"The theory ends here. We need help. Experiments must clear up this mess." M. Veltman 2003 Nobel 1999 "for elucidating the quantum structure of EW interactions"

2HDM with Z₂ symmetry in light of a new data from LHC

Maria Krawczyk IFT, Wydział Fizyki UW

I. Ginzburg, K. Kanishev (Novosibirsk U), D.Sokołowska, G. Gil, B. Gorczyca (Świeżewska), J. Bogdanowicz (U. of Warsaw)

THE THEORY OF MATTER and STANDARD MODEL(S)

F. Wilczek, LEPFest, Nov.2000 (hep-ph/0101187)

Theory of Matter = SU(2)_{I weak} \times U(1)_{Y weak} \times SU(3)_{color}

Theory of Matter refers to the core concepts:

- quantum field theory
- gauge symmetry
- spontaneous symmetry breaking
- asymptotic freedom
- the assignments of the lightest quarks and leptons

Standard Models: Choose the number of Higgs (scalar) doublets SM=1HDM, <u>2HDM</u> (MSSM), 3HDM ... Note, that the lightest scalar is often SM-like

NonStandard Models are based on more radical assumptions.

Plan

- Higgs at LHC 2012
- SM-like Higgs scenarios
- Two Higgs Doublet Models 2HDM
- Z₂ (D) symmetry in 2HDM
 - \rightarrow Normal (Mixed) Model (as MSSM)
 - → Dark 2HDM = 2HDM with Dark Matter Inert Doublet Model (IDM)

T=0 and evolution of the Universe

Enhancement in γγ Higgs final states

LHC Higgs-like particle with mass125-126 GeV observed at ATLAS+CMS (+Tevatron)

BROKEN SYMMETRY AND THE MASS OF GAUGE VECTOR MESONS*

F. Englert and R. Brout Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium (Received 26 June 1964)

BROKEN SYMMETRIES, MASSLESS PARTICLES AND GAUGE FIELDS

P. W. HIGGS

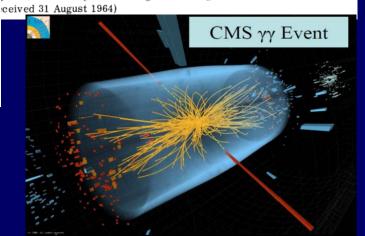
Tail Institute of Mathematical Physics, University of Edinburgh, Scotland

Received 27 July 1964

VOLUME 13, NUMBER 16

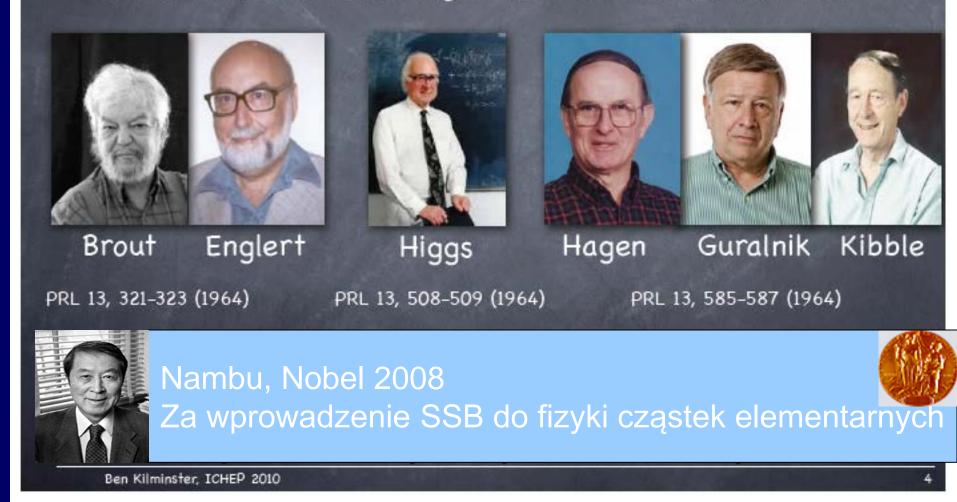
PHYSICAL REVIEW LETTERS

19 October 1964

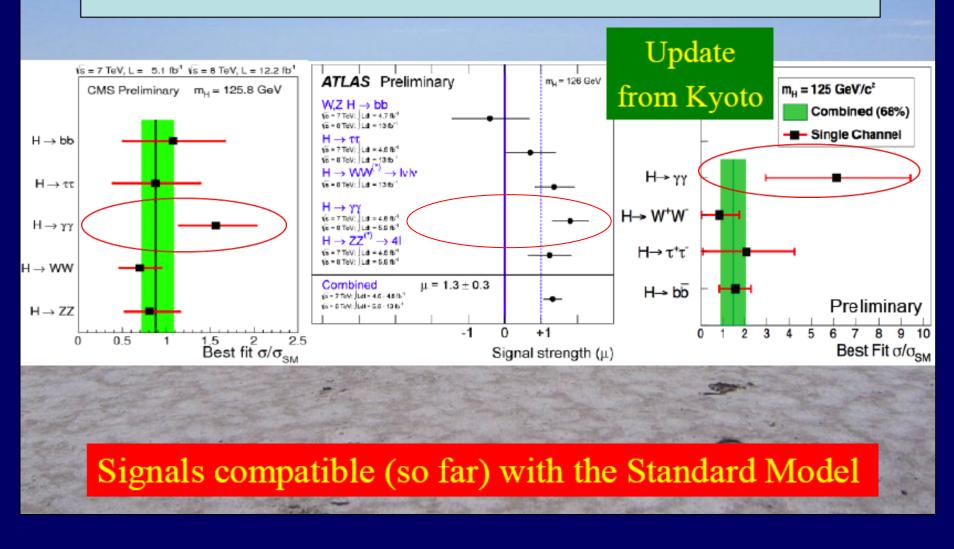

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland

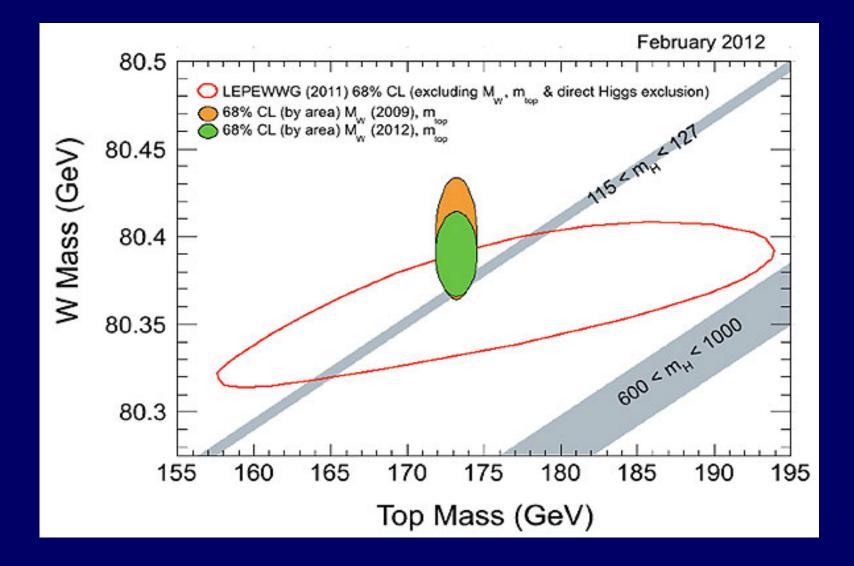
GLOBAL CONSERVATION LAWS AND MASSLESS PARTICLES*


G. S. Guralnik,[†] C. R. Hagen,[‡] and T. W. B. Kibble Department of Physics, Imperial College, London, England (Received 12 October 1964)

Important loop couplings ggH, yyH


2010 Sakurai Prize

... for "elucidation of the properties of spontaneous symmetry breaking in four-dimensional relativistic gauge theory and of the mechanism for the consistent generation of vector boson masses."



J. Ellis, 20.11.2012

Summary of the Story so far

Tevatron

Brout-Englert-Higgs mechanism Spontaneous breaking of EW symmetry $SU(2) \times U(1) \rightarrow U(1)_{QED}$ Standard Model

Doublet of SU(2): $\Phi = (\varphi^+, v + H + i\zeta)^T$ Masses for W^{+/-}, Z (tree $\rho = 1$), no mass for the photon Fermion masses via Yukawa interaction

Higgs particle H_{SM} - spin 0, neutral, CP even couplings to WW/ZZ, Yukawa couplings to fermions unknown mass \leftrightarrow selfinteraction **Brout-Englert-Higgs mechanism** Spontaneous breaking of EW symmetry SU(2) x U(1) \rightarrow ? T.D. Lee 1973 Two Higgs Doublet Models Two doublets of SU(2) (Y=1, ρ =1) - Φ_1 , Φ_2 Masses for $W^{+/-}$, Z, no mass for photon? Fermion masses via Yukawa interaction various models: Model I, II, III, IV,X,Y,... 5 scalars: H+ and H- and neutrals: - CP conservation: CP-even h, H & CP-odd A - CP violation: h₁,h₂,h₃ with undefinite CP parity*

Sum rules hold (for relative couplings to SM χ)

SM-like scenarios

 In many models SM-like scenarios are possible
 Our definition of SM-like scenario (2012): Higgs h with mass ~ 125 GeV, SM tree-level couplings* within exp. accuracy (* up to sign)
 No other new particles seen ... (too heavy or too weakly interacting)

Note: Loops ggh, $\gamma\gamma$ h, γ Zh may differ from the SM case

In models with two SU(2) doublets:

 MSSM with decoupling of heavy Higgses
 2HDM (Mixed), where *both* h or H can be SM-like
 Intert Doublet Model, where one Higgs h *is* SM-like

2HDM'S Branco, Rebelo, Ferreira Silva, Lavoura, Sher '12 Haber, Gunion, Ginzburg, MK Nachtmann, Maniatis Pilaftsis 2011

2HDM Lagrangian L=L_{SM}+L_H+L_Y Potential (Lee'73) with L_H=T-V $V = \frac{1}{2}\lambda_1(\Phi_1^{\dagger}\Phi_1)^2 + \frac{1}{2}\lambda_2(\Phi_2^{\dagger}\Phi_2)^2$ $+\lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2}) + \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1}) + \frac{1}{2} [\lambda_{5}(\Phi_{1}^{\dagger}\Phi_{2})^{2} + h.c]$ + $[(\lambda_6(\Phi_1^{\dagger} \Phi_1) + \lambda_7(\Phi_2^{\dagger} \Phi_2))(\Phi_1^{\dagger} \Phi_2) + h.c]$ $-\frac{1}{2}m_{11}^{2}(\Phi_{1}^{\dagger}\Phi_{1})-\frac{1}{2}m_{22}^{2}(\Phi^{\dagger}\Phi_{2})-\frac{1}{2}[m_{12}^{2}(\Phi_{1}^{\dagger}\Phi_{2})+h.c.]$ Z₂ symmetry transformation: $\Phi_1 \rightarrow \Phi_1 \quad \Phi_2 \rightarrow - \quad \Phi_2$ (or vice versa)

Hard Z₂ symmetry violation: λ_6 , λ_7 terms Soft Z₂ symmetry violation: m_{12}^2 term (Re $m_{12}^2 = \mu^2$) Explicit Z₂ symmetry in V: λ_6 , λ_7 , $m_{12}^2 = 0$ (NO CP violation)

Extrema of the 2HDM potential with explicit Z₂ symmetry

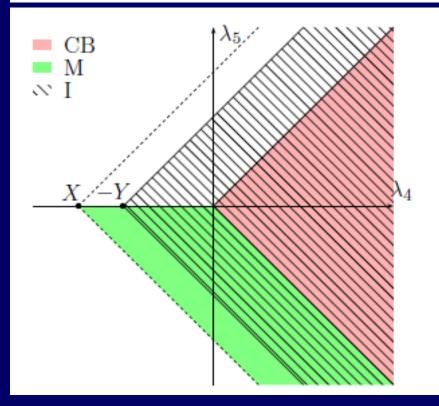
Ginzburg, Kanishev, MK, Sokołowska'09

Finding extrema: $\partial V / \partial \Phi|_{\Phi = \langle \Phi \rangle} = 0$ Finding minima \rightarrow global minimum = vacuum

Positivity (stability) constraints (V with real parameters)

$$\lambda_1 > 0, \quad \lambda_2 > 0, \quad R+1 > 0.$$
$$\lambda_{345} = \lambda_3 + \lambda_4 + \lambda_5, \quad R = \frac{\lambda_{345}}{\sqrt{\lambda_1 \lambda_2}}.$$

Extremum fulfilling the positivity constraints with the lowest energy = vacuum


Possible extrema (vacuua) for V with Z₂ symmetry $\Phi_1 \rightarrow \Phi_1, \Phi_2 \rightarrow -\Phi_2$ (D symmetry) The most general extremum state $\Phi_1 \rightarrow \Phi_s \Phi_2 \rightarrow \Phi_D$ $\langle \phi_S \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_S \end{pmatrix}, \quad \langle \phi_D \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} u \\ v_D \end{pmatrix} \begin{cases} \mathsf{v}_S, \mathsf{v}_D, \mathsf{u} - \mathsf{real} \\ \mathsf{v}_{\mathsf{S'}}, \mathsf{u} \ge 0 \\ \mathsf{v}_{\mathsf{S'}}^2 = \mathsf{v}_{\mathsf{S}}^2 + \mathsf{v}_{\mathsf{D}}^2 + \mathsf{u}^2 \end{cases}$ $u = v_{D} = v_{S} = 0$ EWs EWs $u = v_{D} = 0$ Inert **|**₁ $u = v_{s} = 0$ u = 0Inert-like 2 Mixed (Normal, MSSM like) **Charge** Breaking $u \neq 0$ $v_{D} = 0$ Ch

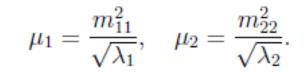
D-symmetric potential - vacua

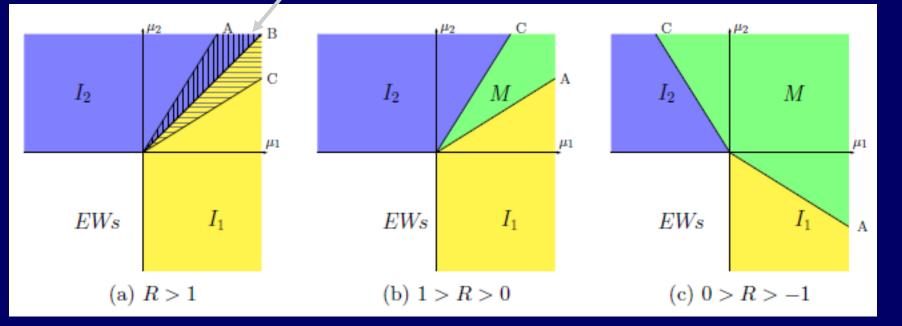
Stable vacuum (positivity)

$$\lambda_1 > 0, \quad \lambda_2 > 0, \quad R+1 > 0, \quad R_3 + 1 > 0$$

$$_{345} = \lambda_3 + \lambda_4 + \lambda_5, \quad R = \lambda_{345} / \sqrt{\lambda_1 \lambda_2}, \quad R_3 = \lambda_3 / \sqrt{\lambda_1 \lambda_2}$$

 $Y = M_{H^+}^2 2/v^2 |_{Inert}$


Neutral vacua


- <u>Mixed</u> M(v1 and v2 \neq 0)
- Inert I1 (I2) [v1(v2) ≠ 0]
- Charged breaking vacuum CB

Inert overlaps both with Mixed and CB !

Phase diagrams D-sym. V

coexistence of minima

Inert I1 vacuum for Mh=125 GeV

$$\lambda_{345} = \lambda_3 + \lambda_4 + \lambda_5, \quad R = \frac{\lambda_{345}}{\sqrt{\lambda_1 \lambda_2}}$$

Various models of Yukawa inter. typically with some Z2 type symmetry to avoid FCNC

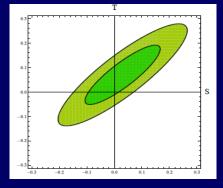
<u>Model I</u> - only one doublet interacts with fermions <u>Model II</u> – one doublet with down-type fermions d, l other with up-type fermions u

Model III - both doublets interact with fermions Model IV (X) - leptons interacts with one doublet, guarks with the other Model Y - one doublet with down-type quarks d other with up-type quarks u and leptons Top 2HDM – top only with one doublet Fermiophobic 2HDM – no coupling to the lightest Higgs Extra dim 2HDM models

Model for TODAY (LHC data..)

2HDM with <u>explicit</u> D symmetry (ie. in Lagrangian L) $\Phi_s \rightarrow \Phi_s \quad \Phi_p \rightarrow - \Phi_p$

- Charge breaking phase Ch? photon is massive, el.charge is not conserved... → No
- Neutral phases:
 - <u>Mixed M</u> in agreement with data here Model II ($\Phi_{s} \Phi_{D}$ interact with fermions) D spont. broken


Inert I1OK! In agreement with accelerator
and astrophysical data (neutral DM)
Model I (only Φ_s interacts with fermions)
D symmetry exact

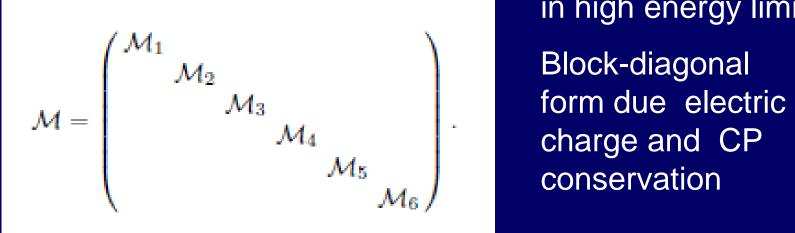
Confronting 2HDM with data Constraints: Vacuum stability,

condition for a specific vacuum Perturbative unitarity

EWPD (S and T)

$$S = 0.03 \pm 0.09$$

 $T = 0.07 \pm 0.08$
 $\rho = 87\%$



Mixed Model

Here 5 Higgs bosons, sum rules for relative couplings for h, H, A: eg. $(\chi^h_V)^2 + (\chi^H_V)^2 = 1$ SM-like scenario both for h and H possible eg. $\chi_V = 1$ for h or H, V=W/Z Inert Doublet Model: it's a SM-like scenario for h, H=DM

Unitarity constraints on parameters of V (D symmetry)

Full scattering matrix macierz 25x25 for scalars (including Goldstone's)

in high energy limit

M1: G+H-, G-H+, hA, GA, GH, hH M2: G+G-, H+H-, GG, HH, AA, hh M3: Gh, AH M4: G+G, G+H, G+A, G+h, GH+, HH+, AH+, hH+ M5: G+G+, H+H+ M6: G+H+

Unitarity constraints \rightarrow |eigenvalues|< 8 π

Mixed and Inert Models in agreement with present data – very different phenomenology

For both the same pert. unitarity constraints on λ 's

 $0 \leqslant \lambda_1 \leqslant 8.38,$ $0 \leqslant \lambda_2 \leqslant 8.38,$ $-6.05 \leqslant \lambda_3 \leqslant 16.44,$ $-15.98 \leqslant \lambda_4 \leqslant 5.93,$ $-8.34 \leqslant \lambda_5 \leqslant 0.$

Couplings for dark particles in IDM _ $\lambda_{345} = \lambda_3 + \lambda_4 + \lambda_5$ $\lambda_{45} = \lambda_4 + \lambda_5$ **B. Gorczyca, MSc Thesis,** July 2011

and for combinations

 $-8.10 \leqslant \lambda_{345} \leqslant 12.38,$ $-7.76 \leqslant \lambda_{345}^- \leqslant 16.45,$ $-8.28 \leqslant \frac{1}{2}\lambda_{45} \leqslant 0,$ $-7.97 \leqslant \frac{1}{2}\lambda_{45}^- \leqslant 6.08,$

Mixed Model (Mixed vacuum, Model II Yukawa) Masses of Higgs bosons h,H,A,H+/-

$$\begin{split} M_{H^{\pm}}^{2} &= -\frac{1}{2} (\lambda_{4} + \lambda_{5}) v^{2} \\ M_{A}^{2} &= -\lambda_{5} v^{2}, \\ M_{H}^{2} &= \frac{1}{2} (\lambda_{1} v_{S}^{2} + \lambda_{2} v_{D}^{2} + \sqrt{(\lambda_{1} v_{S}^{2} - \lambda_{2} v_{D}^{2})^{2} + 4\lambda_{345}^{2} v_{S}^{2} v_{D}^{2})}, \\ M_{h}^{2} &= \frac{1}{2} (\lambda_{1} v_{S}^{2} + \lambda_{2} v_{D}^{2} - \sqrt{(\lambda_{1} v_{S}^{2} - \lambda_{2} v_{D}^{2})^{2} + 4\lambda_{345}^{2} v_{S}^{2} v_{D}^{2})}. \end{split}$$

Relative couplings wrs SM (tan $\beta = v_D/v_S$)

$\cos(\beta - \alpha)$	$\sin(\beta - \alpha)$	hbb =
HW^+W^-	hW^+W^-	
HZZ	hZZ	htt s

$$abb = \sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha),$$

tt
$$\sin(\beta - \alpha) + \cot \beta \cos(\beta - \alpha)$$
.

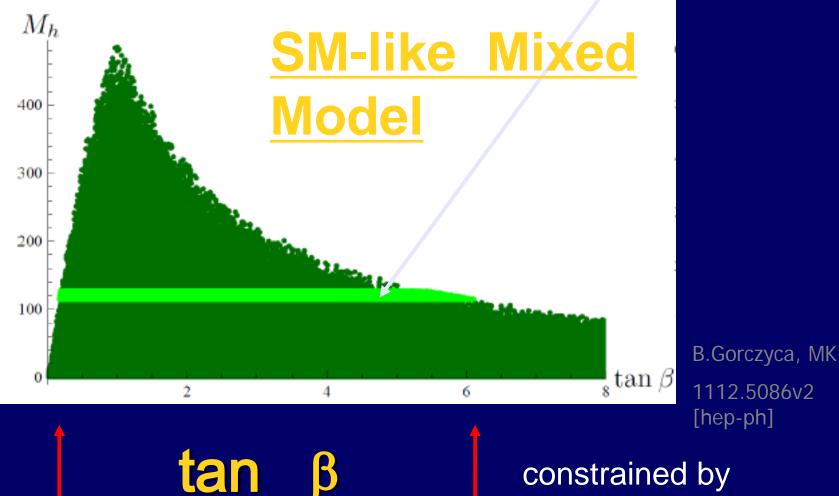
Mixed Model

Upper limits on masses from unitarity constraints

SM-like Mixed Model

 $M_h = 125 \text{ GeV}$ g(hVV)=g(H_{SM} VV) V=W,Z
$$\begin{split} M_{H^{\pm}} &\leqslant 690 \, \mathrm{GeV}, \\ M_A &\leqslant 711 \, \mathrm{GeV}, \\ M_H &\leqslant 688 \, \mathrm{GeV}, \\ M_h &\leqslant 499 \, \mathrm{GeV}. \end{split}$$

also Akeroyd, Arhrib, Naimi,..

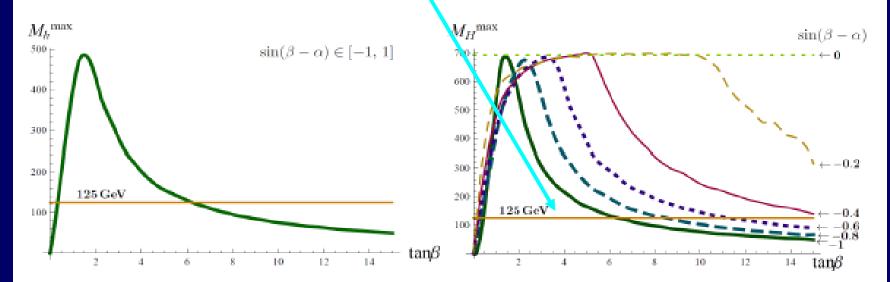

$$\begin{split} M_{H^{\pm}} &\leqslant 616 \, {\rm GeV}, \\ M_A &\leqslant 711 \, {\rm GeV}, \\ M_H &\leqslant 609 \, {\rm GeV}, \end{split}$$

Limit on tan beta from the M_h value ! Gorczyca, MK 1112.5086

M_h vs tan β

For h mass =125 GeV

 $0.18\lesssim ext{tan}\,eta\lesssim 5.59$

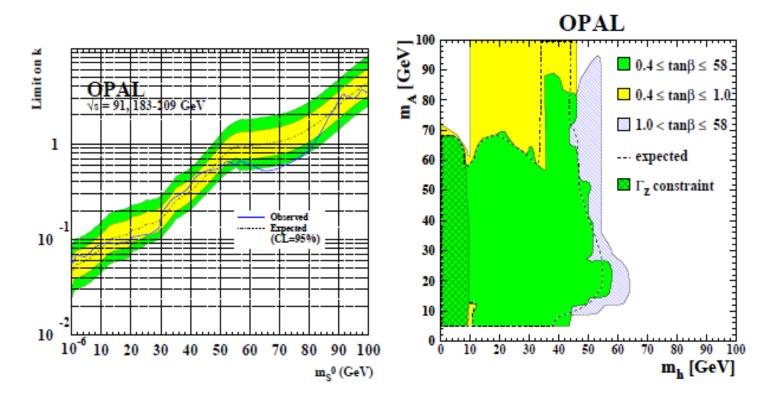


mass not Yukawa!

If H is SM-like

[B. Świeżewska, arXiv:1209.5725 [hep-ph]]

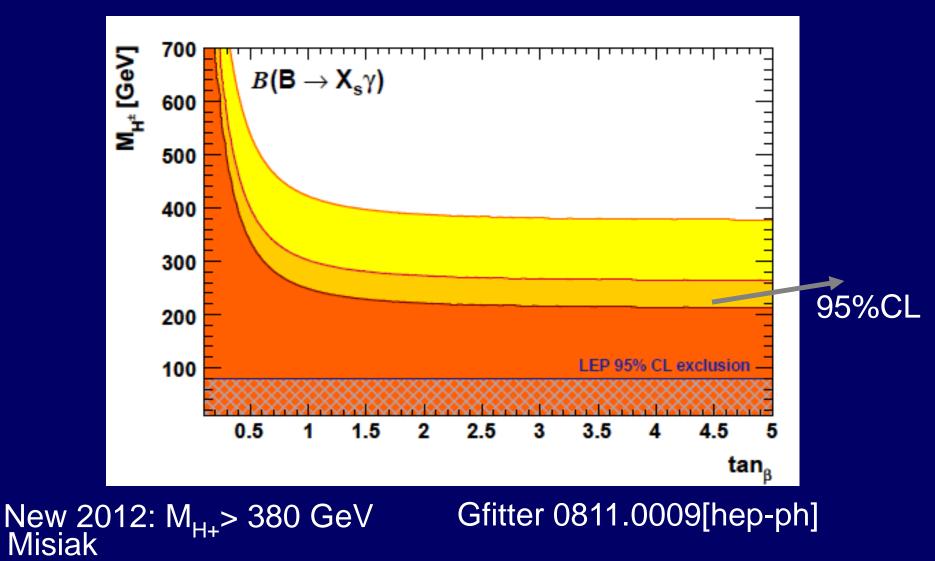
Maximal values of masses: M_h (left) and M_H (right) versus tan β allowed in the Mixed Model.


- Lower bound on $M_h \Rightarrow$ constraints on tan β
- Correlation between M_H^{max} and $\tan \beta$ depends on $\sin(\beta \alpha)$.

if H is SM-like then h must be lighter with the suppressed coupling to gauge bosons -> LEP data

LEP data for Mixed Model

if H is SM-like then h must be lighter with the suppressed coupling to gauge bosons


Light h OR light A in agreement with current data hZZ: $sin(\beta - \alpha)$ and hAZ: $cos(\beta - \alpha)$

Light scalar $h \to \text{small } k = \sin^2(\beta - \alpha)$! H is SM-like then !

$\begin{array}{l} B \rightarrow X_{s} \ \gamma \ decay \\ M_{H^{+}} \ vs \ tan \ \beta \end{array}$

Mixed Model

g g fusion - b and t important Ho g t t fusion Η For h $\gamma\gamma$ W,Z - t and b, W+, (H+ in 2HDMs) W, Z bremsstrahlung W+ and t destructive interference in SM, HO so if sign is changed for htt.. WW. ZZ fusion 2HDM Ginzburg, MK, Olsland, 2001, Carmi et al.,,,, in 2011, 12

Ho

Loop couplings hgg, hyy (hZy)

For hgg

LC-TH-2001-026

Identifying an SM-like Higgs particle at future colliders

LC-TH-2003-089

I. F. GINZBURG¹, M. KRAWCZYK² AND P. OSLAND⁹

SM-like scenario. One of the great challenges at future colliders will be the SM-like scenario that no new particle will be discovered at the Tevatron, the LHC and electron-positron Linear Collider (LC) except the Higgs boson with partial decay widths, for the basic channels to fundamental fermions (up- and down-type) and vector bosons W/Z, as in the SM:

$$\frac{\Gamma_i^{exp}}{\Gamma_i^{SM}} - 1 \left| \lesssim \delta_i \ll 1, \text{ where } i = u, d, V. \right|$$
(1)

Then for the relative basic couplings of neutral Higgses

$$\chi_i^{\text{obs}} = \pm (1 - \epsilon_i), \quad \text{with } |\epsilon_i| \ll 1$$

$$|\epsilon_i| \leq \delta_i$$
.

Using pattern relation for 2HDM (II)

$$(\chi_u + \chi_d)\chi_V = 1 + \chi_u\chi_d.$$

Collider. The observation of loop-induced couplings can distinguish models in the frame of the "current SM-like scenario" determined via currently measured coupling constants.

Both h and H maybe SM-like

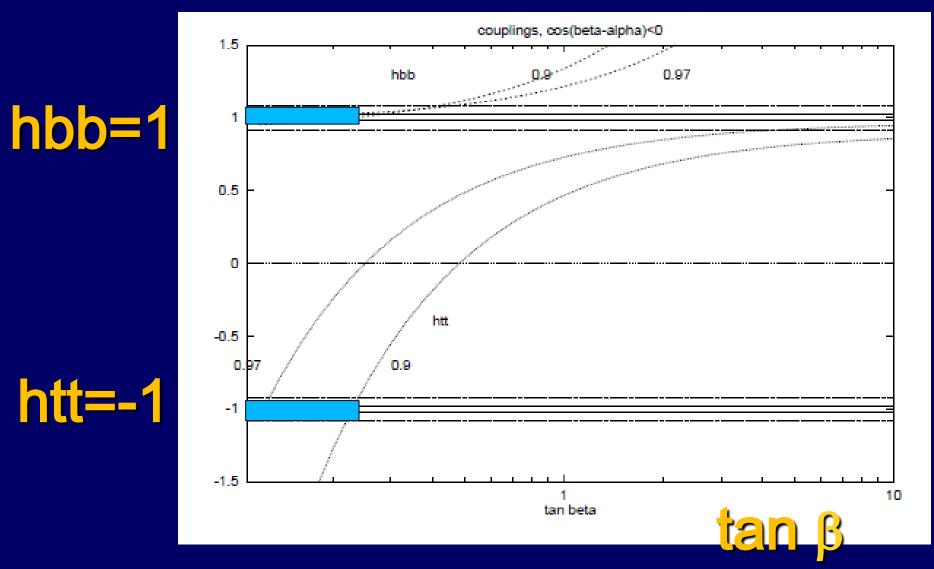
Two solutions of pattern relation:

A – all couplings close to 1

B – one Yukawa coupling close to -1

Loop induced couplings gg, $\gamma\gamma$, $Z\gamma$ different for A and B

MH+=600 GeV


For h or H with mass 120 GeV

solution	basic couplings	$ \chi_{gg} ^2$	$ \chi_{\gamma\gamma} ^2$	$ \chi_{Z\gamma} ^2$
$A_{h\pm}/A_{H_{-}}$	$\chi_V \approx \chi_d \approx \chi_u \approx \pm 1$	1.00	0.90	0.96
$B_{h\pm d}/B_{H-d}$	$\chi_V \approx -\chi_d \approx \chi_u \approx \pm 1$	1.28	0.87	0.96
$B_{h\pm u}$	$\chi_V \approx \chi_d \approx -\chi_u \approx \pm 1$	1.28	2.28	1.21

", wrong" sign of coupling to top \rightarrow large enhancement of hgg, hyy, hZy ! and Hgg

Even at the Tevatron the solution B_{h+u} can easily be distinguished via a study of the process $gg \to \phi \to \gamma\gamma$ with rate about three times higher than that in the SM (the product

htt and hbb couplings vs tan β for hVV = 0.9-0.97 (1 in SM)

Inert Doublet Model

Ma'78 Barbieri'06

Symmetry under D transf. $\Phi_{S} \rightarrow \Phi_{S} \quad \Phi_{D} \rightarrow \Phi_{D}$ both in L (V and Yukawa interaction = Model I only Φ_{S}) and in the vacuum:

 $\langle \Phi_{g} \rangle = v$ $\langle \Phi_{D} \rangle = 0$ Inert vacuum I₁ $\langle \Phi_{g} \rangle$ as in SM (BEH), with Higgs boson h (SM-like) $\langle \Phi_{D} \rangle$ has <u>no vev</u>, with 4 scalars (no Higgs bosons!) no interaction with fermions (inert doublet)

Here D symmetry exact \rightarrow D parity, only Φ_D has odd D-parity \rightarrow The lightest scalar stable -a dark matter candidate (Φ_D dark doublet with dark D scalars).

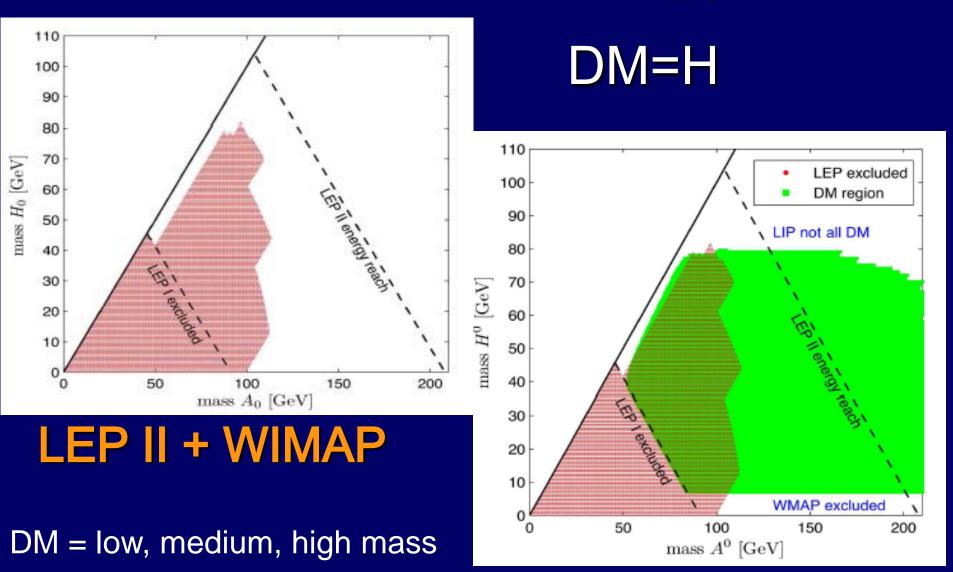
 Φ_{S} Higgs doublet S

 Φ_{D} Dark doublet D

Constraining Inert Doublet Model Positivity,condition for I1 vacuum,

pert. unitarity, S, T

Considering properties of


(Ma'2006,..B. Świeżewska, Thesis2011, 1112.4356, 1112.5086 , Arhrib..2012)

 $M_{H+}^2 = -\frac{m_{22}^2}{2} + \frac{\lambda_3}{2}v^2$

- the SM-like h, $M_{h}^{2} = m_{11}^{2} = \lambda_{1}^{2} v^{2}$

- the dark scalars D always in pairs! D couple to V = W/Z (eg. AZH, H⁻W⁺H), not DVV! Quartic selfcouplings D⁴ proportional to λ_2 hopeless to be measured at colliders! (D. Sokołowska) Couplings with Higgs: hHH ~ λ_{345} h H+H- ~ λ_3

IDM: LEP II exclusion (massesH vs A) Lundstrom... hep-ph/0810.3924

IDM constraints: LEP + S,T,U + DM relic density D. Sokołowska 2011-12

constraints for masses and $D_H D_H h_S$, $D_H D_H h_S h_S$ couplings

Dark scalars:

- low DM mass $M_{D_H} \lesssim 10$ GeV, large mass splittings: $\Delta(D_A, D_H)$ and $\Delta(D^{\pm}, D_H)$
- medium DM mass $M_{D_H} \approx (40 160) \text{ GeV}$, large $\Delta(D^{\pm}, D_H)$, small or large $\Delta(D_A, D_{-10}^{-10^{30}})$ confusing DM data
- high DM mass $M_H \approx (500 1000) \text{ GeV}$ small $\Delta(D_A, D_H)$ and $\Delta(D^{\pm}, D_H)$

Lopez Honorez et al. '07, Hambye et al. '08,'09, Agrawal e al. '09, ...

Higgs boson:

- both light and heavy Higgs boson possible
- LHC 2012 $\Rightarrow M_{h_S} \approx 125 \text{ GeV} \text{SM-like Higgs in IDM}$

6 7 8 910

WIMP-Nucleon

10-43

10

DAMA/I

CRESST-II (2012)

EDELWEISS (2011/12)

100

WIMP Mass [GeV/c²]

200 300 400

1000

ENON10 (2011)

20

30 40 50

IDM – scan

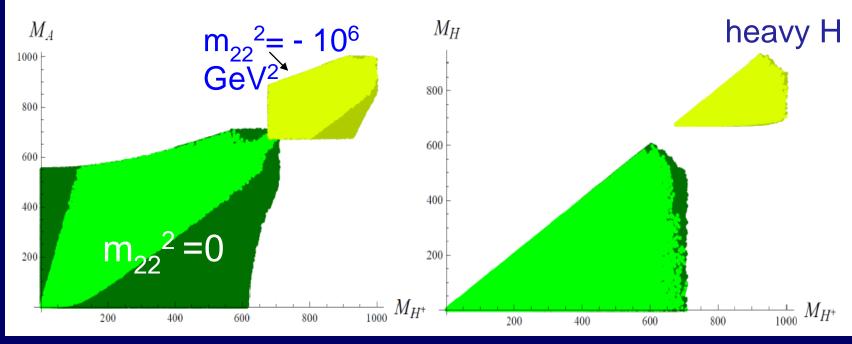
(B. Świeżewska 2012)

Constraints

vacuum stability, conditions for Inert I1 vacuum perturbative unitarity condition EWPT Relic density, LEP+LHC

 $\begin{aligned} \mathsf{H} &- \mathsf{dark matter} \\ \mathbf{0} &> \lambda_{45} = \lambda_4 + \lambda_5 \end{aligned}$

$$\begin{split} M_h &= 125 \, {\rm GeV}, \\ 70 \, {\rm GeV} \leqslant M_{H^\pm} \leqslant 800 \, {\rm GeV}(1400 \, {\rm GeV}), \\ 0 &< M_A &\leqslant 800 \, {\rm GeV}(1400 \, {\rm GeV}) \\ 0 &< M_H &< M_A, M_{H^\pm}, \\ -25 \cdot 10^4 \, {\rm GeV}^2(-2 \cdot 10^6 \, {\rm GeV}^2) \leqslant m_{22}^2 \leqslant -9 \cdot 10^4 \, {\rm GeV}^2, \\ 0 &< \lambda_2 &\leqslant 10. \end{split}$$


large masses possible

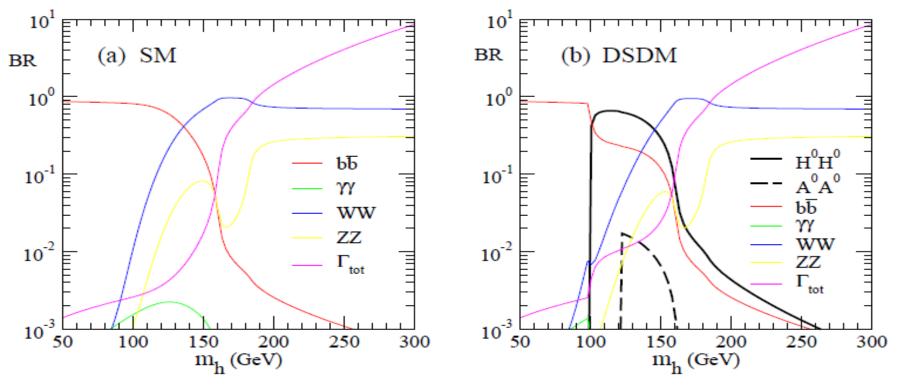
Inert Doublet Model with Mh=125 GeV

Analysis based on unitarity, positivity, EWPT constraints *Gorczyca'2011-12*

 $M_H \leqslant 602 \,\mathrm{GeV},$ $M_{H^{\pm}} \leqslant 708 \,\mathrm{GeV},$ $M_A \leqslant 708 \,\mathrm{GeV}.$

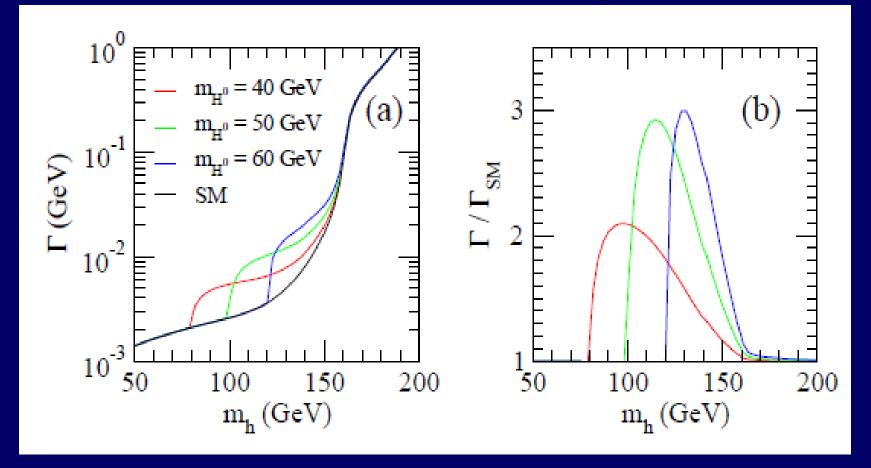
EWPT (pale regions)

 $m_{22}^2 = 0$


valid up to $|m_{22}^2| = 10^4 \text{GeV}^2$

Colliders signal/constraints for IDM

Barbieri et al '2006 for heavy h; Cao, Ma, Rajasekaren' 2007 for a light h, *later many others*. EW precision data $(M_{H^+} - M_A)(M_{H^+} - M_H) = M^2, M = 120^{+20}_{-30}$ GeV


BR SM versus IDM

For MH=50 GeV

For $M_H = 50$ GeV, $\Delta(A, H) = 10$ GeV, $M_{H+} = 170$ GeV, $m_{22} = 20$ GeV

IDM – total width of h Cao, Ma, Rajasekaren' 2007

IDM: decay width γγh

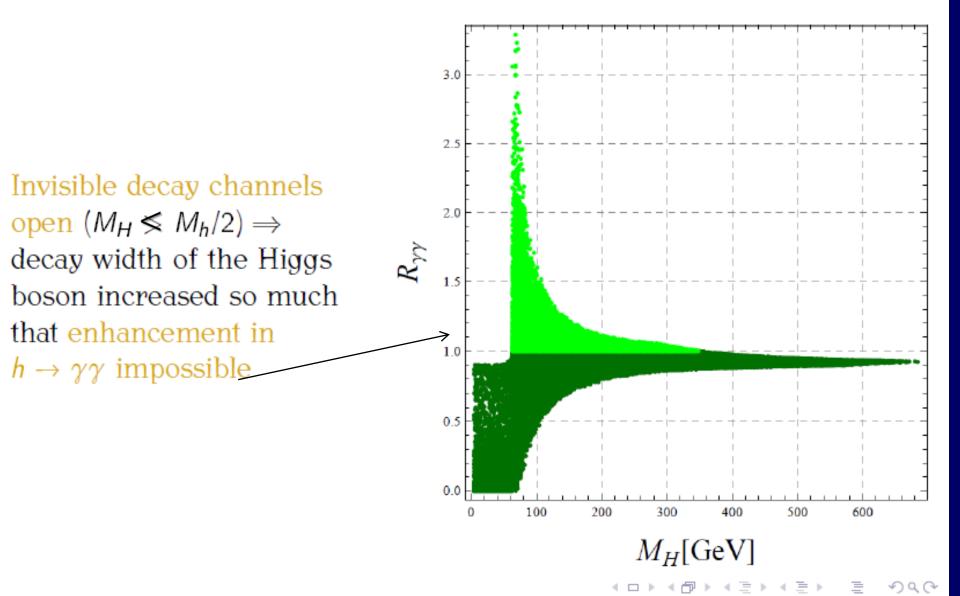
For negative λ_3 It maybe larger than in SM

Ma'2007 1.00(a) $h \rightarrow \gamma \gamma mode$ 0.98 SN 0.96 = 170 GeV m_{H^+} $\mu_2 = 20 \text{ GeV}$ 0.94 0.92 250 300 50 100200150m_h (GeV)

$$= \frac{G_{\mu}\alpha^{2}m_{h}^{3}}{128\sqrt{2}\pi^{3}} \left| \sum_{f} N_{C}Q_{f}^{2}g_{hff}\mathcal{A}_{1/2}\left(\tau_{f}\right) + g_{hWW}\mathcal{A}_{1}\left(\tau_{W}\right) + \frac{m_{H^{\pm}}^{2} - \mu_{2}^{2}}{\sqrt{2}m_{H^{\pm}}^{2}} \mathcal{A}_{0}\left(\tau_{H^{\pm}}\right) \right|^{2} \right|^{2}$$

$$h \rightarrow \gamma \gamma$$

 [J. R. Ellis, M. K. Gaillard and D. V. Nanopoulos, Nucl. Phys. B 106 (1976) 292, M. A. Shifman, A. I. Vainshtein, M. B. Voloshin and V. I. Zakharov, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30, 1368 (1979)], P. Posch, Phys. Lett. B696 (2011) 447, A. Arhrib, R. Benbrik, N. Gaur, Phys. Rev. D85 (2012) 095021]

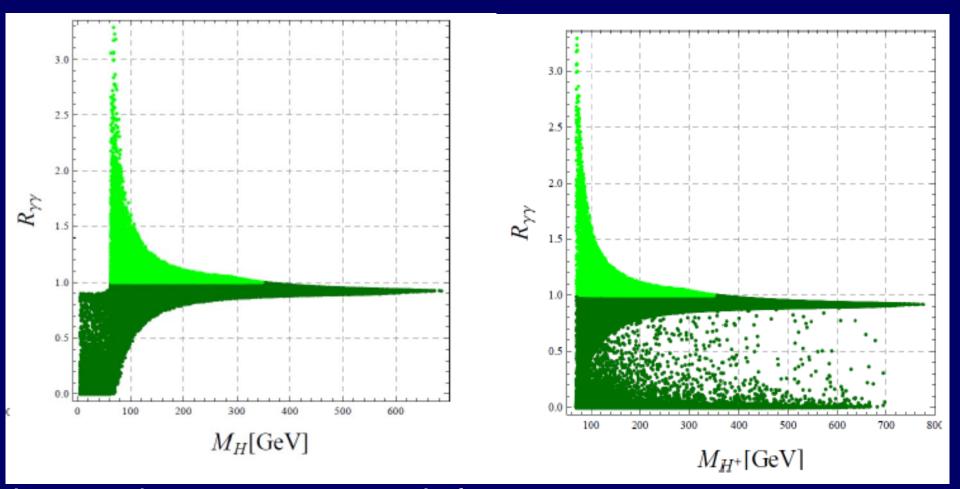

$$R_{\gamma\gamma} = \frac{\sigma(pp \to h \to \gamma\gamma)^{IDM}}{\sigma(pp \to h \to \gamma\gamma)^{SM}} = \frac{\left(\sigma(gg \to h)\mathrm{Br}(h \to \gamma\gamma)\right)^{IDM}}{\left(\sigma(gg \to h)\mathrm{Br}(h \to \gamma\gamma)\right)^{SM}} = \frac{\mathrm{Br}(h \to \gamma\gamma)^{IDM}}{\mathrm{Br}(h \to \gamma\gamma)^{SM}}$$

- Narrow width approximation
- Largest contribution to the production is from gg fusion

•
$$\sigma(gg \to h)^{SM} = \sigma(gg \to h)^{IDM}$$

Two sources of enhancement: modification of $\Gamma(h \to \gamma \gamma)$ or the total decay width $\Gamma(h)$.

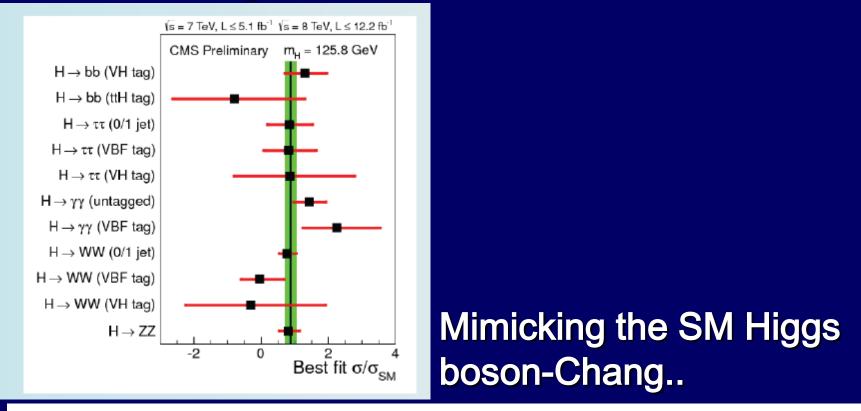
Sources of modifications to $R_{\gamma\gamma}$ - invisible decays



Sources of modifications to $R_{\gamma\gamma}$ - charged scalar loop

$$\begin{split} \Gamma(h \to \gamma \gamma)^{IDM} &= \frac{G_F \alpha^2 M_h^3}{128 \sqrt{2} \pi^3} \left| \frac{4}{3} g_t A_{1/2} \left(\frac{4M_t^2}{M_h^2} \right) + g_W A_1 \left(\frac{4M_W^2}{M_h^2} \right) \right. \\ &+ \frac{2M_{H^\pm}^2 + m_{22}^2}{2M_{H^\pm}^2} A_0 \left(\frac{4M_{H^\pm}^2}{M_h^2} \right) \right|^2 \end{split}$$

- If $h \to HH$ kinematically closed, $R_{\gamma\gamma} = \Gamma(h \to \gamma\gamma)^{IDM} / \Gamma(h \to \gamma\gamma)^{SM}$.
- $g_t, g_W = 1 \Rightarrow R_{\gamma\gamma}$ depends only on two of the parameters $M_{H^{\pm}}, \lambda_3, m_{22}^2 (M_{H^{\pm}}^2 = \frac{1}{2}(-m_{22}^2 + \lambda_3 v^2))$
- $R_{\gamma\gamma} > 1$ can be solved analytically
- -> formula
- enhancement in $h \to \gamma \gamma$ only possible for $m_{22}^2 < -9800 \,\text{GeV}^2$ $(\lambda_3 < 0)$



Large enhancement > 1.3 only for M_H > 62.5 GeV and M_H+ < 130 GeV

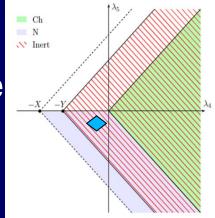
similar result Arhrib at al

Gamma-gamma enhancement

If moderate excess is seen in both inclusive production and exclusive VBF production, it could be the Higgs boson of the IHDM, 2HDM, or the MSSM. However, if the excess is over 60% it will pose severe challenge to the MSSM.

l agree

Conclusions I

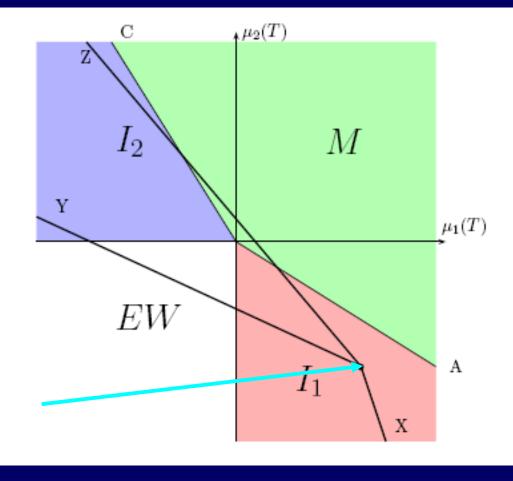

- 2HDM a great laboratory for physics BSM
 SM-like scenarios :
 - 2HDM (Mixed) where both h or H can be SM-like: mass of H+ between 380-600 GeV, both for SM-like h (0.2< tan β<5.6) and SM-like H large enhancement of loop couplings possible due to wrong sign of Yukawa coupling to the top quark If Rγγ > 1, tan <1 and H+ heavy ~ 700 GeV For SM-like H only ggH can >1
 - Intert Doublet Model: h is *SM-like* and H is DM: mass of H+ below 160 (130) GeV if Rγγ >1.2 (1.3) (Note, however that H+ has no Yukawa couplings) If Rγγ > 1, H mass 62.5 GeV (below160 GeV if > 1.2)

Evolution of the Universe in 2HDMthrough different vacua in the past

Ginzburg, Ivanov, Kanishev 2009 Ginzburg, Kanishev,MK, Sokołowska PRD 2010, Sokołowska 2011

We consider 2HDM with an explicit D symmetry assuming that today the Inert Doublet Model describes reality. In the simplest approximation only *mass terms* in V vary with temperature like T^2 , while λ 's are fixed

Various evolution from EWs to Inert phase possible in one, two or three steps, with 1st or 2nd type phase transitions...


Non-restoration of EW symmetry R <0 possible

There is only one evolution with EW restoration in the past

 $c_1 \text{ or } c_2 < 0$

- in one step and with $R_{vv} > 1!$

Sokołowska PhD, Thesis 2012

Conclusions II

- Intert Doublet Model in agreement with data
 Inert phase today what was in the Past ?
- Meriphase today what was in the Pa
 Various evolution scenarios :

$$EWs \xrightarrow{II} \begin{cases} I_1 \\ I_2 \\ I_2 \end{cases} \begin{pmatrix} II \\ I \\ I \\ I_1 \end{pmatrix} M \xrightarrow{II} I_1$$

Can we find clear signals ?

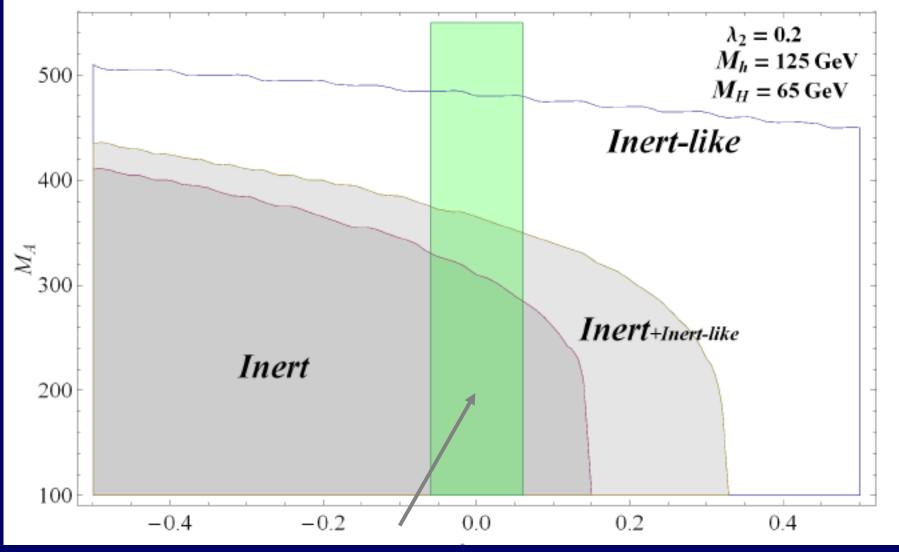
- -Ch breaking in the past?-excluded if DM neutral DM matter may appear later
- Inert phase today and R_{yy} >1 for 125 GeV Higgs EW symmetry breaking in one step

Beyond T2 corrections – strong 1st order phase transition in IDM?

G. Gil MsThesis'2011, G.Gil, P. Chankowski, MK 1207.0084 [hep-ph] PLB 2012

We applied one-loop effective potential at T=0 (Coleman-Wienberg term) and temperature dependent effective potential at T \neq 0 (with sum of ring diagrams)

$$V_T^{(1L)}(v_1, v_2) = V_{\text{eff}}^{(1L)}(v_1, v_2) + \Delta^{(1L)} V_{T \neq 0}(v_1, v_2).$$


The one-loop effective potential $V_{\text{eff}}(v_1, v_2)$ is given in the Landau gauge by standard formula mass matrices

$$V_{\text{eff}}^{(1L)} = V_{\text{tree}} + \frac{1}{64\pi^2} \sum_{\text{fields}} C_s \left\{ \mathcal{M}_s^4 \left(\ln \frac{\mathcal{M}_s^2}{4\pi\mu^2} - \frac{3}{2} + \frac{2}{d-2} - \gamma_{\text{E}} \right) \right\} + \text{CT},$$

number of states

counter terms \rightarrow

Phases at T=0

Xenon100 bound

Results for v(T_{EW})/T_{EW}

Mh=125 GeV, MH=65 GeV, λ2=0.2

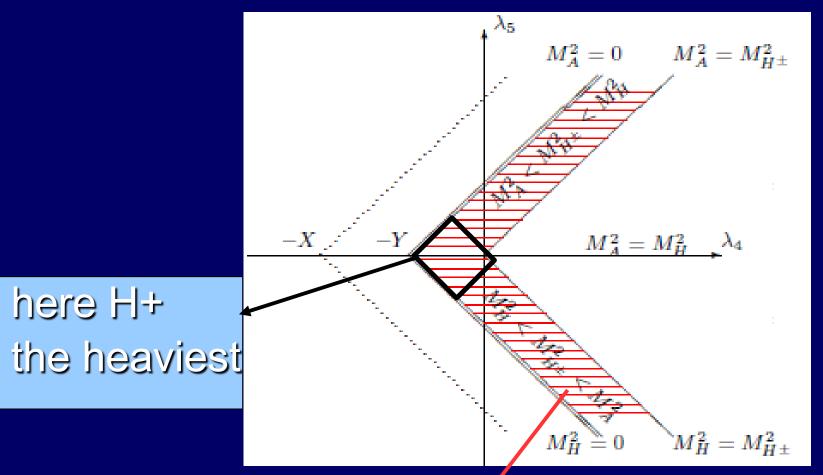
 $\lambda_2 = 0.2$ 325 GeV $M_h = 125 \text{ GeV}$ $EWs \rightarrow I1$ 300 GeV $M_H = 65 \text{ GeV}$ 1.5 275 GeV 250 GeV EWs 1.0215 200 GeV 0.5 150 GeV 0.0 -0.20.0 -0.40.2 0.4 ۸₃₄₅ λ_{345}

strong 1st order phase transition if ratio > 1

 $\rightarrow |2 \rightarrow |1|$

Allowed MH+=MA between 275 and 380 GeV (one step)

Xenon100 bound

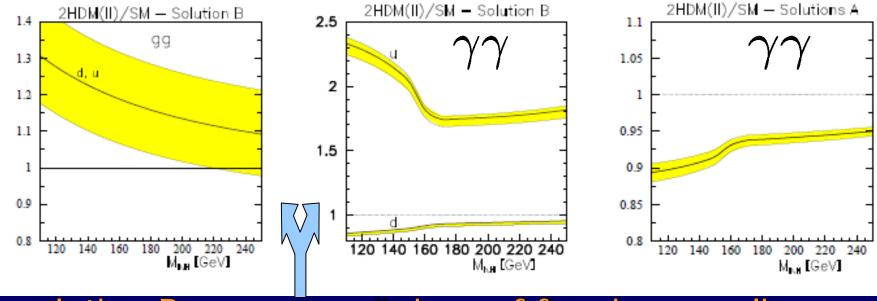

Conclusion III

Strong first order phase transition in IDM possible for realistic mass of Higgs boson (125 GeV) and DM (~65 GeV) for 1/ heavy (degenerate) H+ and A with mass 275 -380 GeV 2/ low value of hHH coupling $|\lambda_{345}| < 0.1$ 3/ Coleman-Weinberg term important

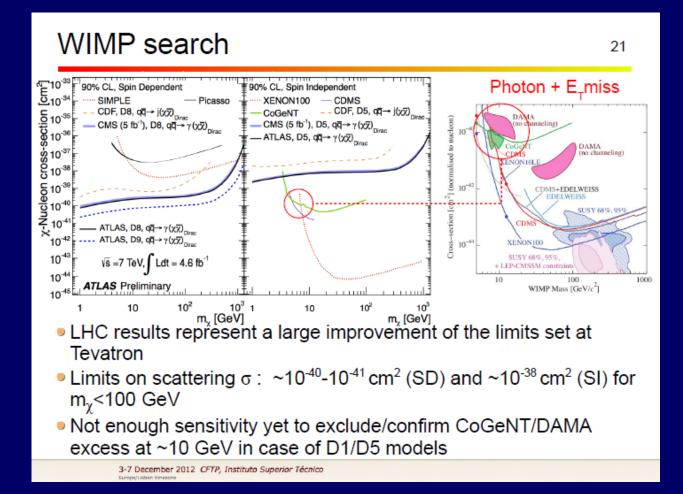
Our results in agreement with recent papers on IDM Borach, Cline 1204.4722 Chowdhury et al 1110.5334 (DM as a trigger of strong EW PT) (on 2HDM Cline et al, 1107.3559 and Kozhusko..1106.0790)

Dark scalar masses

 $Y = M_{H^+}^2 2/v^2$



here H is the lightest $(\lambda_5 < 0)$ – our DM


Loop couplings ggh/H, $\gamma\gamma$ h/H $\Gamma(h/H \rightarrow gg, \gamma\gamma)$ 2HDM(Z) = Mixed Ginzburg, Osland, MK '2001

Tree couplings as in SM - close to 1 (solution A)

large non-decoupling effects due to heavy H^{\pm} . (600 GeV)

solution $B \rightarrow$ "wrong" signs of fermion couplings

