

Jaki jest mechanizm łamania symetrii elektrosłabej?

Michał Szleper

Seminarium Fizyki Wielkich Energii, UW, 19.04.2013

Ostatnie wieści z CERN-u

Fizyka rozpraszania WW

* Pomiar oddziaływań VV (V = W, Z) przy wysokich energiach jest bezpośrednim próbkowaniem sektora odpowiedzialnego za łamanie symetrii elektrosłabej

* Oryginalna motywacja związana z pytaniem:

Czy istnieje bozon Higgsa?

- pole teoretyczne do badania alternatywnych modeli łamania symetrii elektrosłabej, np. rozwinięty formalizm Electroweak Chiral Lagrangian (EWChL)

* Dużo prac na poziomie fenomenologicznym:

- Chanowitz, hep-ph/0412203, Proceedings of "Physics at LHC", Vienna, July 2004
- Bagger et al., Phys. Rev. D 49 (1994) 1246, Phys. Rev. D 52 (1995) 3878,
- Dobado, Herrero et al., Phys. Lett. B 352 (1995) 400, Phys. Rev. D 62 (2000) 055011
- Butterworth et al., Phys. Rev. D 65 (2002) 996014
- Ballestrero et al., JHEP 05 (2009) 015, JHEP 11 (2009) 126
- itd, itd.

Generalna konkluzja: potrzeba conajmniej 300 fb⁻¹ danych z LHC przy 14 TeV.

Pytania na dzisiaj:

- * Jak motywacja do studiowania WW zmieniła się w świetle tego, co już wiemy:
 - mamy bozon o masie ~126 GeV,
 - nie znaleźliśmy żadnych nowych cząstek ponadto,
 - mamy pomiary sprzężeń z danych przy 7 i 8 TeV, z grubsza zgodne z Modelem Standardowym w granicach dość dużych błędów ?

* Jakie postępy zostały poczynione w porównaniu z tamtymi pracami?

Stany polaryzacji bozonu o spinie 1

Funkcja falowa bozonu $B^{\mu} = \epsilon^{\mu} e^{-i\rho x} = \epsilon^{\mu} e^{i(\overline{\rho} \overline{x} - Et)}$

Wektor polaryzacji – w układzie spoczynkowym bozonu:

$$\varepsilon_x^{\mu} = (0, 1, 0, 0)$$
 $\varepsilon_y^{\mu} = (0, 0, 1, 0)$ $\varepsilon_z^{\mu} = (0, 0, 0, 1)$

Można wprowadzić kombinacje składowych x, y odpowiadające polaryzacji kołowej

$$\begin{cases} \varepsilon^{\mu} = \frac{1}{\sqrt{2}} (0, 1, -i, 0) \\ \varepsilon^{\mu}_{+} = \frac{1}{\sqrt{2}} (0, 1, i, 0) \end{cases}$$

W układzie, w którym bozon porusza się wzdłuż osi z:

$$\varepsilon_{-}^{\mu} = \frac{1}{\sqrt{2}}(0, 1, -i, 0); \quad \varepsilon_{L} = \frac{1}{m}(p_{z}, 0, 0, E) \quad \varepsilon_{+}^{\mu} = -\frac{1}{\sqrt{2}}(0, 1, i, 0)$$

$$S_{z} = -1 \quad S_{z} = 0 \quad S_{z} = +1$$

Warunek Lorentza:

$$p_{\mu}\varepsilon^{\mu}=0$$

Otrzymujemy 3 możliwe stany skrętności odpowiadające rzutom spinu na kierunek z:

Sz = -1, 1 – polaryzacja poprzeczna (T) Sz = 0 – polaryzacja podłużna (L, możliwa tylko dla bozonu o niezerowej masie)

Problemy z bozonami W

Problem nr 2:

 $\mathcal{E}_{L}^{\mu} = \frac{1}{M} (\mathbf{p}_{z}, 0, 0, \mathbf{E}) \text{ oznacza, że } \mathcal{E}_{L}^{\mu} \rightarrow \frac{p^{\mu}}{M} \text{ dla } \mathbf{E} >> \mathbf{M}$

źródło wszystkich nieszczęść z polaryzacją podłużną!

 $W_I^+ W_I^+ \rightarrow W_I^+ W_I^+$

$$\mathcal{M}_{\text{Gauge}} = -g^2 \left(4 - \frac{3}{\rho} \right) \frac{E^2}{M_W^2} + \mathcal{O}(s^0)$$

blem nr 1:
$$\rho = M_W^2 / M_Z^2 \cos^2 \theta_W$$

Pro

Skąd się bierze M=0?

Dla każdego z tych diagramów:

$$\mathcal{M} \sim \mathcal{E}_{L} \mathcal{E}_{L} \mathcal{E}_{L} \mathcal{E}_{L} \sim s^{2}$$

Symetria cechowania powoduje kasowanie wkładów o najwyższym rzędzie, ~s², ale pozostają człony ~s

<u>Model Standardowy – mechanizm Higgsa</u>

Spontaniczne złamanie symetrii cechowania poprzez wprowadzenie skalarnego pola Φ

Dodajemy do lagranżjanu człony:

$$\mathscr{L} = (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) - \mu^{2}\phi^{\dagger}\phi - \lambda(\phi^{\dagger}\phi)^{2}$$

gdzie

$$\phi = \begin{pmatrix} \phi^0 \\ \phi^- \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}$$

Jeśli μ^2 <0, minimum potencjału wypada w

$$\langle \phi_1 \rangle^2 = -\mu^2 / \lambda = v^2$$

Twierdzenie Goldstone'a: pojawiają się bozony Goldstone'a (bezmasowe skalary)

 - 3 zostają "zjedzone" jako stany podłużne bozonów W i Z i generują ich człony masowe, w szczególności

$$M_W = \frac{1}{2}gv$$

- 1 skalar masywny – fizyczny bozon Higgsa.

$$W_L^+ W_L^- \to W_L^+ W_L^-$$

W

 \mathcal{M}_{gauge}

sprzężeniach kasuje rozbieżności w oddziaływaniach bozonów W i Z.

Rozpraszanie W⁺W⁺: przekroje czynne

(rachunki dla Higgsa z Modelu Standardowego)

W⊤W⊤ i W⊤W∟ są nieczułe na masę bądź samo istnienie bozonu Higgsa

Przekrój czynny dla WLWL przy wysokich energiach silnie zależy od Higgsa

Przy braku Higgsa następuje łamanie unitarności przy energii ~1.2 TeV

W praktyce nie mamy kontroli nad polaryzacją ²⁰⁰ oddziałujących W (tzn. W w stanie początkowym) - nie mamy wiązek W!

Ale na szczęście: skrętności W w stanie początkowym = skrętnościom W w stanie końcowym

Różniczkowy przekrój czynny: Rozkłady pseudopospieszności względem kierunku początkowego W

9

Co poza Modelem Standardowym?

* Supersymetria?

- * Inne pomysły? Np. Strongly Interacting Light Higgs (SILH) G.F.Giudice, C.Grojean, A.Pomarol, R.Rattazzi, JHEP 0706 (2007) 045
 - Łamanie symetrii elektrosłabej zachodzi poprzez lekki bozon Higgsa, będący efektywnym polem pochodzącym z nowego oddziaływania, które staje się silne przy wysokich energiach.
 - Oprócz fermionów i bozonów z MS, istnieje dodatkowy "silny" sektor, scharakteryzowany przez stałą sprzężenia $g(g(SM) < g < 4\pi)$ i skalę masy nowych stanów fizycznych M(M > Mh).
 - Bozon Higgsa jest elementem tegoż "silnego" sektora. Wariantami tego typu są np. modele Little Higgs (*N.Arkani-Hamed et al., JHEP 0207 (2002) 034*), Holographic Higgs (*R.Contino et al., Nucl.Phys. B 719 (2005) 165, K.Agashe et al., JHEP 0308 (2003) 050*), itp.
 - Efektywne sformułowanie tego typu teorii różne scenariusze fizyczne odpowiadają różnym wartościom parametrów w efektywnym lagranżjanie.

 $\mathcal{L} = \mathcal{L}_{(SM)} + \mathcal{L}_h + \mathcal{L}_v \checkmark$ nowe oddziaływania nowe oddziaływania pomiędzy higgsa bozonami pośredniczącymi

Nowe oddziaływania modyfikują przekroje czynne i stosunki rozgałęzień bozonu Higgsa w porównaniu z Modelem Standardowym.

Sygnatury modeli SILH - I

Δ(σ Br)/(σ Br)

Sprzężenia Higgsa do fermionów i bozonów są inne niż w MS

Efektywne sformułowanie: całą fenomenologię można opisać poprzez wybór kilku liczb parametryzujących naszą niewiedzę leżącej u podstaw fizyki

$$\xi = (vg/M)^2$$
, Cy, CH, CW, CZ, Cγ, Cg,
v = 246 GeV

Wtedy:

 Γ (h-ff)silh = Γ (h-ff)sm [$1 - \xi$ (2Cy+CH)]

$$\Gamma$$
 (h-W⁺W⁻)SILH = Γ (h-W⁺W⁻)SM [1- ξ (CH - CW g (SM)²/ g ²)]

$$\Gamma$$
 (h-ZZ)silh = Γ (h-ZZ)sm [$1 - \xi$ (CH - Cz $g_{(SM)}^2/g^2$)]

 Γ (h- $\rightarrow\gamma\gamma$)silh = Γ (h- $\rightarrow\gamma\gamma$)sm [1 - ξ Re(...)]

Sygnatury modeli SILH - II

Lekki bozon Higgsa nie unitaryzuje amplitud rozpraszania VLVL do końca, przekroje czynne powyżej masy higgsa nadal asymptotycznie rosną z energią aż do skali *M*, mówimy wtedy o częściowo silnym rozpraszaniu WW.

W granicy wysokich energii, w najniższym rzędzie w s/ f^2 (f=M/g):

Dodatkową sygnaturą tego typu teorii jest wzmożona produkcja par higgsów przy wysokich energiach, ale może być trudna do wykrycia w praktyce.

Najprostszy przykład częściowo silnego rozpraszania WW: 2HDM

K.Cheung, C.W.Chiang, T.Ch.Yuan, Phys. Rev. D78 (2008) 051701

Sprzężenie hWW = $g_{(SM)} \sin(\beta - \alpha)$, a HWW = $g_{(SM)} \cos(\beta - \alpha)$, gdzie α jest kątem mieszania h i H

Jeśli sin(β – α) jest odpowiednio mały, a H odpowiędnio ciężki, to amplitudy VLVL będą rosnąć z energią powyżej masy h aż do H, który je ostatecznie zunitaryzuje. Ale np. w MSSM tak nie jest.

Przekroje czynne na rozpraszanie VLVL² w zależności od sprzężenia hWW $\delta = (g | g_{(SM)})^2$

Dla kanałów nierezonansowych, np. W⁺W⁺, nie ma piku przy masie h, lecz przekrój czynny monotonicznie rośnie

WW w LHC

rezonansów przy 14 TeV.

WW w LHC: proces kwarkowy qq -> qqWW

* Sygnał nowej fizyki zdefiniowany w pełnej analogii do sygnału "braku higgsa" = nadwyżka w produkcji WL WL względem przewidywań Modelu Standardowego z lekkim higgsem (i niczym więcej)

* Tło "nieredukowalne" = cały Model Standardowy z lekkim higgsem

- głównie WT,

- zawiera diagramy nierozproszeniowe, konieczne do poprawnego opisu tła (interferencia!)
- zawiera procesy czysto elektrosłabe (~ α^4) + EW/QCD (~ $\alpha^2 \alpha s^2$) + interferencja.

Diagrams	MadGraph	CompHEP	CompHEP	
		Feynman gauge	Unitary gauge	
With WW scattering	12.29 +- 0.014 pb	0.0282 +- 0.7% pb	10.98 +- 0.2% pb	
Non-scattering	12.36 +- 0.02 pb	0.132 +- 0.8% pb	11.01 +- 0.3% pb	
Total	0.170 +- 0.001 pb	0.170 +- 0.4% pb	0.169 +- 1.1% pb	
	16			

Minimalny zestaw procesów tła:

Różnice w produkcji W⁺W⁺ i W⁺W⁻

* Procesy elektrosłabe

- w kanale s, w tym także diagramy nierozproszeniowe kontrybuujące do sygnału
- dodatkowe procesy w kanale t, w których obydwa W pochodzą z tej samej linii kwarkowej

* Procesy EW/QCD:

- dla produkcji W⁺W⁺ jedynie wymiana gluonu pomiędzy liniami kwarkowymi ten wkład można zredukować do <10% po odpowiednich cięciach,
- zaniedbywalne w sygnale (upraszczają się w różnicy, łącznie z interferencją).

Jedynym mechanizmem produkcji jjW⁺W⁺ jest oddziaływanie qq z emisją W z każdej linii kwarkowej.

 do W⁺W⁻ wkład daje całe mnóstwo dodatkowych procesów z gluonami: qq → ggW⁺W⁻, gg → qqW⁺W⁻, qg → qgW⁺W⁻
 W sumie, procesy EW/QCD dominują całkowitą produkcję jjW⁺W⁻ o rząd wielkości.

Sygnatura VBF w detektorze CMS

18

Strategie w analizie danych - konwencjonalne podejście

- 1. Selekcja przypadków VBF nieczuła na polaryzację W!
- 2. W⁺W⁻, ZZ poszukiwanie nowych rezonansów, kluczowa jest statystyka sygnału, W⁺W⁺ zliczanie przypadków przy dużych masach niezmienniczych, ważne S/B

Cel: znalezienie lepszych kryteriów selekcji, np. poprzez wykorzystanie ogólnych różnic między W∟ i W⊤, dopasowanych do specyfiki kinematycznej każdego procesu w warunkach braku ciężkich rezonansów.

19

Możliwe stany końcowe i ich czynniki limitujące

* Rozpady czysto leptonowe – niskie stosunki rozgałęzień, czysta sygnatura, niskie tło, uważane za "gold-plated" (np. Bagger *et al.*)

- pp → jj₩⁺W⁺ jj l⁺vl⁻v
- pp → jjZZ → jj l⁺l⁻vv
- pp → jjZZ → jj l⁺l⁻l⁺l⁻

- przy dużych masach VV sygnał << tło niska statystyka istotne tło "redukowalne" np. top, Z+jets bardzo niska statystyka
- * Rozpady półleptonowe rozsądna statystyka, wysokie tło, trudna systematyka (p. np. Praca doktorska P. Zycha, UW, 2007)
 - pp → jjWW → jj jjlv
 - pp → jjZZ → jj jjl⁺l⁻

zdominowane przez tło od W/Z+jets, duże masy VV -> problem jet merging

- * Rozpady czysto hadronowe najwięcej przypadków, bardzo wysokie tło
 - pp → jjWW → jj jjjj
 pp → jjZZ → jj jjjj

całkowicie zdominowane przez tło od wielodżetowych procesów QCD

Jet pruning - rozpady półleptonowe (i hadronowe)

W dalszej części będziemy się koncentrować na rozpadach czysto leptonowych.

Rozpad W: przybliżenie W na powłoce masy

1. Poprawnie: pełny rachunek procesu pp $\rightarrow jj\mu^+\mu^+\nu\nu$ z pierwszych zasad bez patrzenia na W – program PHANTOM – nie wiadomo, które pochodzą z W_L,

Zasadność przybliżenia W na powłoce masy

Porównanie z pełnym rachunkiem – kinematyka stanu końcowego dobrze opisana

Dlatego ma sens oddzielenie od siebie próbek W∟ i W⊤ (na poziomie symulacji) i badanie ich właściwości kinematycznych osobno.

Tło "redukowalne": produkcja topu

W najniższym rzędzie:

Do próbki W⁺W⁺ wchodzi jedynie poprzez stosunkowo drobne efekty:

- rozpad leptonowy b + zgubienie leptonu z rozpadu W,
- błędne wyznaczenie znaku leptonu

Kluczowe wymogi detektorowe:

- kontrola efektywności tagowania b dla dżetów o dużym $|\eta|,$
- kontrola efektywności pomiaru ładunku dla leptonów o dużym p⊤:
 - mionów,
 - elektronów.

Kombinacja cięć: M(j1μ2), M(j2μ1) > 200 GeV, oraz M(jj) > 400 GeV lub 500 GeV, zbija tło tt do kontrolowalnych wartości

CMS performance

Przykład analizy: kanał W⁺W⁺, rozpady leptonowe

"Konwencjonalna" analiza: sygnatura VBF + dwa izolowane leptony centralne, o dużym pT, back-to-back i o dużej masie niezmienniczej.

Przekrój czynny σ (pp →jjW⁺W⁺) @ 14 TeV w funkcji energii oddziałujących kwarków Eq1, Eq2

Czym się różni WL od WT niezależnie od istnienia bądź nie nowej fizyki

Podstawowa sygnatura sygnału

* <u>Emisja W:</u>

mały kąt emisji względem osi zderzenia

- niskie p^{j1}, p^{j2},
- niskie pT^{W1} , pT^{W2} przed oddziaływaniem,
- oś oddziaływania WW bliska osi zderzenia proton-proton

* <u>Rozpraszanie WW:</u>

duży kąt rozproszenia

- małe $|\eta w_1|$, $|\eta w_2|$ w detektorze
- duże рт^{w1}/рт^{j1}, рт^{w2}/рт^{j2}

duże Mww

- duże $pT^{W1}pT^{W2}$ po oddziaływaniu
- małe |η11|, |η12| (produkty rozpadu)
- duże pT^{11} , pT^{12}

* <u>Konkluzja</u>

- duży stosunek pt^{W1} pt^{W2}/(pt^{j1} pt^{j2})
- wielkość do bezpośredniego pomiaru:

$$\mathsf{R}_{\mathsf{P}}\mathsf{T} = \frac{\mathsf{p}\mathsf{T}^{\mathsf{l}^{1}}\,\mathsf{p}\mathsf{T}^{\mathsf{l}^{2}}}{\mathsf{p}\mathsf{T}^{\mathsf{j}^{1}}\,\mathsf{p}\mathsf{T}^{\mathsf{j}^{2}}}$$

Analiza danych z użyciem zmiennej Rpt

Minimalna preselekcja przypadków:

- podstawowa topologia dwa dżety tagujące i dwa leptony w detektorze,
- cięcia na redukcję tła z produkcji tt.

Resztę daje analiza rozkładu zmiennej Rpt

Przykład analizy typu event counting

K. Doroba, J. Kalinowski, J. Kuczmarski, S. Pokorski, J. Rosiek, MS, S. Tkaczyk, Phys. Rev. D 86 (2012) 036011, arXiv:1201.2768v2 [hep-ph]

Sample	Initial σ	Generated	Selected	Selected	Other	Final σ	Final σ
		events	evts (I)	evts (II)	reductions	(I)	(II)
$W_L^+ W_L^+$ SM	7.6 fb	56485	534	523	0.0426	$0.0031~{\rm fb}$	$0.0030 \mathrm{~fb}$
$W_L^+ \overline{W}_L^+$ No Higgs	16.7 fb	56666	11903	12313	0.0335 (I)/0.0329 (II)	$0.1117~{\rm fb}$	$0.1193~{\rm fb}$
Irr. background	$104.5~{\rm fb}$	170183	1893	855	0.0426	$0.0494~{\rm fb}$	$0.0224~{\rm fb}$
$t\bar{t}$ background	-	15000000	1805	1318	0.00008	$0.0225~{\rm fb}$	$0.0171~{\rm fb}$

Sygnał = WL WL No Higgs – WL WL SM

"Other reductions": tagowanie b, rekonstrukcja leptonów + pomiar znaku, granica unitarności (dla sygnału) i Br na leptony.

Kanał W⁺W⁻

- 1. Dodatkowe wkłady do tła "nieredukowalnego" zarówno EW, jak i (ogromne) EW/QCD
 - zupełnie inna charakterystyka kinematyczna tła,
 - dużo słabsza rozdzielczość sygnału od tła.

2. Tło "redukowalne" (top) wchodzi bezpośrednio – wymusza ostrzejsze kryteria selekcji.

Zmienna R_pT nie daje żadnej poprawy czułości do konwencjonalnej analizy typu event counting.

Po 100 fb⁻¹ przy 14 TeV: S/B = 12/49

Skalowanie wyniku do realistycznego scenariusza typu SILH

Liczba przypadków sygnału spełniających zgrubne kryteria:

* |cos⊖_{ww}|<0.8 * M_{ww} > 300 GeV

na 100 fb⁻¹ danych przy 14 TeV i przy założeniu rozpadów leptonowych

Kv	1(SM)	0.95	0.7	0(uni.)	0
W^+W^+	0	5	36	77	97
W^+W^-	0	<1	9	48	59
ZZ	0	<1	11	45	56

Realistyczna na chwilę obecną jest obserwacja nadwyżki w produkcji W⁺W⁺ na poziomie 1/2 (lub mniej) nadwyżki obliczonej dla przypadku po-Higgs z zac

obliczonej dla przypadku no-Higgs z zachowaniem unitarności, biorąc np. Kv=0.7 (δ =0.5).

dσ/dM_{WW} (pb/GeV)

W przypadku braku nowych rezonansów, w kanałach W⁺W⁻ i ZZ trudno będzie zaobserwować cokolwiek przed LS2.

K.Cheung, C.W.Chiang, T.Ch.Yuan, Phys. Rev. D78 (2008) 051701

Metoda elementu macierzowego (MEM)

Prawdopodobieństwo zgodności obserwowanego rozkładu w przestrzeni pędów cząstek w stanie końcowym \mathbf{p}_{i}^{vis} z rozkładem obliczonym z rachunku elementów macierzowych na podstawie modelu fizycznego zdefiniowanego poprzez zestaw parametrów α

pp→ZZ+2j→4{+2j

* Główny wkład wnosi proces W⁺W⁻->ZZ

 Możliwość szczegółowej analizy kątowej wszystkich 4 leptonów w stanie końcowym wyznaczenie spinu i parzystości ciężkiego rezonansu

Projections of Higgs Boson measurements with 300/fb at 14 TeV

36

Konkluzje

* Badanie rozpraszania VV jest badaniem sektora Higgsa.

- * Istnieje ścisły związek pomiędzy pomiarami sprzężeń higgsa a poszukiwaniem nadwyżki VLVL.
- * Istnienie lekkiego higgsa nie wyklucza częściowo silnego rozpraszania VV, którego najbardziej bezpośrednią sygnaturą może być mierzalna nadwyżka produkcji VLVL przy wysokich energiach względem przewidywań Modelu Standardowego.
- * Nowe ciężkie rezonanse będą poszukiwane w procesie VBF w kanałach W⁺W⁻ i ZZ - także pomiar spinu i parzystości; ten ostatni pomiar będzie jednak wymagał statystyki osiągalnej w LHC jedynie po LS2.
- * W przypadku braku obserwacji ciężkich rezonansów, kanał W⁺W⁺ oferuje najlepsze perspektywy obserwacji odstępstw od Modelu Standardowego wszystko, co obecnie wiemy, nie wyklucza możliwości obserwacji nadwyżki w kanale W⁺W⁺ w LHC przy 14 TeV po zebraniu 300/fb danych (przed LS2).