Konferencja NEUTRINO 2012

Justyna Łagoda

NCBJ

25. International Conference on Neutrino Physics and Astrophysics

- najważniejsza z konferencji dotyczących neutrin
- program:
 - Neutrina reaktorowe
 - Neutrina <u>słoneczne</u> i geoneutrina
 - Neutrina atmosferyczne i akceleratorowe
 - Prędkość neutrin
 - Kosmologia i astrofizyka
 - Anomalie neutrina sterylne?
 - Podwójny bezneutrinowy rozpad beta i pomiary mas neutrin
 - Wiązki i detektory dla przyszłych eksperymentów
 - Ciemna materia
 - Pomiary przekrojów czynnych
 - Pomiary produkcji hadronów
 - Prezentacje teoretyczne

T-shirts

Jeszcze o konferencji

- 623 uczestników
- 64 prezentacje (24: Europa, 23: USA+Kanada, 17: Azja)
- 261 plakatów
- bogaty program "poboczny"
 - Przyjęcie powitalne i krótki koncert 4.06
 - Bankiet w miasteczku filmowym 6.06
 - Wycieczki (dzień wolny) 7.06
 - Występ gejsz i wykład publiczny 7.06

Justyna Łagoda, NCBJ

Neutrina reaktorowe

2011/2012 - The year of θ_{13}

2008 - Precision measurement of Δm₁₂². Evidence for oscillation

2003 - First observation of reactor antineutrino disappearance

Chooz

1995 - Nobel Prize to Fred Reines

1980s & 1990s - Reactor neutrino flux measurements in U.S. and Europe

1956 - First observation of (anti)neutrinos

Daya Bay Double Chooz Reno

Karsten M. Heeger University of Wisconsin

O neutrinach reaktorowych

- antyneutrina elektronowe
- powstają w rozpadach produktów rozszczepienia uranu i plutonu (średnio 6 rozpadów beta na rozszczepienie), ok. 2*10²⁰ neutrin/GW s
- ewolucja strumienia w czasie (wskutek zmiany składu • izotopowego rdzenia reaktora) → możliwość monitorowania pracy reaktorów
- energie rzędu MeV ullet
- oscylacje tylko pomiary zanikania (disappearance)

$$P_{ee} = 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4 E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4 E_v}\right)$$

$$P_{ee} = 1 - \sin^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4 E_v}\right) - \cos^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4 E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4 E_v}\right) - \sin^2 2\theta_{12} (1-2\%), hierarchia mas$$

Justyna Łagoda, NCE

1.1

0.9

0.8

0.7

0.5

0.4

O neutrinach reaktorowych

- antyneutrina elektronowe
- powstają w rozpadach produktów rozszczepienia uranu i plutonu (średnio 6 rozpadów beta na rozszczepienie), ok. 2*10²⁰ neutrin/GW s
- ewolucja strumienia w czasie (wskutek zmiany składu izotopowego rdzenia reaktora) → możliwość monitorowania pracy reaktorów
- energie rzędu MeV

Eksperymenty mierzące θ_{13}

metoda detekcji – odwrotny rozpad beta

$$\overline{v}_{e}$$
 + p $ightarrow$ e⁺ + n

- ciekły scyntylator z dodatkiem gadolinu (do wychwytu neutronów)
 - sygnał: koincydencja 12MeV+8MeV w czasie 28-30µs
 - tło: koincydencje przypadkowe, szybkie neutrony (rozproszenie i wychwyt), rozpad beta-n litu 9 i helu 8 (produkowanych przez miony kosmiczne w procesie spallacji)

	Double Chooz	RENO	Daya Bay
reaktory	2 (po 4.27GW)	6 (w linii prostej)	2+4 (razem 17.4 GW)
detektory	1(+1 w 2013)	1+1	3+3
masa (target)	8.2t (+8.2t)	2*16.5t	120t (razem)
Okres zbierania danych	227.9 dni (pierwszy wynik po 96.8 dniach)	228 dni (11.08.2011- 25.03.2012)	24.12.2011-11.05.2012 (pierwszy wynik – do 17.02)
Liczba przypadków	8249	154088 w bliskim, 17102 w dalekim	po ok. 70000 w bliskich, 10000 w dalekich
Odległości	(400m)	290m	363-481-526m
	1050m	1380m	1615-1985m

Double Chooz

M.Ishitsuka

Double Chooz

L)

Pierwszy wynik: listopad 2011 wskazanie na niezerowy θ13 (94 w połączeniu z T2K i MINOSem:

ν_e

Buffer

γ-catcher

v-target

Francja,

Ardeny

M.Ishitsuka

edf

Chooz Reactors

4.27GW_{th} x 2 cores

M.Ishitsuka

Double Chooz new results

Rate only: Rate+Shape: $sin^2 2\theta_{13} = 0.170 \pm 0.035(stat) \pm 0.040(syst)$ $sin^2 2\theta_{13} = 0.109 \pm 0.030(stat) \pm 0.025(syst)$ $\chi^2/dof = 41.13/35$

 $sin^2 2\theta_{13} = 0$ is excluded at 99.9%(3.1 σ) (frequentist study) 26

 $R = \frac{\Phi_{observed}^{Far}}{\Phi_{expected}^{Far}} = 0.920 \pm 0.009(stat) \pm 0.014(syst)$ S-B.Kim

Daya Bay

seminarium 25.05.2012 – P.Przewłocki na konferencji – ponad 2.5 raza więcej danych Justyna Łagoda,

* Caveat: Spectral systematics not fully studied; θ_{13} value from shape analysis is not recommended. 1:

6/4/12

Improved Measurement of Electron-antineutrino Disappearance

Najbardziej precyzyjny pomiar

Zastosowania praktyczne

Neutrinos for peace

	Option	Description	Applied Antineutrino Phys		
(1)	Detecting reactor ON/OFF	Watch hidden operation of reactor.Watch stopping operation to remove Pu.			
(2)	Real time measurement of operation power.	Independent and non-intruding monitor.Cross check the operation record.			
(3)	Pu measurement in reactor fuel.	- Watch the removal of Pu.			
(3)'	Real time burn-up measurement.	- Measure Pu amount in run - Initial component of new fu	ning fuel. el.		
(4)	Detect hidden reactor and measure the distance.	- Application of neutrino osci	illation		
(5)	Detect nuclear explosion	Locate nuclear test and meas	sure power.		
(6)	Deterrence	Existence of neutrino detector restrain undeclerated operation	or near by will tion.		

$$n_{\nu}[dzie\acute{n}] \approx 5000 \frac{P[GW]M[tona]}{(L[10m])^2}$$

F.Suekane

Zastosowania praktyczne

Neutrinos	Ior	peace

	Option	Description	Applied Antineutrino Physic		
(1)	Detecting reactor ON/OFF				
(2)	Real time measurement of operation power.	detektora 0.64 (scyntylator+gado	a t plin)		
(3)	Pu measurement in reactor fuel.	odległość 25m od ro (SONGS1, San Opofr			
(3)'	Real time burn-up measurement.	- (SONGS1, San Onotre, USA)			
(4)	Detect hidden reactor and measure the distance.	- Application of neutrino osci	illation		
(5)	Detect nuclear explosion	Locate nuclear test and meas	sure power.		
(6)	Deterrence	Existence of neutrino detector restrain undeclerated operation	or near by will tion.		

$$n_{\nu}[dzie\acute{n}] \approx 5000 \frac{P[GW]M[tona]}{(L[10m])^2}$$

F.Suekane

Wykrywanie reaktorów

In principle distance to reactor or explosion center can be measured from energy spectrum distortion due to neutrino oscillation.

$$P(E) = 1 - \sin^2 2\theta_{12} \sin^2 \left(\Delta m_{12}^2 \frac{L}{4E} \right)$$

And $N_v \times L^2$ indicates power at the origin

Wykrywanie próbnych wybuchów?

$$n_{\nu} \approx 10^{-3} \frac{P[kt]M[tona]}{(L[100 \text{km}])^2}$$

W detektorze **KamLAND** próbny wybuch jądrowy w Korei Północnej (4 kilotony) dałby sygnał...

10⁻⁵ przypadków

100 KamLANDs

To detect 10kt nuclear test in NK, hundreds kt of detector will be n ecessary even if it is located at a boarder of Russia and NK.

18

World's R&D efforts

(from 2011 IAEA workshop report)

Country	Name	Reactor	
Brasil	Angra	Angra-II	H2O+Gd
China		DayaBay	
Canada		Pt.Lepreu	CANDU /with US
France	Nucifer	Osiris	LS, Simulation
Italy			Plastic
Netherland/ SouthAfrica			Novel detection materials
Japan	KASKA PANDA	Joyo Ohi	LS (R&D for v oscillation exp.) Plastic
Russia	DANSS	KNPP	Plastic
Taiwan			Coherent scattering
UK	Mars		Plastic, 6Li
USA	SONGS	SanOnofre Pt.Lepreu	LS Simulation, Compact

Keywords: Above grounds, Plastic or LS, or Water, Mobile,

Neutrina słoneczne

6 czerwca przejście Wenus na tle tarczy Słońca

(ostatnie w tym stuleciu, następne dopiero 11 grudnia 2117 roku)

(autor nieznany, zdjęcie przysłane przez organizatorów konferencji)

Neutrina słoneczne

- powstają jako produkt uboczny nukleosyntezy na Słońcu
- deficyt neutrin słonecznych był pierwszym sygnałem, że coś dzieje się z neutrinami podczas propagacji

M.Pallavinci

Borexino

• detekcja: rozpraszanie elastyczne na elektronach

 $v + e - \rightarrow v + e -$

- światło scyntylacyjne wykrywane przez fotopowielacze
 ^{ENERGY RESOLUTIO} ⁰⁰⁶ @ 200 keV ⁰⁰⁶ @ 200 keV ⁰⁰⁶ @ 200 keV
 - liczba fotonów → energia przypadku
 - czas przelotu \rightarrow pozycja przypadku w detektorze
 - kształt impulsu → separacja α/β, β+/β- (eliminacja tła od zanieczyszczeń promieniotwórczych)

278 ton bardzo czystego scyntylatora promień 4.35 m

Justyna Łagoda, NCBJ

6%

35 cm

16 cm

1 MeV

@ 200 keV

@ 500 keV

M.Pallavinci

L RESOLUTION

⁷Be RATE (II)

Two approaches to control systematic errors due to analysis procedure:

Monte Carlo fit to the spectrum, no α/β ²¹⁰Po peak subtraction

Analytical fit to the spectrum, after α/β ²¹⁰Po peak subtraction

M. Pallavicini

Phys. Rev. Lett. 107, 141302, 2011

- Very Consistent results, small difference included in sys. uncertainty
- Rate for 100 t target:
 - 46.0 ± 1.5 (stat) ± 1.5 (sys) c d⁻¹

leutrino	2012	- Kyoto
----------	------	---------

Source	%
Trigger efficiency and stability	< 0.1
Live time	0.04
Scintillator density	0.05
Fiducial volume	+0.5 -1.3
Fit methods	2
Energy response	2.7
Sacrifice of cuts	0.1
Total	+3.4 -3.6

Wykrycie neutrin pep

- słaby sygnał
- tło od węgla-11
 - koincydencje czasowe (TFC)
 - separacja β+/β- na podstawie kształtu sygnału

M.Pallavinci

Wyniki Borexino

Wyniki Borexino

Eksperymenty z długą bazą

Neutrina akceleratorowe

- - domieszka elektronowych z rozpadu kaonów i mionów
- dostępne różne energie i szerokości widma
 - niepewności związane z symulacją wiązki

	T2K	MINOS	CNGS
baza	295 km	735 km	732 km
energia	0.6 GeV (pik)	3 GeV (pik)	17 GeV (średnia)
Detektor bliski	wielozadaniowy	980t, żelazo+scyntylator	-
Detektor daleki	22kt (FV), wodny czerenkowski	4.5kt, żelazo+scyntylator	 1250 t, emulsje+scyntylatory 476 t, ciekły argon
Inne cechy	off-axis	pole magnetyczne	

T2K w 2011

- 13 czerwca 2011 pierwsze doniesienie o zaobserwowaniu oscylacji $v_{\mu} \rightarrow v_{e}$
 - Obserwacja 6 przypadków przy spodziewanym tle 1.5±0.3 (2.5σ)
- wskazanie na niezerową wartość 0.03 (0.04) < sin²2θ₁₃ < 0.28 (0.34)

Kamioka

295 km

 zbieranie danych przerwane na niemal rok z powodu trzęsienia ziemi 11.03.2011

T2K w 2012

- powtórne uruchomienie eksperymentu
- nowe dane zbierane w 2012 (run3)
- statystyka niemal podwojona

θ_{13} w T2K

- prawdopodobieństwo obserwacji 10 lub więcej przypadków przy spodziewanym tle 2.73±0.37 wynosi 0.08% (3.2σ)
- istnienie oscylacji $v_{\mu} \rightarrow v_{e}$ zostało potwierdzone
- analiza prowadzona trzema metodami, używającymi
 - tylko liczby przypadków
 - liczby przypadków i rozkładu zrekonstruowanej energii neutrir
 - liczby przypadków, pędu i kąta elektronu

```
0.036 < sin<sup>2</sup>2θ<sub>13</sub> < 0.21 (90%CL)
```


MINOS

- NEUTRINO 2010 wyniki oscylacji antyneutrin
 - rozróżnienie neutrin i antyneutrin przypadek po przypadku
- NEUTRINO 2012
 - neutrina atmosferyczne: 37.9 kton*rok
 - wiązka neutrin: 10.71*10²⁰ POT
 - wiązka antyneutrin: 3.36*10²⁰ POT
 - zanik neutrin mionowych
 - pojawianie się neutrin elektronowych

 Δm^2 and $|\Delta \overline{m}^2|$ (10⁻³ eV²)

Contours

Beam and Atmospherics

Antineutrino

Contours

Adding in the extra data and the atmospherics

Wyniki MINOSa

- najbardziej precyzyjny pomiar Δm²₂₃, dane dla zaniku neutrin mionowych wskazują na nie maksymalne mieszanie
- zgodne wyniki dla neutrin i antyneutrin
- pomiar sin²2θ₁₃

poszukiwanie neutrin taonowych

plus 3-prong decay m

- tarcza: emulsje jądrowe przekładane ołowiem, scyntylatory
- spektrometr mionowy

Wyniki poszukiwania neutrin taonowych

	OPERA	4				
Years	Status	# of events for Decay search	Expected ν _τ (Prelimin ary)	Observed ν _τ Candidat e Events	E B າ (f	parent
2008- 2009	Finished	2783	NEUTRIN	1 NO 2010		
2010- 2011	In analysis	1343	NEUTRIN	1 NO 2012		2000
2012	Started					
Total		4126	2.1	2	0	.2

- SuperKamiokande
 - neutrina atmosferyczne
 - przypadki wieloringowe
 - nadwyżka przypadków tau-podobnych idących z dołu
 - 3.8σ

Źródła problemu OPERY

- złe połączenie włókna optycznego z głównym zegarem \rightarrow czas oczekiwania na przybycie neutrin wydłużony o ~74ns
- złe taktowanie wewnętrznego głównego zegara (zamiast 10ns -9.99999877ns) → skrócony czas oczekiwania o ~15ns

Źródła problemu OPERY

- złe połączenie włókna optycznego z głównym zegarem \rightarrow czas oczekiwania na przybycie neutrin wydłużony o ~74ns
- złe taktowanie wewnętrznego głównego zegara (zamiast 10ns -9.99999877ns) → skrócony czas oczekiwania o ~15ns

Prędkość neutrin

- OPERA
 - powtórna analiza danych 2009-2011
- +pozostałe detektory
 - wiązka o krótkich impulsach (2-3ns)
 - 22.10-6.11.2011
 - 10-24.05.2012

- MINOS
 - długość impulsu 1ns
 - ulepszenie aparatury w lutym 2012
 - dane zbierane do 1.05.2012
 - 2 metody analizy

(v-c)/c=(1.2 ± 0.2 ± 1.2)*10⁻⁶ (LVD)

Ultra wysokie energie

Neutrina o ultra wysokich energiach

- przewidywania strumienia oparte na obserwacjach promieniowania kosmicznego
 - neutrina z błysków gamma
 - neutrina kosmogeniczne (GZK)
 - aktywne jądra galaktyk
 - supernowe
 - źródła egzotyczne (modele top-down)
- obserwacje
 - "naturalne" detektory: lód/woda, obserwacja promieniowania Czerenkowa
 - detektory wielkopowierzchniowe obserwacja głębokich pęków atmosferycznych (oraz fluorescencji)
 - inne (JEM-EUSO, radiowe itp.)

The highest energy neutrinos

cosmogenic neutrinos induced by the interactions of cosmic-ray and CMB photons Off-Source (<50Mpc) astrophysical neutrino production via

p >100EeV GZK v Yoshida et al. m=4 Zmax = 4 γ =2 GZK \vee Sigl et al. m=5, Zmax = 3, γ = 2 10^{-4} GZK \vee Engel et al. $\Omega_{\chi} = 0.0$ GZK v Engel et al. $\Omega_1 = 0.7$ 10^{-5} GZK v Ahlers et al. m=4.4 Zmax = 2 γ = 2.1 E² φ(E) [GeV cm⁻² sec⁻¹ sr⁻¹] GZK v Ahlerset al. m=4.6 Zmax = 2 γ=2.5 GZK v Kotera FR2, Emax 316 EeV 10⁻⁶ 10-7 10^{-8} 10-9 10⁻¹⁰ 10-11 8 log₁₀(Energy/GeV) 10 A.Ishihara

GZK (Greisen-Zatsepin-Kuzmin) mechanism

	The main energy range: $E_{v}^{}\sim 10^{810}GeV$						
p	γ _{2.7K}	$\rightarrow \pi^+ + X \rightarrow \mu^+ + \nu \rightarrow e^+ + \nu' s$					
		Carries important physics					
Vari GZK mod	ous v lels	 Location of the cosmic-ray sources Cosmological evolution of the cosmic-ray sources Cosmic-ray spectra at sources The highest energy of the cosmc- rays Composition of the cosmic-rays Particle physics beyond the energies accelerators can reach 					
	W za neutr oraz dotac	kresie energii PeV spodziewane są też ina atmosferyczne "konwencjonalne" "prompt" (z rozpadu ciężkich mezonów d nie obserwowane)					

Two events passed the selection criteria

2 events / 672.7 days - background (atm. μ + conventional atm. ν) expectation 0.14 events preliminary p-value: 0.0094 (2.36σ)

selekcja oparta na liczbie fotoelektronów oraz kierunku Justyna Łagoda, NCBJ

Wyniki IceCube

Neutrina sterylne?

Anomalie

- LSND nadwyżka \overline{v}_{e} w wiązce \overline{v}_{μ} (3.8 σ) i słabszy efekt dla neutrin
 - oscylacje z $\Delta m^2 \sim 1 eV^2$?
- 2010 MiniBoone brak efektu dla antyneutrin (1.3σ) ale obserwowano nadwyżkę dla neutrin (3σ), dla nieco innego L/E (E<475MeV)

- anomalia reaktorowa (3σ)
- anomalia galowa zbyt mały mierzony strumień źródła kalibracyjnego (2.7σ)
- wyniki WMAP liczba lekkich neutrin 4.34±0.87 (2σ, zależy od modelu)

Nowe wyniki MiniBoone

- pomiary domieszek w wiązce: neutrin w wiązce antyneutrin i pierwotnych neutrin elektronowych
- podwojenie statystyki dla antyneutrin

- nadwyżki neutrin 3.0σ, <u>antyneutrin 2.5σ</u>, łącznie 3.8σ
- oscylacje? tło? inne zjawisko?
 - w rekonstrukcji energii zakłada się proces QE, jeśli w reakcji biorą udział dodatkowe cząstki, to zrekonstruowana energia będzie zaniżona
 - mechanizm MEC (meson exchange current) z emisją kilku protonów?
 - mógłby też tłumaczyć wyższy niż spodziewany przekrój na CCQE zmierzony w MiniBoone

Anomalia reaktorowa

- nowe obliczenia przewidywanego strumienia (2011) → przesunięcie przewidywań o 3% w górę
- efekt jądrowy, problem z normalizacją czy oscylacje na krótkiej bazie (1-10m?)

ce Comparison of proposal sensitivities

Th. Lasserre - Neutrino 2012

This is the first conference of this series the three lepton mixing angles are known

K.Nishikawa

	Numerical 10	σ, 2σ, 3σ ranges :	G.Fogli	
Parameter	Best fit	1σ range	2σ range	3σ range
$\delta m^2/10^{-5} \text{ eV}^2$ (NH or IH)	7.54	7.32 - 7.80	7.15 - 8.00	6.99 - 8.18
$\sin^2 \theta_{12} / 10^{-1}$ (NH or IH)	3.07	2.91 - 3.25	2.75 - 3.42	2.59 - 3.59
$\Delta m^2/10^{-3} \text{ eV}^2$ (NH)	2.43	2.34 - 2.50	2.26 - 2.58	2.15 - 2.66
$\Delta m^2/10^{-3} \text{ eV}^2$ (IH)	2.42	2.32 - 2.49	2.25 - 2.56	2.14 - 2.65
$\sin^2 \theta_{13}/10^{-2}$ (NH)	2.45	2.14 - 2.79	1.81 - 3.11	1.49 - 3.44
$\sin^2 \theta_{13}/10^{-2}$ (IH)	2.46	2.15 - 2.80	1.83 - 3.13	1.50 - 3.47
$\sin^2 \theta_{23}/10^{-1}$ (NH)	3.98	3.72 - 4.28	3.50 - 4.75	3.30 - 6.38
$\sin^2 \theta_{23}/10^{-1}$ (IH)	4.08	3.78 - 4.43	3.55 - 6.27	3.35 - 6.58
δ/π (NH)	0.89	0.45 - 1.18	_	_
δ/π (IH)	0.90	0.47 - 1.22	_	_

Note: above ranges obtained for "old" reactor fluxes. For "new" fluxes, ranges are shifted (by ~ 1/3 σ) for two parameters only: $\Delta \sin^2 \theta_{12}/10^{-1} \simeq +0.06$ and $\Delta \sin^2 \theta_{13}/10^{-2} \simeq +0.10$

Fractional 1s accuracy [defined as 1/6 of $\pm 3\sigma$ range]						
δ m ²	$sin^2\theta_{12}$	$sin^2\theta_{13}$	$sin^2\theta_{23}$	Δm^2		
2.6%	5.4%	13%	13%	3.5%		

We were already in the precision era for v physics!

Possible tension btw Kamland and solar ∆m²

So, the most interesting and urgent questions for global analyses remain: the θ_{23} octant and (to some extent) δ_{CP} . Difficult to attack the hierarchy with current data.

O planach na przyszłość słyszeliśmy tydzień temu

Podsumowanie

- Japońskie konferencje:
 - Sendai, 1986 anomalie w neutrinach atmosferycznych (Kamiokande i IMB)
 - Takayama, 1998 odkrycie oscylacji neutrin atmosferycznych
 - Kioto, 2012 pomiar kąta θ13
- 2014 Boston, 2-7.06
- 2016 Londyn, lipiec
- 2018 Heidelberg
- 2020 ? Chicago, Seul, Minneapolis...
- 2030 setna rocznica "urodzin" koncepcji Pauliego – Zurych?

Backup slides

UHE Neutrinos In the Earth...

- Generally neutrinos identified as "through the Earth" up-going events
- Earth is opaque for UHE neutrinos
- UHE neutrino-induced events are coming from above and near horizontal direction

 $\begin{array}{l} UHE \ neutrino \ mean \ free \ path \\ \lambda_n \sim 100 \ km << R_{Earth} \\ \sigma^{cc}{}_{nN} \sim 10^{-6 \sim -4} \ mb \end{array}$

A.Ishihara

17

Masy neutrin

- oscylacje neutrin (różnice kwadratów, dolne ograniczenie)
- pomiar widma elektronów w rozpadzie trytu $m_{\beta} = \left[c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2\right]^{\frac{1}{2}}$
- podwójny bezneutrinowy rozpad beta (zależny od modelu) $m_{\beta\beta} = \left| c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right|$
- ograniczenie kosmologiczne (zależne od modelu)

 $\Sigma m < 0.3 \text{eV}$

- przygotowywane eksperymenty:
 - KATRIN (spektrometr, rozpadu trytu), ← start 2015
 - MARE, ECHO (bolometr, rozpad renu, holmu),
 - Project 8 (częstość cyklotronowa, rozpad kryptonu)

Podwójny bezneutrinowy rozpad beta

- Ograniczenia:
 - KamLand ZEN: ksenon 136, 38.6 kg*rok: τ >6.2*10²⁴ lat, m<260-540meV (90%CL)
 - EXO: ksenon 136, 23,5 kg*rok: 5 przypadków przy spodziewanym tle 7.5, τ >1.6*10²⁵ lat, m<140-280meV (90%CL)

