

ATLAS Highlights

Recent results for Pb-Pb collisions with the ATLAS detector

Barbara Wosiek, for the ATLAS Collaboration Institute of Nuclear Physics PAS, Kraków, Poland Talk given at Quark Matter 2012, Washington D.C., August 2012

Outline

- ATLAS detector
- Lead-lead data taking
- Collective flow
- Electroweak probes
- Medium-sensitive probes
 - Charged hadron suppression
 - Heavy quark production
 - Jet suppression
 - Jet fragmentation
 - Path length dependence of jet suppression
 - Jet v_2
 - γ,Z jet correlations
- Summary

Three main subsystems with a full coverage in azimuth:

- Inner Detector tracking $|\eta|$ <2.5 • Calorimetry – $|\eta|$ <4.9
- Muon Spectrometer |η|<2.7

MB – Minimum Bias

0.15 nb⁻¹ > 97% MB, e, μ, γ, jets, UPC ~1000 *Thanks LHC!*

Triggers in 2011

Electrons and photons

• based on EM calorimeter

• efficiency > 98% for $E_T > 20$ GeV

<u>Muons</u>

Based on combination: L1 and HLT with $p_T>4$ GeV based on Rol OR full scan with $p_T>10$ GeV

Efficiency > 90% above 10 GeV

Lead-lead collision centrality

- Energy sum in forward calorimeter (FCal) ΣE_T (3.2 | η |<4.9) compared with Glauber MC \otimes 2.76 TeV pp data
- Sampling fraction $f = 98 \pm 2\%$ of total inelastic cross-section
- Centrality parameters $<N_{part}>$, $<N_{coll}>$ calculated from Glauber MC (binning in the simulated FCal ΣE_T)

Collective flow measurements

- Spatial deformations in the initial overlap region are transformed into the final state momentum anisotropy
 - studied via Fourier decomposition of the azimuthal angle distribution measured relative to the initial symmetry plane Φ_n
 A.M. Poskanzer, S. A. Voloshin, Phys. Rev. C58, 1671 (1998) :

$$\mathbf{E}\frac{\mathbf{d}^{3}\mathbf{N}}{\mathbf{d}\mathbf{p}^{3}} = \frac{1}{2\pi\mathbf{p}_{T}}\frac{\mathbf{E}}{\mathbf{p}}\frac{\mathbf{d}^{2}\mathbf{N}}{\mathbf{d}\mathbf{p}_{T}\mathbf{d}\eta}\left(1+2\sum_{n=1}^{\infty}\mathbf{v}_{n}(\mathbf{p}_{T},\eta)\cos[\mathbf{n}(\phi-\Phi_{n})]\right)$$

with two-particle correlations (2PC)

$$\frac{dN_{\text{pairs}}}{d(\phi_{a}-\phi_{b})} \propto 1 + 2\sum_{n=1}^{\infty} v_{n,n}(p_{T}^{a},p_{T}^{b})\cos[n(\phi_{a}-\phi_{b})]$$

with 2- and 4-particle cumulants
 N. Borghini, P.M. Dinh, J.Y. Ollitrault, Phys. Rev. C64, 054901(2001)

Collective flow measurements

Initial configuration plane

• Transverse positions of nucleons (r, ϕ)

n

• From Glauber or KLN models amplitude and direction arXiv:nucl-ex/0701025, Phys. Rev. C 74, 044905 (2006)

$$\epsilon_{n} = \frac{\sqrt{\langle \mathbf{r}^{n} \cos n\phi \rangle^{2} + \langle \mathbf{r}^{n} \sin n\phi \rangle^{2}}}{\langle \mathbf{r}^{n} \rangle}$$

$$tan(n\Phi_{n}^{*}) = \frac{\langle \mathbf{r}^{n} \sin n\phi \rangle}{\langle \mathbf{r}^{n} \cos n\phi \rangle}$$

$$Final state symmetry plane$$
Charged particle azimuthal angle $\phi = p_{y}/p_{x}$

$$n\Phi_{n} = tan^{-1} \left(\frac{\Sigma w_{i} \sin(n\phi_{i})}{\Sigma w_{i} \cos(n\phi_{i})} \right)$$

$$V_{n} = \langle \cos(n[\phi - \Phi_{n}]) \rangle$$
Corrected for resolution
$$\frac{dN_{ch}}{d\phi} \propto 1 + \sum_{n} V_{n} \cos(n[\phi - \Phi_{n}])$$

B. Wosiek

Α

- Similar p_T dependence for n=2-6 flow harmonics
- Weak centrality dependence observed for v₃-v₆
- For the 5% most central events $v_3 > v_2$

Significant v_n (n>2)

Fluctuations of the nucleon positions in the overlap region

- v₁ signal is negative at p_T<~ 1 GeV, reaches a maximum at around 4–5 GeV and decreases at higher p_T
- The magnitude of v₁ at peak is comparable to that of v₃
- v₁ signal arises from the dipole asymmetry of the nuclear overlap due to <u>fluctuations in the initial geometry</u>

Fluctuations in the initial geometry

The resolution corrected correlations between EP of different orders: (Φ_n,Φ_m), (Φ_n,Φ_m,Φ_k) ATLAS-CONF-2012-049

- Some correlations show trends qualitatively, but not quantitatively, similar to Glauber model, others differ significanlty
- Observed correlations can be partially attributed to the fluctuations in the initial geometry, but may also arise during the dynamical evolution of the created system

Event plane correlations

- Correlations can be generated dynamically via hydrodynamic evolution
 - Qiu and Heinz, arXiv:1208.1200
 - Teaney and Yan, arXiv:1206.1905

Elliptic flow fluctuations

- weak p_T dependence for $p_T < 2$ GeV across all centralities;
- in 5-10% central p_T-independence holds up to higher p_T
- for p_T-integrated v₂, σ₂/<v₂> comparable to Glauber model except for peripheral collisions (Glissando, W. Broniowki, M. Rybczynski, and P. Bozek, GLISSANDO: arXiv:0710.5731 [nucl-th])
- consistent with ALICE results arXiv:1205.5761 [nucl-ex].

Flow harmonics fluctuations

New technique – direct measurement of flow fluctuations!

- Event-by-event unfolded v_n distributions, for n=2-4
 - Raw v_n distributions are unfolded with response functions accounting for v_n smearing
 - Response functions are obtained from correlations between two symmetric subevents

- v_n distributions are 2D Gaussian (curves):
 - for v_2 only in the 1% of most central collisions
 - for v_3 and v_4 over all centralities

resulting from random fluctuations in the initial state

Flow harmonics fluctuations

for three p_T ranges: $0.5 < p_T < 1 \text{ GeV}$ p_⊤ > 0.5 GeV **p**_T > 1 GeV

dotted lines show Gaussian limit

 σ_{v_n}

$$\frac{\sigma_{\rm n}}{<{\bf v}_{\rm n}>}=\sqrt{\frac{4}{\pi}-1}\approx 0.523$$

•no p_T dependence in the above p_T ranges

- $\sigma_{v_2}/\langle v_2 \rangle$ shows strong centrality dependence
- $\sigma_{v_3}/\langle v_3 \rangle$ and $\sigma_{v_4}/\langle v_4 \rangle$ centrality-independent, consistent with the value expected from Gaussian
- Compared to eccentricity distributions from Glauber and CCG (KLN) models:
 - Glauber better describes the data
 - Both models fail to describe shapes of v_n distributions in peripheral collisions

ATLAS-CONF-2012-144

Electroweak probes

Z⁰ and W[±] bosons and photons are not strongly interacting with the medium constituents:

should obey QCD factorization (scaling with N_{coll})

- Measurements of Z/W/γ production in Pb+Pb provide constraints on the nuclear PDF
- Z/W/γ bosons can be used as a reference
- Production of Z/W/γ in association with jets provides a handle for understanding the parton energy loss in medium

Measurement of $Z \rightarrow e^+e^-, \mu^+\mu^-$

 $Z \rightarrow e^+e^-$ candidate

$Z \rightarrow \mu^+ \mu^-$ candidate

Measurement of $Z \rightarrow e^+e^-, \mu^+\mu^-$

- |ŋ|<2.5
- Shower shape and energy cuts
- Subtraction of the UE energy

• |n|<2.7

track quality cuts

$\sum_{T \to e^+e^-} p_T \text{ and } y \text{ distributions of } Z \text{ bosons}$ $Z \to e^+e^- \text{ and } Z \to \mu^+\mu^-$

 $\frac{1}{2} = \frac{1}{2}$

 p_T and y distributions consistent with Pythia simulations for pp with NNLO cross section × <T_{AA}>

arXiv:1210.6486 [hep-ex], submitted to PRL

SemWwa 9/11/2012

Centrality dependence of Z's production

Yields consistent with N_{coll} scaling

B. Wosiek

Prompt photon production

Yields scaled by T_{AA} and compared to JETPHOX predictions

Ratio: Data/JETPHOX ≈ 1 (~R_{AA})

Electroweak probes: Summary

- Z, γ yields scale with N_{coll}
 No significant violation of QCD factorization
- Using N_{coll} as a normalization of AA spectra is justified

Medium-sensitive probes

- Charged hadron production
- Heavy quark production
- Jet studies

Strong suppression (R_{CP}≈0.2) at ~7 GeV in central collisions No η dependence observed

QM'2012, Washington DC 13/08/2012

B. Wosiek

Open heavy flavour production

- template fitting method
- 4 < p_T < 14 GeV, |η|<1.05

- A factor of 2 suppression 0-10%/60-80%, independent of p_T
- Weaker suppression than for charged hadrons
- Weaker suppression as compared to RHIC HF electron results
- At RHIC b \rightarrow e.. more suppressed than c \rightarrow e...?!

RHIC

PHENIX heavy flavor

PHENIX pi0

0-10%

Jet studies

Jet quenching: jet energy loss in hot/dense medium (J.D. Bjorken – 1982)

- Suppression of the jet yields
- Modification of the fragmentation function
 - Much more advanced analyses
 - Fully unfolded jet p_T spectra
 - Dependence on the jet size
 - Full control of systematic uncertainties
- Dependence on the path length
- \succ Jet v_2
- \succ γ ,Z jet correlations

Preliminary results shown at QM'2011

New results

Jet suppression

First LHC result on jet suppression Unfolded p_T spectra For jet sizes R=0.2, 0.3, 0.4 and 0.5

peripheral reference: 60-80%

- A factor of ~2 suppression in 0-10% most central collisions
- Suppression independent of jet p_T

SemWwa 9/11/2012

B. Wosiek

R-dependence of jet suppression

arXiv:1208.1967 [hep-ex] Submitted to Phys. Lett.B

Ratio of R_{CP} values between R=0.3, 0.4 and 0.5 jets and R=0.2 jets

Dependence on jet radius for $p_T < 100$ GeV in 0-10% central \rightarrow A weaker suppression is observed for larger jet radius parameters Weaker dependence is observed in 10-20% centrality bin No dependence on the jet radius is seen for more peripheral collisions

SemWwa 9/11/2012

Jet fragmentation at QM'2011

SemWwa 9/11/2012

B. Wosiek

Jet fragmentation

Azimuthal dependence of jet yields

Path length dependence of jet suppression

• Ratios of yields in different slices of $\Delta \phi = \phi^{jet} - \Phi_2(\Psi_2)$

 Ψ_2

Jet v₂

Jet v_2 measured for 45 < p_T < 210 GeV R=0.2 jets

Some evidence for increase at lower p_{T}

ATLAS-CONF-2012-116

SemWwa 9/11/2012

STAR I: Au+Au Vis., 200 GeV 40-80

0.2

0.1

0

5

10

PMENIX x² Au+ Au \ E_m=200 GeV 40-50

15

20 p_ [GeV]

γ , Z – jet correlations

Modification of the jet energy relative to the probe not affected by the medium

γ - jet correlations

Large cross-section, purity 75-85%

- Eγ > 60 GeV: 60-90 GeV, |η|<1.3
 Jet: anti-kT, R=0.2, 0.3, p_T>25 GeV, |η|<2.1
- γ -jet separation $\Delta \phi > 7\pi/8$ (back-to-back)

• Shape and integral compatible with PYTHIA for peripheral collisions

• With increasing centrality shift towards smaller $x_{J\gamma}\,$ and reduction of the integral

ATLAS-CONF-2012-121

Z - jet correlations

 $Z(\rightarrow e^+e^-)$ - jet

M_{ee}=87.5 GeV p_T(Z)=105 GeV p_T(jet)=41.8 GeV

Z - jet correlations

- $Z \rightarrow e^+e^-, \mu^+\mu^- p_T > 60 \text{ GeV}$
- Jet: anti-kT, R=0.2, 0.3, 0.4, p_T>25 GeV, |η|<2.1
- Z-jet separation > $\pi/2 \rightarrow 37$ events for L_{int}=0.15 nb⁻¹

- Suppression of the $\langle p_T^{jet} / p_T^z \rangle$ relative to MC simulations with no energy loss (PYTHIA: Z+jet events)
- Stronger suppression for more central collisions
 ATLAS-CONF-2012-119
 SemWwa 9/11/2012 B. Wosiek

Summary

Collective flow

- New results on flow harmonics fluctuations
- Constraints on hydrodynamic models
- Electroweak probes
 - Z and γ production consistent with N_{coll} scaling

Medium sensitive probes

- Heavy quarks are less suppressed than charged hadrons
- Jet yields suppressed by a factor of 2 in central collisions
- Jet suppression depends on the jet size in central collisions
- Jet fragmentation function shows no modification at high z, but significant suppression with centrality at z≈0.1 and enhancement at very low z is observed
- Azimuthal dependence of jet yields shows expected path length dependence
- Jet v_2 weakly depends on jet p_T out to 200 GeV
- Jet quenching also studied with Z,γ jet correlations

Backups

Measurement of Fourier coefficients

Phys. Rev. C86 (2012)014907

Similar p_T dependence for n=2-6 flow harmonics

Weak centrality dependence observed for v₃-v₆

For the 5% most central events $V_3 > V_2$

SemWwa 9/11/2012

The EbE v₂ distributions compared with the eccentricity distributions from two initial geometry models: Glauber (red lines) and MC-KLN (blue lines) Ann. Rev. Nucl. Part. Sci. 57, 205 (2007) Phys. Rev. C 74, 044905 (2006)

The EbE v₃ distributions compared with the eccentricity distributions from two initial geometry models: Glauber (red lines) and MC-KLN (blue lines) Ann. Rev. Nucl. Part. Sci. 57, 205 (2007) Phys. Rev. C 74, 044905 (2006)

The EbE v₄ distributions compared with the eccentricity distributions from two initial geometry models: **Glauber (red lines) and MC-KLN (blue lines)** Ann. Rev. Nucl. Part. Sci. 57, 205 (2007) Phys. Rev. C 74, 044905 (2006)

SemWwa 9/11/2012

B. Wosiek