/day)			0.2	±0.2		
$^{13}C(\alpha, n)^{16}O(/day)$	0.04 ± 0.02	0.04±0.02	0.035±0.02	0.03±0.02	0.03±0.02	0.03±0.02
Antineutrino rate (/day)	714.17 ±4.58	717.86 ±4.60	532.29 ±3.82	71.78 ±1.29	69.80 ±1.28	70.39 ±1.28

Uncertainty Summary Blefaiytysylstematyczne

	Dete	ctor	
	Efficiency	Correlated	Uncorrelated
Target Protons		0.47%	0.03%
Flasher cut	99.98%	0.01%	0.01%
Delayed energy cut	90.9%	0.6%	0.12%
Prompt energy cut	99.88%	0.10%	0.01%
Multiplicity cut		0.02%	< 0.01%
Capture time cut	98.6%	0.12%	0.01%
Gd capture ratio	83.8%	0.8%	<0.1%
Spill-in	105.0%	1.5%	0.02%
Livetime	100.0%	0.002%	< 0.01%
Combined	78.8%	1.9%	0.2%
	Rea	ctor	
Correlated		Uncor	related
Energy/fission	0.2%	Power	0.5%
$\overline{\nu}_e$ /fission	3%	Fission fraction 0.6%	
		Spent fuel	0.3%
Combined	3%	Combined	0.8%

Przy pomiarze stosunku near/far używane są tylko niepewności nieskorelowane

Największe niepewności detektorowe

Nieskorelowane niepewności detektorowe

Influence of uncorrelated reactor systematics (0.8%) is reduced to **0.04%** detector systematics uncertainty by far vs near measurement.

Nieskorelowane niepewności reaktorowe

Porównanie ostatecznego widma

- Porównanie dwóch modułów detekcyjnych w hali numer 1
- Oczekiwana wartość stosunku liczby obserwowanych neutrin: R (AD1/AD2) = 0.981
 - mniej niż 1 bo: minimalne różnice w odległościach od reaktorów, masie, etc.
- Wartość zmierzona: 0.987 ± 0.008(stat) ± 0.003(syst)
- Bardzo dobra zgodność pokazuje że dobrze kontrolujemy błędy systematyczne

AnzemieboverBastranairen neutrin vs. dane

Całkowita normalizacja przewidywań dopasowana do danych ze stacji bliskich

Widzimy dobrą zgodność dla bliskich detektorów i efekt oscylacyjny dla dalekich

1200 1400 1600 1<mark>800 2000</mark> Weighted Baseline [m]

0.8

0.15

 $\sin^2 2\theta_{13} = 0.113 \pm 0.013$ (stat.) ± 0.019 (syst.)

Prompt energy [MeV]

0.92

0.90

200 400 600 800 1000 1200 1400 1600 1800 2000

Weighted Baseline [m]

0.8 0

Daya Bay II?

Towards Measurement of the Mass Hierarchy

see J. Cao, vTURN

Giant Detector located at 60 km from Daya Bay reactors, the 1st maximum of θ_{12} oscillation.

Co nam pozostało do zmierzenia?

- Θ₁₃>0!
- Łamanie symetrii CP?
- Efekty materii?
- Θ₂₃=π/4?
- Coś innego (neutrina sterylne?)

- Warsztaty CERNowskie European Strategy for Neutrino Oscillation Physics. 14-16. maja 2012
- Dyskusja nad przyszłością fizyki neutrin w Europie
- Następne spotkanie w Krakowie we wrześniu -Otwarte Sympozjum dot. Europejskiej Strategii dla Fizyki Czastek (dotyczące całej fizyki cząstek elementarnych)

Neutrina sterylne

może coś dzieje się przy Δm²~1eV² (LSND, line) miniBoone, eksp. reaktorowe o b. krótkiej bazie)

New short-baseline neutrino oscillation experiments are needed

Pomysły:

- eksperyment z krótką bazą na wiązce w CERNie
- źródełko radioaktywne w Borexino

Eksperymenty z długą bazą

T2K/Hyperk (295 km)

- İmprovement of significance of our electron appearance signal
 - \sim >3 σ this summer
 - Collecting 10²¹ POT till the summer of 2013 which will give us more than 50 significance
- Analysis improvements
- Various cross-section measurements in the near detector
- Dokladne zmierzenie kanału zanikania neutrin mionowych
- Projekt HyperK w fazie (niepewnych) planów

NOvA (810 km)

Physics Goals:

Measure the oscillation probabilities of

 $v_{\mu} \rightarrow v_{e}$ and $v_{\mu} \rightarrow v_{e}$

- \Box Measure the mixing angle θ_{13}
- Determine neutrino mass hierarchy
- Study the phase parameter for CP Violation δ_{CP}
- > Precision measurements of Δm_{32}^2 , θ_{23}
- As well as:
 - v cross sections
 - Sterile neutrinos
 - Supernova signals

Hierarchia mas i CPV w Nova

Potrzebny pomiar neutrin i antyneutrin

Laguna-LBNO

- Europejski eksperyment z długą bazą CERN->Pyhasalmi
- Wielki detektor ciekłoargonowy (bardzo dobra identyfikacja cząstek) 1.5km pod ziemią w kopalni
- Pomiar dwóch maksimów oscylacji pozwoli na rozsupłanie efektów materii i łamania CP
- Perpektywa czasowa: wczesne lata 20. XXI w.

Levell acc

Podsumowanie

- Daya Bay i RENO po raz pierwszy zmierzyły kąt θ₁₃ za pomocą obserwacji antyneutrin elektronowych z reaktorów jądrowych
- Wynik ten jest zgodny z rezultatami uzyskanymi przez eksperymenty z długą bazą (T2K, Minos)
- W najbliższym czasie oczekujemy polepszenia precyzji pomiarów w obu typach eksperymentów (najbliższe nowości na konferencji Neutrino 2012 w Kioto, jp)
- Interesujące perspektywy rozwoju fizyki oscylacji neutrin w najbliższych latach

Zapasowe

An International Effort

Asia (20)

IHEP, Beijing Normal Univ., Chengdu Univ. of Sci and Tech, CGNPG, CIAE, Dongguan Polytech, Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiao Tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Zhongshan Univ., Univ. of Hong Kong, Chinese Univ. of Hong Kong, National Taiwan Univ., National Chiao Tung Univ., National United Univ.

North America (16)

Brookhaven Natl' Lab, Cal Tech, Cincinnati, Houston, Illinois Institute of Technology, Iowa State, Lawrence Berkeley Natl' Lab, Princeton, Rensselaer Polytech, UC Berkeley, UCLA, Wisconsin, William & Mary, Virginia Tech, Illinois, Siena College

Europe (2) Charles Univ., Dubna

~230 collaborators

Automatic Calibration System

- Three Z axis:
 - One at the center
 - For time evolution, energy scale, nonlinearity...
 - One at the edge
 - For efficiency, space response
- One in the γ-catcher For efficiency, space response
- 3 sources for each z axis:
 - LED
 - for T₀, gain and relative QE
 - ⁶⁸Ge (2×0.511 MeV γ's)
 - o for positron threshold & non-linearity...
 ²⁴¹Am-¹³C + ⁶⁰Co (1.17+1.33 MeV γ's)
 - - For neutron capture time, ...
 - For energy scale, response function, ...
- Once every week:
 - 3 axis, 5 points in Z, 3 sources

Tło Background Summary

Accidentals

Fast neutrons

	B/S at EH1	B/S at EH3
Accidentals	~1.4%	~4.5%
fast neutrons	~0.1%	~0.06%
⁸ He/ ⁹ Li	~0.4%	~0.2%
Am-C	~0.03%	~0.3%
a-n	~0.01%	~0.04%
Sum	2.0%	5.2%

Detector	Near	Far
Selected events	154088	17102
Total background rate (per day)	21.75 ± 5.93	$4.24{\pm}0.75$
IBD rate after background	$779.05 {\pm} 6.26$	$72.78 {\pm} 0.95$
subtraction (per day)		
DAQ Live time (days)	192.42	222.06
Detection efficiency (ϵ)	$0.647 {\pm} 0.014$	$0.745 {\pm} 0.014$
Accidental rate (per day)	$4.30 {\pm} 0.06$	$0.68 {\pm} 0.03$
${}^{9}\text{Li}/{}^{8}\text{He}$ rate (per day)	$12.45 {\pm} 5.93$	$2.59{\pm}0.75$
Fast neutron rate (per day)	$5.00 {\pm} 0.13$	$0.97 {\pm} 0.06$

RENO

Reactor				
	Uncorrelated	Correlated		
Thermal power	0.5%	_		
Fission fraction	0.7%	—		
Fission reaction cross section	—	1.9%		
Reference energy spectra	_	0.5%		
Energy per fission	—	0.2%		
Combined	0.9%	2.0%		
Detect	tion			
	Uncorrelated	Correlated		
IBD cross section	_	0.2%		
Target protons	0.1%	0.5%		
Prompt energy cut	0.01%	0.1%		
Flasher cut	0.01%	0.1%		
Gd capture ratio	0.1%	0.7%		
Delayed energy cut	0.1%	0.5%		
Time coincidence cut	0.01%	0.5%		
Spill-in	0.03%	1.0%		
Muon veto cut	0.02%	0.02%		
Multiplicity cut	0.04%	0.06%		
Combined (total)	0.2%	1.5%		

Parameter	Value	Description
Thermal Power (GW)	16.4(average)/17.3(peak)	6 reactor
Target Size (ton)	16 (near/far)	Gd loaded Liquid Scintillator
PMT Coverage	14% (near/far)	surface area
Baseline Distance(m)	292 (near)/1380 (far)	
Overburden (mwe)	110 (near)/450 (far)	Vertical
Number of Events per Year	$2.6 \times 10^5 \text{ (near)}/3.0 \times 10^4 \text{ (far)}$	$\epsilon_{total} = 56\%$ (near)/72%(far)
90% CL Sensitivity (3 years)	$\sin^2(2\theta_{13}) \sim 0.02 - 0.03$	$\Delta m_{13}^2 = (2-3) \times 10^{-5} \mathrm{eV}^2$

LSND

$$\overline{
u}_{\mu}
ightarrow \overline{
u}_{e}$$

LSND found an excess of $\overline{\nu_e}$ in $\overline{\nu_{\mu}}$ beam

Excess: $87.9 \pm 22.4 \pm 6.0 (3.8\sigma)$

Podobny wynik dla wiązki neutrin mionowych (choć nadwyżka mniej znacząca).

- Mamy problem trzy Δm² więcej niż 3 zapachy neutrin?
- Pomysł zróbmy eksperyment o podobnym L/ E, żeby zweryfikować wynik LSND

Anomalie MiniBoone/LSND

• a

The MiniBooNE Strategy

Test the LSND indication of anti-electron neutrino oscillations Keep L/E same, change beam, energy, and systematic errors

4

•541m drogi oscylacji
•Średnia energia wiązki 800MeV
•800t oleju mineralnego
wewnątrz sfery o średnicy 12m
•1280 wewnętrznych
fotopowielaczy

Propozycja dodatkowego ciekłoargonowego detektra - GLADE

fekty materii

Oddziaływanie neutrin elektronowych z elektronami materii powoduje pojawienie się potencjału, *e* zależnego od lokalnej gęstości elektronów

 $A = \pm 2\sqrt{2}G_F \cdot E \cdot n_e$

to wpływ na prawdopodobieństwo oscylacji, tzn. $\Delta V = \sqrt{2} G_F N_e(x)$ zależnie od fazy łamania CP

 Z^0

 $P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}) \neq 0$

datkowo może pojawić się efekt rezonansowy,

 $\Delta m^2 \simeq A \quad \Leftrightarrow \quad E_{\rm res}^{\rm Earth} = 6 - 8 \,{\rm GeV}$

my wtedy czułość na absolutną skalę mas – rarchia!

$$\begin{array}{c|c} & \nu & \overline{\nu} \\ \hline \Delta m^2 > 0 & \text{MSW} & \text{-} \\ \Delta m^2 < 0 & \text{-} & \text{MSW} \end{array}$$

e

Nasza bieżąca wiedza o fizyce oscylacji neutrin

Adding SK atm data; the preference for θ_{23} in the 1st octant is clearly corroborated

Note: overall goodness of fit very similar in NH and IH. No hint about hierarchy yet...

Nasza bieżąca wiedza o fizyce oscylacji neutrin

We find a ~ 1 σ preference for $\theta \sim \pi$ as in the early analysis of hep-ph/0506083.

Sensitivity to oscillations

P(V V)	$-\sin^2 2\theta \sin^2$	$(1.27\Delta m^2 L)$
$I\left(V_{\alpha} \rightarrow V_{\beta}\right)$	$- \sin 20 \sin$	$\overline{E_v}$

	E_v (MeV)	L (m)	$\Delta m^2 (\mathrm{eV}^2)$
Supernovae	<100	>10 ¹⁹	10-19 - 10-20
Solar	<14	1011	10-10
Atmospheric	>100	104 -107	10-4
Reactor	<10	<10 ⁶	10-5
Accelerator with	>100	10 ³	10-1
short baseline			
Accelerator with	>100	<10 ⁶	10-3
long baseline			

The $\nu_{\mu} \rightarrow \nu_{e}$ appearance probability can be written using MNS matrix element as [18]

$$P(\nu_{\mu} \rightarrow \nu_{e}) = 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\Phi_{31} + 8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\Phi_{32}\cdot\sin\Phi_{31}\cdot\sin\Phi_{21} - 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\Phi_{32}\cdot\sin\Phi_{31}\cdot\sin\Phi_{21} + 4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta)\sin^{2}\Phi_{21} - 8C_{13}^{2}S_{13}^{2}S_{23}^{2}(1 - 2S_{13}^{2})\frac{aL}{4E_{\nu}}\cos\Phi_{32}\sin\Phi_{31}.$$
(14)

The first term has the largest contribution. The second $\cos\delta$ term is generated by the CP phase δ but is CP conserving. The third $\sin\delta$ term violates CP. The fourth term, which is the solar neutrino term, is suppressed by $\sin^2 \frac{\Delta m_{21}^2 L}{4E_{\mu}}$. The matter effect is characterized by

$$a = 2\sqrt{2}G_F n_e E_\nu = 7.6 \times 10^{-5} \rho [g/cm^3] E_\nu [GeV] \qquad [eV^2], \tag{15}$$

where G_F is the Fermi constant, n_e is the electron density and ρ is the earth density. The probability $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ is obtained by the replacing $a \rightarrow -a$ and $\delta \rightarrow -\delta$ in eq. (14). As seen in eq. (15) the matter effect is proportional to neutrino energy, so the lower the energy, the smaller the effect is. The CP asymmetry in the absence of the matter effect is calculated as

$$A_{CP} = \frac{P(\nu_{\mu} \to \nu_{e}) - P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})} \simeq \frac{\Delta m_{12}^{2}L}{4E_{\nu}} \cdot \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \cdot \sin \delta$$
(16)

Because θ_{13} is small, the CP asymmetry can be large, especially for small E_{ν} .