Mieszanie i łamanie symetrii CP w rozpadach cząstek powabnych w eksperymencie LHCb

Seminarium Fizyki Wielkich Energii

26 kwietnia 2013

Artur Ukleja
(Narodowe Centrum Badań Jądrowych)

Prezentowano również na Konferencji Beauty 2013 dnia 10 kwietnia 2013 roku w Bolonii

Charm mixing and CP violation at LHCb

26/04/2013

Artur Ukleja
National Centre for Nuclear Research, Warsaw

also presented on Beauty 2013, 10 April 2013, Bologna

Outline

- Introduction:
\diamond mixing D^{0}-anti-D D^{0} and CPV
\checkmark SM predictions
\checkmark current constraints for mixing and CPV in charm physics
\checkmark why are we interested in charm physics?
- Measurements of mixing and CPV in charm sector at LHCb
\triangleleft the LHCb detector
\diamond observation of $D^{0}-$ anti- D^{0} mixing
$\diamond \Delta \mathrm{A}_{\mathrm{CP}}$ in $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}$and $\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}$
$>$ pion-tagged analysis $\mathrm{D}^{* \pm} \rightarrow \mathrm{D}^{0} \pi^{+}{ }_{s}$
$>$ muon-tagged analysis $B \rightarrow D^{0} \mu X$
\diamond search for direct CPV in:
$>\mathrm{D}^{+} \rightarrow \phi \pi^{+}$and $\mathrm{D}^{+}{ }_{\mathrm{s}} \rightarrow \mathrm{K}_{\mathrm{s}}^{0} \pi^{+}$
$>\mathrm{D}^{+} \rightarrow \mathrm{K} \cdot \mathrm{K}^{+} \pi^{+}$and $\mathrm{D}^{0} \rightarrow \pi^{-} \pi^{+} \pi^{-} \pi^{+}$
- Summary

Introduction

Neutral mesons can oscillate between matter and anti-matter: mass eigenstates are different from flavour eigenstates

$$
\begin{gathered}
i \frac{d}{d t}\binom{\left|D^{0}\right\rangle}{\left|\bar{D}^{0}\right\rangle}=\left[\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{12}^{*} & M_{22}
\end{array}\right)-\frac{i}{2}\left(\begin{array}{ll}
\Gamma_{11} & \Gamma_{12} \\
\Gamma_{12}^{*} & \Gamma_{22}
\end{array}\right)\right]\binom{\left|D^{0}\right\rangle}{\left|\bar{D}^{0}\right\rangle} \\
\left|D_{1,2}\right\rangle=p\left|D^{0}\right\rangle \pm q \mid \overline{\left.D^{0}\right\rangle}
\end{gathered}
$$

$$
m \equiv\left(m_{1}+m_{2}\right) / 2
$$

$$
\Gamma \equiv\left(\Gamma_{1}+\Gamma_{2}\right) / 2
$$

Two parameters describe mixing:
mass difference x :
decay width difference y :

$$
x \equiv \frac{m_{2}-m_{1}}{\Gamma}=\frac{\Delta m}{\Gamma}
$$

experiment theory
$\Delta m=M_{H}-M_{L}=2\left|M_{12}\right|\left(1+\frac{1}{8} \frac{\left|\Gamma_{12}\right|^{2}}{\left|M_{12}\right|^{2}} \sin ^{2} \phi+\ldots\right)$
 weak phase: $\phi \equiv \arg \left(-M_{12} / \Gamma_{12}\right)$
$\Delta \mathrm{m}, \Delta \Gamma$ - measured experimentally
For charm: $x=0.0063 ; y=0.0075$

- Mixing is very slow
- Very precise measurements needed

$$
y \equiv \frac{\Gamma_{2}-\Gamma_{1}}{2 \Gamma}=\frac{\Delta \Gamma}{2 \Gamma}
$$

1. in mixing: different transition of oscillation
$\mathrm{D}^{\mathbf{0}} \longrightarrow$ anti-D $^{\mathbf{0}} \quad \neq$ anti- $\mathrm{D}^{\mathbf{0}} \longrightarrow \mathrm{D}^{\mathbf{0}}$
2. in decay amplitudes: decays of particles and antiparticles are not the same (direct)

3. interference: between CP violation in mixing and in decays

- Mixing and decay processes can be mediated via loop diagrams.
- NP is most likely to enter in loops and new particles can be exchanged

Mixing and CP violation

- In SM:
\checkmark the charm mixing rate is expected to be small: $|x|,|y| \leqslant 10^{-2}$
\checkmark expected CPV in charm sector is small $\lesssim 10^{-3}$ (much smaller than in the beauty sector) and difficult in calculation
\diamond SM predictions vary widely
« New Physics contributions can enhance CPV up to 10^{-2}
Int.J.Mod.Phys.A21(2006)5381;
Ann.Rev.Nucl.Part.Sci.58(2008)249

Mixing via box-diagram, short range
Mixing via hadronic intermediate states, long range (difficult to calculate)

$$
x \sim 1 \% \quad y \sim 1 \%
$$

From measurements we know that $\mathbf{x} \sim \mathbf{y}$

Direct decays and CP violation

If tree and penguin processes interfere with different phases then symmetry between particles and antiparticles is broken $\longrightarrow A \neq$ anti-A (Singly Cabibbo Suppresed decay $=$ signal of $\mathrm{CP} \leftarrow$ penguin diagram opens possibilities for NP searches)
$\lambda=0.22$

- In SM CP violation in decays could be larger than in mixing (expected $\sim 10^{-3}$) and depends on final state
\rightarrow CP asymmetry should be searched elsewhere where is possible, for example: $\mathrm{D} \rightarrow \mathrm{hh}, \mathrm{D} \rightarrow \mathrm{hhh}, \mathrm{D} \rightarrow$ hhhh $\ldots .$.

Decays without CP violation

Control decays where CP violation is negligible (no penguin contribution):

- Cabibbo favoured (CF)
- doubly Cabibbo suppresed (DCS)

CF

Control decays are used to check the detector effects

First evidence of mixing D^{0}-anti-D ${ }^{0}$: BaBar, Belle (2007), CDF (2008)

- open possibilities of rich structure of CP violation in charm sector

- Only the combination of all measurements provides confirmation of D^{0}-anti- D^{0} mixing
- Before LHCb there was no observation of the phenomenon in a single measurement

Why are we interested in charm sector?

- So far there was no observation of CP violation in charm sector
\rightarrow next step: confirmation of CP asymmetry
- In SM expected CP asymmetry is small $\left(<10^{-3}\right)$
- much smaller than in the beauty sector
\rightarrow perfect place for New Physics searching (small contribution from SM)
- Input to b Physics
- a lot of B mesons decay into c particles $(b \rightarrow c) \sim 50 \%$ transitions

LHCb was built for b physics:

- for precise measurements of CPV in b decays and their very rare decays
- also c particle decays are reconstructed:
\diamond LHCb has huge charm samples
\triangleleft charm cross section $\approx 20 \times$ b cross section within the LHCb acceptance:

$$
\sigma(b \bar{b})=75.3 \pm 5.4 \pm 13.0 \mu b
$$

Phys.Lett.B694 (2010) 209-216

$$
\sigma(c \bar{c})=1419 \pm 12 \pm 116 \mu b \sim 20 \times \sigma(b \bar{b})
$$

Nucl.Phys.B871 (2013) 1
\diamond Largest charm samples in the world:
\checkmark 2011: 1/fb
\checkmark 2012: 2/fb
\diamond for example: $\sim 2 \mathrm{M} \quad \mathrm{D}^{* \pm} \rightarrow \mathrm{D}^{0}\left(\rightarrow \mathrm{~K}-\mathrm{K}^{+}\right) \pi^{ \pm}$reconstructed for $1 / \mathrm{fb}$

LHCb - precision detector

Single-arm forward spectrometer covering range: $2<\eta<5$

LHCb - precision detector

- VELO:
\checkmark resolution of IP: $20 \mu \mathrm{~m}$
\checkmark decay lifetime resolution ~ 45 fs: $0.1 \tau\left(\mathrm{D}^{0}\right)$ (depends on the channel, for 2012 statistics ~ 15 fs for $\mathrm{D}^{0} \rightarrow \mathrm{KK}$)
- Excellent tracking resolution: $\Delta \mathrm{p} / \mathrm{p}=0.4 \%$ at 5 GeV to 0.6% at 100 GeV
- RICH:
\checkmark very good particle identification for π and K
- Dedicated exclusive trigger lines for charm with high efficiency
\checkmark HTL1: efficiency $\sim 50 \%$
\checkmark HLT2: efficiency 50-90\% for $\mathrm{D} \rightarrow \mathrm{hh} / 3 \mathrm{~h} / 4 \mathrm{~h}$
- The polarity of the magnet is reversed repeatedly during data taking
- LHCb has possibilities of very precise measurements of charm particles

Two production types of charm:

JHEP04(2012)129

- prompt - produced directly in the primary vertex (PV)

- secondary - produced in B decays ($>50 \%$ of $B \rightarrow$ DX)

To separate prompt charm and secondary charm decays we use the cut on $\chi^{2}(I P)$ parameter

LHCb uses two methods to identify D^{0} flavour at the production state
\diamond pion-tagged method the sign of slow pion from D^{*} decays is used to tag the initial D^{0} flavour
$\mathrm{D}^{*+} \rightarrow \mathrm{D}^{0} \pi^{+}{ }_{s}$
$D^{*-} \rightarrow$ anti- $D^{0} \pi_{s}$

« muon-tagged method the sign of muon from semileptonic B decays is used to tag D^{0} flavour
$B \rightarrow D^{0} \mu^{-} v_{\mu} X$
$\mathrm{B} \rightarrow$ anti- $\mathrm{D}^{0} \mu^{+} \nu_{\mu} \mathrm{X}$

secondary D^{0}
\triangleleft Decays $\mathrm{D}^{0} \rightarrow \mathrm{~h}^{-} \mathrm{h}^{+}$
$\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \mathrm{K}^{+}$(Singly Cabibbo Suppressed)
$\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+}$(Cabibbo Favoured)
$\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}$(Doubly Cabibbo Suppressed)
Use to measure D^{0} - anti- D^{0} mixing parameters
$\mathrm{D}^{0} \rightarrow \pi^{-} \pi^{+} \quad$ (Singly Cabibbo Suppressed)

$$
D^{0}-\text { anti- } D^{0} \text { mixing }
$$

Measure the time-dependent ratio of D^{0} decays with Wrong Sign to Right Sign

$$
R(t)=\frac{N\left(D^{0} \rightarrow K^{+} \pi^{-}\right)}{N\left(D^{0} \rightarrow K^{-} \pi^{+}\right)}
$$

In the limit of small mixing $|\mathrm{x}|,|\mathrm{y}| \ll 1$ and for no CPV:

$$
\begin{aligned}
& R(t)=\frac{N_{W S}(t)}{N_{R S}(t)}=R_{D}+\sqrt{R_{D}} y^{\prime} t+\frac{x^{\prime 2}+y^{\prime 2}}{4} t^{2} \\
& \begin{array}{l}
\text { the ratio of } \\
\text { DCS to CF } \\
\text { decay rates }
\end{array} \\
& x^{\prime}=x \cos \delta+\overleftarrow{y \sin \delta} \begin{array}{l}
\text { the interference of and mixed decays }
\end{array} \\
& y^{\prime} \leftrightarrows y \cos \delta-x \sin \delta \\
& \text { mararameters }
\end{aligned}
$$

δ is a strong phase difference between DCS and CF amplitudes

Time-integrated yields

This is NOT a Monte Carlo This is the LHCb 2011 data, $L=1 / \mathrm{fb}$

RS: $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+}$
8.4 M decays

WS: $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}$
36 k decays

- To determine the time-dependent WS/RS ratio the data is divided into thirteen D^{0} decay time bins, chosen to have a similar number of candidates in each bin
- The signal yields for the RS and WS samples are determined in each decay time bin using fits to the $\mathrm{M}\left(\mathrm{D}^{0} \pi^{+}{ }_{s}\right)$ distribution
- The WS/RS ratio is calculated in each decay time bin
- The mixing parameters are determined in a binned χ^{2} fit of the function

$$
R(t)=\frac{N_{W S}(t)}{N_{R S}(t)}=R_{D}+\sqrt{R_{D}} y^{\prime} t+\frac{x^{\prime 2}+y^{\prime 2}}{4} t^{2}
$$

to the time dependence

Results for D^{0} - anti- D^{0} mixing
LHCb 2011 data, L=1/fb

Phys.Rev.Lett. 110 (2013) 101802

Estimated confidencelevel (CL) regions for $1-C L=1 \sigma, 3 \sigma, 5 \sigma$
$x^{\prime 2}$ is very small
Measurement is more sensitive to y '

Fit type	Parameter	Fit result	Correlation coefficient		
$\left(\chi^{2} / \mathrm{ndf}\right)$		$\left(10^{-3}\right)$	R_{D}	y^{\prime}	$x^{\prime 2}$
Mixing	R_{D}	3.52 ± 0.15	1	-0.954	+0.882
$(9.5 / 10)$	y^{\prime}	7.2 ± 2.4		1	-0.973
	$x^{\prime 2}$	-0.09 ± 0.13			1
No mixing	R_{D}	4.25 ± 0.04			
$(98.1 / 12)$					

$\Delta \chi^{2}=88.6$ corresponds to p-value $=5.7 \times 10^{-20}$ which excludes the no-mixing hypothesis at 9.1σ

Uncertainties include stat. and syst. sources
First observation of $\mathrm{D}^{0}-$ anti- D^{0} mixing in a single measurement

Comparison with other experiments

Experiment	$R_{D}\left(10^{-3}\right)$	$y^{\prime}\left(10^{-3}\right)$	$x^{\prime 2}\left(10^{-4}\right)$	
LHCb	3.52 ± 0.15	7.2 ± 2.4	-0.9 ± 1.3	LHCb: PRL 110 (2013) 101802
BaBar	3.03 ± 0.19	9.7 ± 5.4	-2.2 ± 3.7	BaBar: PRL 98 (2007) 211802
Belle	3.64 ± 0.17	$0.6_{-3.9}^{+4.0}$	$1.8{ }_{-2.3}^{+2.1}$	Belle: PRL 96 (2006) 151801
CDF	3.04 ± 0.55	8.5 ± 7.6	-1.2 ± 3.5	CDF: PRL 100 (2008) 121802

Measured parameters at LHCb are consistent with other experiments

- 2011 data, $1 / \mathrm{fb}$
- more data is on tape

Time integrated CP violation in $\mathrm{D}^{0} \rightarrow \mathrm{~K}-\mathrm{K}^{+}$and $\mathrm{D}^{0} \rightarrow \pi^{-} \pi^{+}$decays pion-tagged analysis

We use decays of $D^{\star \pm}$:

$$
\begin{array}{ll}
D^{*+} \rightarrow D^{0} \pi_{\mathrm{s}}^{+} & \mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \mathrm{K}^{+} \\
\mathrm{D}^{*-} \rightarrow \text { anti- } \mathrm{D}^{0} \pi_{\mathrm{s}}^{-} & \mathrm{D}^{0} \rightarrow \pi^{-} \pi^{+}
\end{array}
$$

We want to measure asymmetry between charm particles and antiparticles:

$$
A_{C P} \equiv \frac{N\left(D^{0} \rightarrow h^{-} h^{+}\right)-N\left(\bar{D}^{0} \rightarrow h^{-} h^{+}\right)}{N\left(D^{0} \rightarrow h^{-} h^{+}\right)+N\left(\bar{D}^{0} \rightarrow h^{-} h^{+}\right)}
$$

Measured raw asymmetry $A_{\text {RAW }}$ may be written as a sum of components that are physics and detector effects:

- $A_{R A W}, A_{D}$ and A_{P} are defined in the same fashion as $A_{C P}$
- all asymmetries of order 1% or smaller

Time integrated CP violation in $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \mathrm{K}^{+}$and $\mathrm{D}^{0} \rightarrow \pi^{-} \pi^{+}$decays pion-tagged analysis

$$
A_{R A W}(f)^{*}=A_{C P}(f)+A_{D}(f)+A_{D}\left(\pi_{s}\right)+A_{P}\left(D^{*}\right)
$$

Detector asymmetries for $\mathrm{K}^{-} \mathrm{K}^{+}$and $\pi^{-} \pi^{+}$cancel since the final states are charge symmetric

$$
A_{D}\left(K^{-} K^{+}\right)=0=A_{D}\left(\pi^{-} \pi^{+}\right)
$$

In any given kinematic region $A_{D}\left(\pi_{s}\right)$ and $A_{P}\left(D^{*}\right)$ are independent of f and thus in the first-order those terms cancel if we subtract raw asymmetries

$$
\begin{aligned}
& A_{R A W}\left(K^{+} K^{-}\right)^{*}-A_{R A W}\left(\pi^{+} \pi^{-}\right)^{*}= \\
& =A_{C P}\left(K^{+} K^{-}\right)-A_{C P}\left(\pi^{+} \pi^{-}\right) \equiv \Delta A_{C P} \\
& \uparrow
\end{aligned}
$$

Direct and indirect CPV can contribute

$\Delta A_{C P}$ interpretation

CPV asymmetry of each final state is a sum of:

$$
\begin{aligned}
& \begin{array}{c}
\text { asymmetry in the } \\
\text { decay amplitude }
\end{array} \\
& A_{C P}(f)=a_{C P}^{d i t}(f)+\frac{\begin{array}{l}
\text { asymmerry due to mixing } \\
\text { and interference between } \\
\text { mixing and decay }
\end{array}}{\begin{array}{l}
\text { Mean proper time }
\end{array}} \begin{array}{l}
\text { Mit used sample } \\
\text { (acceptances are } \\
\text { functions of time }
\end{array} \\
& \text { and for K-K+ and } a_{C P}^{i n d} \\
& \text { are slightly different) }
\end{aligned}
$$

- $\Delta A_{C P}$ is equal to the difference in the direct CP asymmetry between the two decays in the limit that $\Delta\langle t\rangle$ or $a^{i n d}$ vanishes
- direct CP depends on the f
- indirect CPV is universal (up to 10^{-2} correction)
\diamond its contribution cancels in subtraction if lifetime acceptance same for $\mathrm{K}^{-} \mathrm{K}^{+}$and $\pi^{-} \pi^{+}$
\diamond if time-acceptance is different, contribution $a^{\text {ind }}$ remains
- Update of analysis from 2011 0.6/fb \rightarrow 1/fb (full 2011 dataset)
- Update includes new reconstruction
s improved tracking alignment
s improved particle identification from RICH calibration
- New in the vertex fit constrain the D* vertex to the primary vertex
\triangleleft improves $\delta \mathrm{m}$ resolution by factor ~ 2.5
\rightarrow better background separation

$$
\begin{aligned}
& \delta m \equiv m\left(h^{-} h^{+} \pi^{+} s\right)-m\left(h-h^{+}\right)-m\left(\pi_{s}^{+}\right) \\
& D^{*+} \rightarrow D^{0} \pi^{+}{ }_{s} \\
& D^{0} \rightarrow K^{-} K^{+} \\
& D^{0} \rightarrow \pi^{-} \pi^{+}
\end{aligned}
$$

Signal yields
LHCb-CONF-2013-003
D^{0} decays come from $\mathrm{D}^{*+} \rightarrow \mathrm{D}^{0} \pi^{+}$decays in region:

$$
\begin{gathered}
0<\delta \mathrm{m}<12 \mathrm{MeV} \\
\delta \mathrm{~m}=\mathrm{m}\left(\mathrm{D}^{0} \pi^{+}\right)-\mathrm{m}\left(\mathrm{D}^{0}\right)-\mathrm{m}\left(\pi^{+}\right)
\end{gathered}
$$

For 1 /fb in window mass from fit to $\delta \mathrm{m}$:
1844 < $\mathrm{m}\left(\mathrm{D}^{0}\right)<1884 \mathrm{MeV}$
K-K+: 2.24 million events
$\pi \pi^{+}$: 0.69 million events

From simultaneous fits to δm for distributions of D^{*+} and D^{*-} we determine raw asymmetries $A_{\text {RAW }}\left(\mathrm{K}^{-} \mathrm{K}^{+}\right)$and $\mathrm{A}_{\text {RAW }}\left(\pi^{-} \pi^{+}\right)$and calculate $\Delta \mathrm{A}_{\text {CP }}$

Systematic uncertainties

Systematic uncertainties with the highest contribution in change of $\Delta \mathrm{A}_{\mathrm{CP}}$:

- Imperfect reconstruction: 0.08 \% excluding events with imperfect reconstruction, in which π_{s} has a large IP w.r.t the primary vertex
- Peaking background: 0.04 \% use different fits to the $m\left(\mathrm{~K}^{-} \mathrm{K}^{+}\right)$and $\mathrm{m}\left(\pi^{-} \pi^{+}\right)$
 spectra to test for potential peaking background contributions
$D^{*+} \rightarrow D^{0} \pi^{+}$s unreconstructed
- Fit model: 0.03 \% sideband subtraction instead of a fit
- Fiducial cut: 0.02 \% loosing fiducial requirement on π_{s}
- Multiple candidates: 0.01 \% removing multiple candidates, keeping only one candidate per event chosen at random
- Reweighting: 0.01\% due to different kinematics for $\mathrm{K}^{-} \mathrm{K}^{+}$and $\pi^{-} \pi^{+}$

Total systematic uncertainty: 0.10\% (can be reduced)

$D^{*-} \rightarrow$ anti- $D^{0} \pi_{s}^{-}$reconstructed

$1^{\text {st }}$ measurement of $\Delta A_{C P}$ from D^{*} decay

Preliminary result (2011, 1/fb):

$$
\Delta A_{C P}=\left[-0.34 \pm 0.15^{s t a t} \pm 0.10^{s y s t}\right] \%
$$

LHCb-CONF-2013-003

Difference in decay time acceptance:

$$
\begin{aligned}
\Delta\langle t\rangle / \tau & =\left[11.19 \pm 0.15^{\text {stat }} \pm 0.17^{\text {syst }}\right] \% \\
\Delta A_{C P} & =\left[a_{C P}^{d i r}\left(K^{-} K^{+}\right)-a_{C P}^{d i r}\left(\pi^{-} \pi^{+}\right)\right]+\frac{\Delta\langle t\rangle}{\tau} a_{C P}^{i n d}
\end{aligned}
$$

Contributions from indirect CPV is suppressed by one order of magnitude

We use semileptonic B decays (independent method):

$$
\begin{array}{ll}
\mathrm{B} \rightarrow \mathrm{D}^{0} \mu^{-} v_{\mu} \mathrm{X} & \mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \mathrm{K}^{+} \\
\mathrm{B} \rightarrow \text { anti- } \mathrm{D}^{0} \mu^{+} v_{\mu} \mathrm{X} & \mathrm{D}^{0} \rightarrow \pi^{-} \pi^{+}
\end{array}
$$

In similar way to the previous analysis

The production and muon detection asymmetries will cancel in subtraction if kinematics of μ and B meson are the same for both $D^{0} \rightarrow K^{-} K^{+}$and $D^{0} \rightarrow \pi^{-} \pi^{+}$

$$
\begin{aligned}
& A_{R A W}\left(K^{+} K^{-}\right)^{*}-A_{R A W}\left(\pi^{+} \pi^{-}\right)^{*}= \\
& =A_{C P}\left(K^{+} K^{-}\right)-A_{C P}\left(\pi^{+} \pi^{-}\right) \equiv \Delta A_{C P}
\end{aligned}
$$

Signal yields

In similar way to the previous analysis $\Delta A_{C P}$ is calculated separately for two field polarities (to reduce as much as possible any residual effects of the detection asymmetry)

$$
\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \mathrm{K}^{+}
$$

$D^{0} \rightarrow \pi^{-} \pi^{+}$

LHCb, 1/fb
(full dataset 2011):
$0.4 / \mathrm{fb}$ magnet up
$0.6 / \mathrm{fb}$ magnet down

Clean signal $B \rightarrow D^{0} \mu^{-} v_{\mu} X$ 559k $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \mathrm{K}^{+}$
$222 \mathrm{k} \mathrm{D}^{0} \rightarrow \pi^{-} \pi^{+}$

Yields (and asymmetry) determined from fit to D^{0} mass distribution (different from pion-tagged analysis where yields determined from D* mass distribution) Measurement: $\Delta \mathrm{A}_{\mathrm{CP}}($ Magnet up $)=0.86 \pm 0.46 ; \Delta \mathrm{A}_{\mathrm{CP}}($ Magnet down $)=0.09 \pm 0.39$

Systematic uncertainties

Systematic uncertainties with the highest contribution in change of $\Delta \mathrm{A}_{\mathrm{CP}}$:

- Low-lifetime background in $D^{0} \rightarrow \pi^{-} \pi^{+}$: 0.11% there is more background around $\mathrm{t}=0$ in $\mathrm{D}^{0} \rightarrow \pi^{-} \pi^{+}$ than in $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \mathrm{K}^{+}$; evaluation of $\Delta \mathrm{A}_{\mathrm{CP}}$ checked when negative lifetime events were included
- Fit model: 0.05\%
sideband subtraction instead of a fit
- Different weighting: 0.05\% after weighting the D^{0} distributions in p_{T} and η small differences remain in muon kinematic distributions; evaluation of $\Delta \mathrm{A}_{\mathrm{CP}}$ checked when additional weight is applied in muon distributions $\mathrm{p}_{\mathrm{T}}, \eta$ and ϕ
- Wrong muon tags: 0.02\% the D^{0} flavour can be not tagged correctly due to muon misreconstruction; mistag probability measured using muon-tagged $\mathrm{D}^{0} \rightarrow \mathrm{~K} \cdot \pi^{+}$(almost self-tagging) by comparison muon charge with kaon charge

Total systematic uncertainty: 0.14\% (can be reduced)

Comparison of $\Delta A_{C P}$ measurements

1) From semileptonic B decays (arXiv: 1303.2614, Submitted to Phys.Lett.B)

$$
\Delta A_{C P}=\left[0.49 \pm 0.30^{\text {stat }} \pm 0.14^{\text {syst }}\right] \%
$$

Difference in decay time acceptance (small value):

$$
\Delta\langle t\rangle / \tau\left(D^{0}\right)=0.018 \pm 0.002^{\text {stat }} \pm 0.007^{\text {syst }}
$$

Contribution from indirect CPV is negligible: $\Delta \mathrm{A}_{\mathrm{CP}}=\Delta \mathrm{a}^{\text {dir }}{ }_{C P}$
2) From pion-tagged D* decays (LHCb-CONF-2013-003)

$$
\Delta A_{C P}=\left[-0.34 \pm 0.15^{\text {stat }} \pm 0.10^{\text {syst }}\right] \%
$$

- Two measurements are statistically independent
- and compatible at 3\% level (difference 2.2б)

$\Delta A_{C P}$ Preliminary new world average

New average includes BaBar, CDF, Belle and new LHCb results

Now:

- the central value is considerably closer to zero
- result does not confirm the evidence for direct CPV in the charm sector

CP violation in $\mathrm{D}^{+} \rightarrow \phi \pi^{+}$and $\mathrm{D}^{+}{ }_{\mathrm{s}} \rightarrow \mathrm{K}_{\mathrm{s}}^{0} \pi^{+}$decays
No mixing in $\mathrm{D}^{+} \rightarrow$ any CPV signal indicates direct CPV
Signal decays: $\mathrm{D}^{+} \rightarrow \phi \pi^{+}$and $\mathrm{D}^{+}{ }_{\mathrm{s}} \rightarrow \mathrm{K}_{\mathrm{s}}^{0} \pi^{+}$are singly Cabibbo-suppressed decays where we expect CP asymmetry if tree and penguin processes interfere with different strong and weak phases

Control decays: $\mathrm{D}^{+} \rightarrow \mathrm{K}_{\mathrm{s}} \pi^{+}$and $\mathrm{D}^{+}{ }_{s} \rightarrow \phi \pi^{+}$where no CP asymmetry is expected
We measure the difference since effects of production asymmetry and of any detection asymmetry of pion cancel in subtraction
$A_{C P}\left(D^{+} \rightarrow \phi \pi^{+}\right)=A_{R A W}\left(D^{+} \rightarrow \phi \pi^{+}\right)-A_{R A W}\left(D^{+} \rightarrow K_{s}^{0} \pi^{+}\right)+A_{C P}\left(K^{0} / \bar{K}^{0}\right)$ $A_{C P}\left(D_{s}^{+} \rightarrow K_{s}^{0} \pi^{+}\right)=A_{R A W}\left(D_{s}^{+} \rightarrow K_{s}^{0} \pi^{+}\right)-A_{R A W}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)+A_{C P}\left(K^{0} / \bar{K}^{0}\right)$

Correction due to CPV in neutral Kaon system

Signal yields
LHCb-PAPER-2012-052
$\mathrm{D}_{(\mathrm{s})}^{-} \rightarrow \phi \pi^{-}$

LHCb 2011, 1/fb
Very low background

Signal decays $1.6 \mathrm{M} \mathrm{D}{ }^{+} \rightarrow \phi \pi^{+}$ $26 \mathrm{k} \mathrm{D}_{\mathrm{s}}{ }^{+} \mathrm{K}^{0}{ }_{\mathrm{s}} \pi^{+}$

Control decays $1.1 \mathrm{M} \mathrm{D}^{+}{ }_{\mathrm{s}} \rightarrow \phi \pi^{+}$ 3.6M D+ $\rightarrow \mathrm{K}_{\mathrm{s}}^{0} \pi^{+}$

$$
\mathrm{D}^{+}{ }_{(\mathrm{s})} \rightarrow \phi \pi^{+}
$$

Background from mis-reconstructed decays:
(a) and (b) from $\mathrm{D}^{+} \rightarrow \phi \pi^{+} \pi^{0}$
(c) and (d) from $\mathrm{D}^{+}{ }_{\mathrm{s}} \rightarrow \mathrm{K}_{\mathrm{s}}^{0} \pi^{+} \pi^{0}$ or $\mathrm{D}^{+}{ }_{\mathrm{s}} \rightarrow \mathrm{K}_{\mathrm{s}}^{0} \mathrm{~K}^{+}$

CP violation in $\mathrm{D}^{+} \rightarrow \phi \pi^{+}$and $\mathrm{D}^{+}{ }_{\mathrm{s}} \rightarrow \mathrm{K}_{\mathrm{s}}^{0} \pi^{+}$decays

- To improve sensitivity to certain CPV we divide area around ϕ resonance in the Dalitz plot into four regions
- Relative strong phase varies rapidly across the ϕ region
- The division is chosen to minimize the change in phase within each region

$$
\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+}(\phi) \pi^{+}
$$

路

LHCb simulation, used isobar amplitude model favoured by CLEO-c [Phys.Rev.D78 (2008) 072003]

$$
\mathrm{CP} \text { violation in } \mathrm{D}^{+} \rightarrow \phi \pi^{+} \text {and } \mathrm{D}_{\mathrm{s}}^{+} \rightarrow \mathrm{K}_{\mathrm{s}}^{0} \pi^{+} \text {decays }
$$

- To improve sensitivity to certain CPV we divide area around ϕ resonance in the Dalitz plot into four regions
- Relative strong phase varies rapidly across the ϕ region
- The division is chosen to minimize the change in phase within each region
- A difference between two diagonals with similar phases is calculated

$$
\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+}(\phi) \pi^{+}
$$

LHCb simulation, used isobar amplitude model favoured by CLEO-c [Phys.Rev.D78 (2008) 072003]

$$
\left.A_{C P}\right|_{S}=\frac{1}{2}\left(A_{R A W}^{A}+A_{R A W}^{C}-A_{R A W}^{B}-A_{R A W}^{D}\right)
$$

Type of CPV	Mean $A_{C P}(\%)$	Mean $\left.A_{C P}\right\|_{S}(\%)$	Simulations indicate
3° in ϕ phase	$-0.01(0.1 \sigma)$	$-1.02(5.1 \sigma)$	
0.8% in ϕ amplitude	$-0.50(2.5 \sigma)$	$-0.02(0.1 \sigma)$	can be observed more
4° in $K_{0}^{*}(1430)^{0}$ phase	$0.52(2.6 \sigma)$	$-0.89(4.5 \sigma)$	effectively with A_{CP} and
4° in $K_{0}^{*}(800)$ phase	$0.70(3.5 \sigma)$	$0.10(0.5 \sigma)$	others with A_{CP} ols 2

$$
\mathrm{CPV} \text { in } \mathrm{D}^{+} \rightarrow \phi \pi^{+} \text {and } \mathrm{D}_{\mathrm{s}}^{+} \rightarrow \mathrm{K}_{\mathrm{s}}^{0} \pi^{+}
$$

No evidence for CPV is observed

$$
\begin{aligned}
A_{C P}\left(D^{+} \rightarrow \phi \pi^{+}\right) & =(-0.04 \pm 0.14 \pm 0.13) \% \\
A_{C P} \mid S\left(D^{+} \rightarrow \phi \pi^{+}\right) & =(-0.18 \pm 0.17 \pm 0.18) \% \\
A_{C P}\left(D_{s}^{+} \rightarrow K_{\mathrm{s}}^{0} \pi^{+}\right) & =(+0.61 \pm 0.83 \pm 0.13) \%
\end{aligned} \quad \begin{aligned}
& \text { errors } \sim 1 \% \\
& 1.6 \mathrm{M} \text { events }
\end{aligned}
$$

LHCb-PAPER-2012-052

- LHCb measurements are the most precise of CP violation in ϕ region to date for both $\mathrm{D}^{+} \rightarrow \phi \pi^{+}$and $\mathrm{D}_{\mathrm{s}} \rightarrow \mathrm{K}_{\mathrm{s}} \pi^{+}$

We also looking for CP asymmetry in multi-body decays: in $\mathrm{D}^{ \pm} \rightarrow$ hhh, $\mathrm{D}^{0} \rightarrow$ hhhh

- Partition the Dalitz plot into bins

- $S_{C P}$ is a significance of a difference between D^{+}and D^{-}
- Two equivalent methods:
\diamond If no CPV (only statistical fluctuations) then $S_{C P}$ is Gauss distribution ($\mu=0, \sigma=1$)
\diamond Also χ^{2} test can be used: $\chi^{2}=\Sigma \mathrm{S}_{\mathrm{CP}}{ }^{2}$ $\rightarrow p$-value

Results for $\mathrm{D}^{+} \rightarrow \mathrm{K}-\mathrm{K}^{+} \pi^{+}$

\triangleleft Several binnings in the Dalitz plot used to probe a range of CPV scenarios
« Binning shown consistent with no CPV at $\mathrm{p}=10 \%$
\checkmark Also S_{CP} distributions consistent with standard Gauss distribution ($\mu \sim 0, \sigma \sim 1$)
\diamond No evidence for CP violation in the 2010 data set of $36 / \mathrm{pb}$, 370k signal (SCS) $\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$

Phys.Rev.D84. 112008

More data is on tape: for each 1/fb SCS signal decays:
~ 10 million of $\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$
~ 3 million of $\mathrm{D}^{+} \rightarrow \pi^{-} \pi^{+} \pi^{+}$

Results for $\mathbf{D}^{0} \rightarrow \pi^{-} \pi^{+} \pi^{+} \pi^{-}$

While three-body decay kinematics can be described completely in 2D Dalitz plot, a four-body decay has 5D phase space to fully describe the decay

Here we divide 5D phase space into bins and in each $\mathrm{it}^{\text {th }}$ bin we calculate $S_{C P}$

$$
S_{C P}^{i} \equiv \frac{N^{i}\left(D^{0}\right)-\alpha N^{i}\left(\overline{D^{0}}\right)}{\sqrt{N^{i}\left(D^{0}\right)+\alpha^{2} N^{i}\left(\overline{D^{0}}\right)}} \quad \alpha=\frac{N\left(D^{0}\right)}{N\left(\overline{D^{0}}\right)}
$$

LHCb 2011 data, L=1/fb, 180k events, 96% purity

Bins	p-values (\%)
15	97.1
29	95.6
66	99.8

LHCb-CONF-2012-019

Using three different versions of binning, the results are consistent with the hypothesis of no CPV with a p-values close to 100%

Summary

- LHCb experiment has an important charm physics program and has the world's largest sample of c-hadron decays
- Using data collected in 2011 (1/fb), LHCb experiment has performed extensive studies of physics in the charm sector
- For the first time LHCb experiment has observed charm mixing in a single measurement (effect 9.1б)
- Measured $\Delta A_{C P}$ between $D^{0} \rightarrow K^{-} \mathrm{K}^{+}$and $\mathrm{D}^{0} \rightarrow \pi^{-} \pi^{+}$from D^{*} and B decays (two results statistically independent)
\diamond the central value is considerably closer to zero
\diamond result does not confirm the evidence for direct CPV in the charm sector
- No CPV observed in $\mathrm{D}^{+} \rightarrow \phi \pi^{+}, \mathrm{D}^{+}{ }_{\mathrm{s}} \rightarrow \mathrm{K}_{\mathrm{s}}^{0} \pi^{+}, \mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}, \mathrm{D}^{0} \rightarrow \pi^{-} \pi^{+} \pi^{+} \pi^{-}$
- All measurements being improved with larger datasets:
$\triangleleft 2011+2012:>3 / f b$
- The LHCb experiment is more than beauty

First observation of CP violation in the decays of B_{s}^{0}

$$
\begin{aligned}
& A_{C P}\left(B_{s}^{0} \rightarrow K^{-} \pi^{+}\right)=0.27 \pm 0.04(\text { stat }) \pm 0.01(\text { syst }) \\
& A_{C P}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=-0.080 \pm 0.007(\text { stat }) \pm 0.003(\text { syst })
\end{aligned}
$$

Backup

$\Delta A_{C P}$ from D^{*} decay

- The D^{*+} kinematic distributions are independent of the D^{0} decay mode, but the selection requirements can lead to the different distributions of the $\mathrm{K}^{-} \mathrm{K}^{+}$and $\pi^{-} \pi^{+}$final states
- It can lead to a non-canceling second-order bias in $\Delta \mathrm{A}_{\mathrm{CP}}$
- To avoid this, we apply weighting in D^{*} kinematic distributions of p_{T}, p, ϕ to ensure that $\mathrm{D}^{0} \rightarrow \mathrm{~K} \mathrm{~K}^{+}$and $\mathrm{D}^{0} \rightarrow \pi^{-} \pi^{+}$have the same kinematics
\diamond each $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \mathrm{K}^{+}$event gets a weight to match $\mathrm{D}^{0} \rightarrow \pi^{-} \pi^{+}$kinematic distribution

Analysis technique: split dataset into 4 subsets:

- Hardware trigger (LO) category:
$\diamond \mathrm{D}^{0}$ triggered by hadronic calorimeter (Trigger On Signal)
\diamond event triggered on other particles from pp collision - by something else than the D* (Trigger Independent of Signal)
- Field polarity:
\diamond Magnet up (40\%)
\triangleleft Magnet down (60\%)
(stat.only)

$\Delta \mathrm{A}_{\mathrm{CP}}$	Up	TOS	$-0.62 \pm 0.36 \%$
$\Delta \mathrm{~A}_{\mathrm{CP}}$	Down	TOS	$-0.36 \pm 0.30 \%$
$\Delta \mathrm{~A}_{\mathrm{CP}}$	Up	TIS	$-0.30 \pm 0.30 \%$
$\Delta \mathrm{~A}_{\mathrm{CP}}$	Down	TIS	$-0.22 \pm 0.25 \%$

- Weighted average of four subsets (2011, 1/fb) - Preliminary results:

$$
\Delta A_{C P}=\left[-0.34 \pm 0.15^{\text {stat }} \pm 0.10^{\text {syst }}\right] \% \quad \text { LHCb-CONF-2013-003 }
$$

- Difference in decay time acceptance:

$$
\begin{aligned}
\Delta\langle t\rangle / \tau & =\left[11.19 \pm 0.15^{\text {stat }} \pm 0.17^{\text {syst }}\right] \% \\
\Delta A_{C P} & =\left[a_{C P}^{d i r}\left(K^{-} K^{+}\right)-a_{C P}^{d i r}\left(\pi^{-} \pi^{+}\right)\right]+\frac{\Delta\langle t\rangle}{\tau} a_{C P}^{i n d}
\end{aligned}
$$

Contribution from indirect CPV is $\sim 10 \%$

Different kinematic distributions for both decays of the $\mathrm{K}^{-} \mathrm{K}^{+}$and $\pi^{-} \pi^{+}$can lead to a non-canceling second-order bias in $\Delta \mathrm{A}_{\mathrm{CP}}$

To obtain the same kinematic distributions for both decays we apply weighting in D^{0} candidates on their p_{T} and η :

- weights are applied to either $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \mathrm{K}^{+}$and $\mathrm{D}^{0} \rightarrow \pi^{-} \pi^{+}$candidates depending on which has most events in a given kinematic bin

Before weighting

After weighting

New average includes BaBar, CDF, Belle and new LHCb results

Naive average neglecting indirect CPV
$\Delta \mathrm{A}_{\mathrm{CP}}=(-0.33 \pm 0.12) \%$
Now:

- the central value is considerably closer to zero
- result does not confirm the evidence for direct CPV in the charm sector

Many cross-checks performed for both methods:

- time at which data was taken
- stable versus kinematic variables: decay time, p_{T}, p, η, ϕ etc.
- independent cross-checks of final result by different people
- many more...
- no significant dependence is observed

No dependence versus data taking period

Comments:

- The central value is considerably closer to zero the the previous result
- New result does not confirm the evidence for direct CPV in charm sector
- Several factors can contribute to the change
\diamond larger data sample
\diamond improved detector alignment and calibration
\diamond difference in analysis technique
- Check the response of the method on Monte Carlo (Dalitz models from CLEO-c, arXiv:0807.4545):
- should not generate signal where it is not expected
- should give a visible signal where it is expected

5×10^{7} events with 4^{0} weak phase difference between amplitudes for resonance of $\phi(1020)$ from $\mathrm{D}^{+} \rightarrow \phi \pi^{+}$a $\mathrm{D}^{-} \rightarrow \phi \pi^{-}$

Sample 50 times bigger than 2010

If no CPV then no signal (good) P-value $\sim 5 \%$
\rightarrow no CP asymmetry

The same bins Different scale of $S_{C P}$

$$
\begin{aligned}
& \text { If CPV then P-value } \sim 10^{-100} \\
& \text { - there is } \mathrm{CP} \text { asymmetry } \\
& \text { - visible sign change of } S_{\mathrm{CP}} \text { in } \phi \text { region }
\end{aligned}
$$

Bins with different widths

100 the same experiments and check how many times obtained 3σ

The trigger and charm physics

After LO ~500 kHz c-anti-c events
No possibility of an inclusive charm trigger!
Possible only dedicated exclusive trigger lines tuned for the needs of specific analyses to deliver high signal efficiency and purity
software

example: 5k
$\mathrm{D}^{\star \pm} \rightarrow\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{ \pm} \mathrm{K}^{-+}\right) \pi^{ \pm}$for $1 \mathrm{pb}^{-1}$
(2010: $38 \mathrm{pb}^{-1}$, 2011: $1.1 \mathrm{fb}^{-1}$)

Systematics D^{0} - anti-D ${ }^{0}$ mixing

- Most of the systematic uncertainties cancel in the ratio between WS and RS events
- Two main sources of systematic uncertainties have been identified:
(1) secondary D mesons
$\triangleleft D$ from B have wrong decay time
\diamond such events have non-zero IP
\diamond cut on $\chi^{2}(\mathrm{IP})$ removes most of them
\diamond remains $\sim 3 \%$

(2) backgrounds from incorrectly reconstructed D decays - peak in $M\left(D^{0} \pi^{+}{ }_{s}\right)$ (the D^{0} is partially reconstructed or misidentified)
\diamond such backgrounds are highly suppressed by tight PID cuts and twobody mass requirements
\diamond estimated a residual $(0.4 \pm 0.2) \%$ contamination of doubly mis-identified RS events in the WS sample
- Results are dominated by statistical uncertainties

Bias from secondary D decays

$$
R(t)=\frac{N_{W S}(t)}{N_{R S}(t)}=R_{D}+\sqrt{R_{D}} y^{\prime} t+\frac{x^{\prime 2}+y^{\prime 2}}{4} t^{2}
$$

The contamination of charm mesons produced in b-hadron decays could bias the time-dependent
 measurement

$$
R^{m}(t)=\frac{N^{W S}(t)+N_{B}^{W S}(t)}{N^{R S}(t)+N_{B}^{R S}(t)}=R(t)\left\{1-f_{B}^{R S}(t)\left[1-\frac{R_{B}(t)}{R(t)}\right]\right\}
$$

$\Delta_{B}(t)$ is a time-dependent bias due to the secondary contamination

Since $\Delta_{B} \geq 0$, it follows that the background from secondary D decays decreases the observable mixing effect. The bias in bounded by

$$
0 \leqslant \Delta_{B}(t) \leqslant f_{B}^{R S}(t)\left[1-\frac{R_{D}}{R(t)}\right]
$$

- A measurement of the secondary fraction is done by by fitting the χ^{2} (IP) distribution of the RS D^{0} candidates in bins of decay time
- Secondary shape is estimated from events reconstructed also as $B \rightarrow D^{*}(3) \pi, B \rightarrow D^{*} \mu X$ or $B \rightarrow D^{0} \mu X$

- The value of $f \mathcal{R S}_{B}(t)$ is constrained in the time-dependent fit to the measured fraction

The unbinned method

- No evidence for $C P$ violation using the binned $S_{C P}$ method
- The goal is to find the most sensitive method which allows us to see the differences between D^{+}and D^{-}
- The unbinned methods could be more sensitive than the binned ones but they are more difficult in using
- There are a few unbinned method
- To analyse LHCb data Warsaw Group uses k-nearest neighbor (kNN) method:
(M.F.Schilling J.Am.Stat.Assoc.81(1986)799)
\diamond used to compare the Dalitz plots for D^{+}and D^{-}to test whether they have similar distributions or not
\diamond based on the concept of counting the tag nearest neighbors (n_{k}):

1. in a pooled sample of particles and antiparticles we calculate distances between all event pairs
2. we find the k-nearest neighbor events to each point
3. we calculate a test statistic

To test the hypothesis $f_{a}=f_{b}$ for the pooled sample of D^{+}and D^{-}we calculate:

$$
T=\frac{1}{n_{k}\left(n_{a}+n_{b}\right)} \sum_{i=1}^{n_{a}+n_{b}} \sum_{k=1}^{n_{k}} I(i, k)
$$

$\diamond l(i, k)=1$ if the $i^{\text {th }}$ query event and its $k^{\text {th }}$ nearest neighbor belong to the same sample, like pairs: $\mathrm{D}^{+}-\mathrm{D}^{+}$and $\mathrm{D}^{-}-\mathrm{D}^{-}$ $\diamond l(i, k)=0$ otherwise, unlike pairs: $\mathrm{D}^{+}-\mathrm{D}^{-}$

T is the mean fraction of like pairs in the pooled sample of the two data sets

Advantage:

- the expected distribution of the test statistic is known
- for the case $f_{a}=f_{b}$ the pull $\left(\mathrm{T}-\mu_{\mathrm{T}}\right) / \sigma_{\mathrm{T}}$ has a limiting standard normal distribution

$$
\text { Mean: } \quad \mu_{T}=\frac{n_{a}\left(n_{a}-1\right)+n_{b}\left(n_{b}-1\right)}{n(n-1)}
$$

Variance: $\lim _{n, n_{k}, D \rightarrow \infty} \sigma_{T}^{2}=\frac{1}{n n_{k}}\left(\frac{n_{a} n_{b}}{n^{2}}+4 \frac{n_{a}^{2} n_{b}^{2}}{n^{4}}\right)$ with the fast convergence even for $\mathrm{D}=2$

Expectation of test statistic for $n_{a}=n_{b}$ and $f_{a}=f_{b}$

300 uniform samples in two dimensions (x, y) from [0,1] are generated. 10k events in each sample.

Different samples are compared. 299 combinations

$$
T=\frac{1}{n_{k}\left(n_{a}+n_{b}\right)} \sum_{i=1}^{n_{a}+n_{b}} \sum_{k=1}^{n_{k}} I(i, k)
$$

Expectation of μ_{T} and σ_{T} :

$$
\mu_{T}=\frac{n_{a}\left(n_{a}-1\right)+n_{b}\left(n_{b}-1\right)}{n(n-1)}=0.49999\left(\text { if } n_{a}=n_{b}\right)
$$

$$
\lim _{n, n_{k}, D \rightarrow \infty} \sigma_{T}^{2}=\frac{1}{n n_{k}}\left(\frac{n_{a} n_{b}}{n^{2}}+4 \frac{n_{a}^{2} n_{b}^{2}}{n^{4}}\right)
$$

$$
\text { for } n_{k}=10 \text { expect } \sigma_{T}=0.001581
$$

From the fit to the T distribution:
$<T>=0.4999 \pm 0.0001$ agrees with expected μ_{T} $\sigma_{\mathrm{T}, \mathrm{fit}}=0.001494 \pm 0.000078$ agrees with σ_{T}

Two separated samples with comparable number of events are generated

How does the KNN method work?

Monte Carlo (CLEO-c model) signal decay (SCS) $\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$ 100 pseudo experiments 2 million events each: with no CPV and CPV - 10° in $\phi, \quad \mathrm{n}_{\mathrm{k}}=20$

$$
S_{C P}^{i} \equiv \frac{N^{i}\left(D^{+}\right)-N^{i}\left(D^{-}\right)}{\sqrt{N^{i}\left(D^{+}\right)+N^{i}\left(D^{-}\right)}}
$$

R2

R3

Clear evidence of disagreement is seen for MC CPV sample

How does the KNN method work?

Monte Carlo, signal decay (SCS) $\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$ 100 pseudo experiments, 2 million events each, $n_{k}=20$

No CPV

Region	$\geq 1 \sigma(\%)$	$\geq 2 \sigma(\%)$	$\geq 3 \sigma(\%)$	$\geq 4 \sigma(\%)$	$\geq 5 \sigma(\%)$
R0	27	7	0	0	0
R1	31	3	0	0	0
R2	28	2	0	0	0
R3	32	5	0	0	0
R4	26	2	0	0	0
R5	31	3	0	0	0

CPV - 10° in ϕ (regions R4 and R5)

Region	$\geq 1 \sigma(\%)$	$\geq 2 \sigma(\%)$	$\geq 3 \sigma(\%)$	$\geq 4 \sigma(\%)$	$\geq 5 \sigma(\%)$
R0	93	69	33	9	1
R1	24	3	0	0	0
R2	28	3	0	0	0
R3	39	7	0	0	0
R4	98	87	55	19	1
R5	70	31	8	0	0

Clear evidence of disagreement is seen for MC CPV sample

The fraction of data sets that exceed 1,2,3,4,5 σ levels of significance

Summary

- The kNN method was used to analyse LHCb data for searching local differences between D^{+}and D^{-}
- First results for $\mathrm{D}^{+} \rightarrow \pi^{-} \pi^{+} \pi^{+}$(here CP asymmetry is expected) were discussed within LHCb Group and analysis is under review (blined)
- We plan to use the kNN method for searching for CP asymmetry in different decays of:
« charm particles,
ヶ beauty particles (here CP violation is larger)

