

- Projekt SPA
- Sektor neutralin i chargin
- Badania przy LC
- Analiza danych z LC i LHC

Supersymmetry – a well motivated extension of the SM:

- stabilizes the electroweak scale
- leads to unification of gauge couplings
- accommodates large top quark mass
- provides dark matter candidate

Exact SUSY – no new parameters:

- we know spartners
- and their couplings

 $\begin{array}{c|c} e^{-} \\ \hline \\ \tilde{\gamma} \end{array} \end{array} \xrightarrow{e^{-}} \\ e^{-} \\ \hline \\ e^{-} \\ \gamma \end{array} \xrightarrow{e^{-}} \\ e^{-} \\ \gamma \\ \end{array}$

However SUSY – must be broken: soft breaking

- its mechanism unknown (> 100 parameters in MSSM)
- many models: SUGRA, GMSB, AMSB, \tilde{g} MSB, \ldots
- each model has a few parameters (at high scale)

⇒ different phenomenology

SUSY Breaking

. . .

How can one experimentally determine the SUSY parameters?

- Lagrangian parameters are not observables
- observables: σ , distributions, BRs, asymmetries,
- need unfolding procedure to determine masses, partial widths, couplings etc.
 from measured cross sectione ...
- mot possible to measure Lagrangian parameters in a strictly model-independent way

In practice: comparison of data – Monte Carlo

 \Rightarrow dependence on other model parameters

Even in the SM

- couplings, mixing angles, ...: more model dependent

In the MSSM:

- many relations between particle masses
- many parameters are not closely related to one particular observable, like $\tan\beta$, μ , complex phases, ...
- masses of unstable particles: different definitions possible
- no obvious 'best' choice for renormalization conditions
- already many different definitions in the literature
 - \Rightarrow have to convert between them when comparing theoretical predictions
- ultimately a global fit to many observables, like in the SM
 ⇒ should we better converge to one (or at most only few) commonly accepted standard(s)??

Example: Les Houches Accord #3

Projekt SPA – Supersymmetry Parameter Analysis

A lot of results already available:

On the theoretical side:

- two-loop for Higgs sector
- one-loop for sfermion and gaugino masses and couplings
- partial results for cross sections and decay widths

On the experimental side

- MC simulations for the LHC
- some experimental analyses performed for the LC

Different pieces done in different schemes, and for different SUSY scenarios.

Goals of the SPA project

1st step: Collect consistent set of tools for

- masses, mixings, couplings, ...
- cross sections, BR, ...
- low-energy constraints, e.g. $b
 ightarrow s\gamma$, $(g-2)_{\mu}$, $\Omega_{CDM}h^2$, ...

2nd step: Analyse one scenario \Rightarrow SPS1a point chosen

- experimental error analyses for LHC + LC
- extract Lagrange parameters
- extrapolate them to high scale

One example: Analysis of the chargino/neutralino sector at LC + LHC with Desch, Moortgat-Pick, Nojiri and Polesello

Existing simulations and estimates

	m [GeV]	Δm [GeV]	Comments
$\tilde{\chi}_1^{\pm}$	176.4	0.55	simulation threshold scan. 100 fb ⁻¹
$\bar{\chi}_1^0$	96.1	0.05	combination of all methods
$\tilde{\chi}_2^0$	176.8	12	simulation threshold scan $ ilde{\chi}_2^0 ilde{\chi}_2^0$, 100 fb $^{-1}$
êR	143.0	0.05	e^-e^- threshold scan, 10 fb $^{-1}$
\tilde{e}_L	202.1	02	e^-e^- threshold scan 20 fb $^{-1}$
Û,	186.0	12	simulation energy spectrum, 500 GeV, 500 fb ⁻¹
μ̃ _R	143.0	02	simulation energy spectrum 400 GeV, 200 fb ⁻¹
$\bar{\tau}_1$	133.2	0.3	simulation energy spectra, 400 GeV, 200 fb-1

Studies & simulations to be done

ええなる 28 24	$\begin{array}{l} m,\Gamma,\mathcal{B}\\ \Delta m_{12}=m_{\tilde{\chi}_2^0-\tilde{\chi}_1^0}\\ m,\Gamma\\ m,\Gamma \end{array}$	$\sigma_{L,R}(\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp}) \\ \sigma_{L,R}(\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{\pm}), \sigma_{L,R}(\tilde{\chi}_{2}^{\pm} \tilde{\chi}_{2}^{\mp}) \\ m_{ee}, m_{\mu\mu} \text{ spectra} \\ Z, W \text{ spectra, thresholds} \\ Z, W \text{ spectra, thresholds} $
ёл 04 Дл 07 73	m, Γ, B in e ⁺ e ⁻ m, Γ m, Γ, B m, Γ m, Γ, B, P _T	E_{e} spectra from $\tilde{e}_{R}\tilde{e}_{L}$, $\tilde{e}_{L}\tilde{e}_{L}$ continuum, threshold
ť1	$m, \cos \theta_{\tilde{t}}, \Gamma$	jet spectra, min. mass

Scenario:

[Desch, Moortgat-Pick, Nojiri, Polesello, JK]

- The SPS1a SUSY point for analysis
- The first phase of a LC with $\sqrt{s} \leq 500$ GeV could overlap with the LHC
- only light $\tilde{\chi}_1^+$, $\tilde{\chi}_1^0$ and $\tilde{\chi}_2^0$ accessible at the LC
- ${{{\widetilde e}_{
 m{L}}}}$, ${{{\widetilde e}_{
 m{R}}}}$ and ${{{\widetilde \nu }_{e}}}$ measured
- $\bullet\,$ polarized beams with $P(e^-)=\pm 0.80$ and $P(e^+)=\mp 0.6$
- integrated luminosity of 100 fb $^{-1}$ per process

Goals of the exercise: at tree level

- how well can the SUSY parameters be determined from LC
- with additional info from the LHC
- joint analysis

Example: charginos/neutralinos

1(

The chargino sector:

 $\bullet\,$ chargino mass matrix in the $(\tilde{W}^-,\tilde{H}^-)$ basis

$$\mathcal{M}_C = \left(egin{array}{cc} M_2 & \sqrt{2}m_W\coseta \ \sqrt{2}m_W\sineta & |\mu|\mathrm{e}^{i\Phi\mu} \end{array}
ight)$$

• to diagonalize, two unitary matrices parameterized by two mixing angles $\phi_{L,R}$ and three CP phases $\beta_{L,R}$ and γ

$$U_L = \left(egin{array}{cc} c_L & s_L^* \ -s_L & c_L \end{array}
ight), \quad U_R = \left(egin{array}{cc} 1 & 0 \ 0 & \mathrm{e}^{i\gamma} \end{array}
ight) \left(egin{array}{cc} c_R & s_R^* \ -s_R & c_R \end{array}
ight)$$

where $c_{L,R} = \cos \phi_{L,R}$, $s_{L,R} = e^{i\beta_{L,R}} \sin \phi_{L,R}$

From
$$\{M_2, \mu, \tan\beta\} \Longrightarrow \{m_{\tilde{\chi}_{1,2}^{\pm}}, \cos 2\phi_{L,R}\}$$

• the chargino masses

$$m_{\tilde{\chi}_{1,2}^{\pm}}^{2} = \frac{1}{2} \left[M_{2}^{2} + |\mu|^{2} + 2m_{W}^{2} \mp \Delta_{C} \right]$$

• the mixing angles

$$\cos 2\phi_{L,R} = -\left[M_2^2 - |\mu|^2 \mp 2m_W^2 \cos 2\beta\right] /\Delta_C$$

where

$$\Delta_C = \left[(M_2^2 - |\mu|^2)^2 + 4m_W^4 \cos^2 2\beta + 4m_W^2 (M_2^2 + |\mu|^2) + 8m_W^2 M_2 |\mu| \sin 2\beta \cos \Phi_\mu \right]^{1/2}$$

Experimentally masses and mixing angles will be measured

- mixing angles \leftarrow cross sections with polarized beams

Inverting [Choi et al. '98-'02, Kneur, Moultaka '99,'00] From $\{m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_2^{\pm}}, \cos 2\phi_L, \cos 2\phi_R\} \Longrightarrow \{M_2, |\mu|, \cos \Phi_{\mu}, \tan \beta\}$ • the mass parameters $M_2 = \left[(m_{\tilde{\chi}^{\pm}}^2 + m_{\tilde{\chi}^{\pm}}^2 - 2m_W^2)/2 - \Delta_C (c_{2L} + c_{2R})/4 \right]^{1/2}$ $\left|\mu\right| = \left[\left(m_{\tilde{\chi}_{2}^{\pm}}^{2} + m_{\tilde{\chi}_{1}^{\pm}}^{2} - 2m_{W}^{2}\right)/2 + \Delta_{C}(c_{2L} + c_{2R})/4\right]^{1/2}$ • $\tan \beta = \sqrt{\frac{4m_W^2 - \Delta_C (\cos 2\phi_L - \cos 2\phi_R)}{4m_W^2 + \Delta_C (\cos 2\phi_L - \cos 2\phi_R)}}$ • and $\cos \Phi_{\mu}$ (or sign of μ in CP–invariant case)

In our scenario ${ ilde \chi}_2^\pm$ is beyond the kinematical limit

Question:

How well M_2 , μ and $\tan\beta$ can be determined from the LC data without the heavy chargino mass?

Inverting in the CP conserving case (SPS1a)

From $\{m_{\tilde{\chi}_1^{\pm}}, \cos 2\phi_{L,R}\} \Longrightarrow \{M_2, \mu, \tan \beta\}$

• define

$$p = \pm \left| \frac{\sin 2\Phi_L + \sin 2\Phi_R}{\cos 2\Phi_L - \cos 2\Phi_R} \right|, \qquad q = \frac{1}{p} \frac{\cos 2\Phi_L + \cos 2\Phi_R}{\cos 2\Phi_L - \cos 2\Phi_R}$$

• then

$$M_{2} = \frac{m_{W}}{\sqrt{2}} \left[(p+q)\sin\beta - (p-q)\cos\beta \right]$$
$$\mu = \frac{m_{W}}{\sqrt{2}} \left[(p-q)\sin\beta - (p+q)\cos\beta \right]$$
$$\tan\beta = \left[\frac{p^{2} - q^{2} \pm \sqrt{r_{\tilde{\chi}}^{2}(p^{2} + q^{2} + 2 - r_{\tilde{\chi}}^{2})}}{(\sqrt{1+p^{2}} - \sqrt{1+q^{2}})^{2} - 2r_{\tilde{\chi}}^{2}} \right]^{\eta}$$

where $\eta=1$ for $\cos 2\phi_R > \cos 2\phi_L$, and $\eta=-1$ otherwise

Ball, Desch, Martyn

	$ ilde{\chi}_1^{\pm}$	$ ilde{\chi}_2^{\pm}$	$ ilde{\chi}_1^0$	$ ilde{\chi}^0_2$	$ ilde{\chi}^0_3$	$ ilde{\chi}_4^0$	${ ilde e}_R$	\widetilde{e}_L	$ ilde{ u}_e$
m	176.03	378.5	96.17	176.6	358.8	377.9	143.0	202.1	186.
δm	0.55		0.05	1.2			0.05	0.2	0.7

For the analysis we take

- chargino mass with error of 0.55 GeV
- polarised cross sections $\sigma_L^{\pm}\{11\}$ and $\sigma_R^{\pm}\{11\}$ at $\sqrt{s} = 400, 500$ GeV
- $\tilde{\chi}_1^\pm \to \tilde{\tau}_1^\pm \nu_\tau$ with 100% followed by $\tilde{\tau}_1^\pm \to \tau^\pm \tilde{\chi}_1^0$
- $\bullet\,$ the signature: two $\tau\,$ jets in opposite hemispheres
- assume 100 fb⁻¹ per each process and take 1 σ statistical error
- include error of 0.7 GeV for $m_{\tilde{\nu}_e}$
- beam polarisation with $\Delta P(e^{\pm})/P(e^{\pm})=0.5\%$

\sqrt{s}	400 GeV		500	GeV
($P(e^-)$, $P(e^+)$)	(8, +.6)	(+.8,6)	(8, +.6)	(+.8,6)
$\sigma(e^+e^- \to \tilde{\chi}_1^+ \tilde{\chi}_1^-)$	215.84	6.38	504.87	15.07
$\delta\sigma_{ extsf{stat}}$	1.47	0.25	2.25	0.39
$\delta\sigma_{P(e^-)}$	0.48	0.12	1.12	0.28
$\delta\sigma_{P(e^+)}$	0.40	0.04	0.95	0.10
$\delta \sigma_{m_{ ilde{\chi}_{1}^{\pm}}}$	7.09	0.20	4.27	0.12
$\delta\sigma_{m_{ ilde{ u}_e}}$	0.22	0.01	1.57	0.04
$\delta\sigma_{ m total}$	7.27	0.35	5.28	0.51

plot cross sections in the $\cos 2\Phi_L$ and $\cos 2\Phi_R$ plane

The neutralino sector:

- neutralino mass matrix in the $(ilde{B}, ilde{W}^3, ilde{H}^0_1, ilde{H}^0_2)$ basis

$$M_{N} = \begin{pmatrix} M_{1} & 0 & -m_{Z}c_{\beta}s_{W} & m_{Z}s_{\beta}s_{W} \\ 0 & M_{2} & m_{Z}c_{\beta}c_{W} & -m_{Z}s_{\beta}c_{W} \\ -m_{Z}c_{\beta}s_{W} & m_{Z}c_{\beta}c_{W} & 0 & -\mu \\ m_{Z}s_{\beta}s_{W} & -m_{Z}s_{\beta}c_{W} & -\mu & 0 \end{pmatrix}$$

 $M_1 = |M_1|\,\,\mathrm{e}^{i\Phi_1}$, $\mu = |\mu|\,\,\mathrm{e}^{i\Phi_\mu}$

 $\bullet\,$ the diagonalization matrix $N{:}\,$ 6 angles and 10 phases

$$N = \text{diag} \{ e^{i\alpha_1}, e^{i\alpha_2}, e^{i\alpha_3}, e^{i\alpha_4} \} D$$

$$D = R_{34} R_{24} R_{14} R_{23} R_{13} R_{12}$$

 R_{jk} : 2-dim complex rotation by ($\cos heta_{jk}, \sin heta_{jk} \mathrm{e}^{i arphi_{jk}}$)

- if $\varphi_{ij}=0$ and $\alpha_i=0$, CP conserved
- unitarity constraints \longrightarrow quadrangles of two types

 $\begin{array}{ll} \oplus \text{ multiply rows } i \text{ and } j & M_{ij} = \Sigma_k N_{ik} N_{jk}^* \\ \oplus \text{ multiply columns } i \text{ and } j & D_{ij} = \Sigma_k N_{ki} N_{kj}^* \end{array}$

 unlike in the CKM or MNS cases of quark and lepton mixing, the orientation of all quadrangles is physical and determined by the phases

 $(M_1, M_2, |\mu|, \tan \beta) = (100 \, GeV, 150 \, GeV, 200 \, GeV, 3), \quad \Phi_\mu = \pi/2.$

• CP conserved if all quadrangles collapse and parallel to axes

If CP-violating phases small, small effects for CP-odd quantities [JK] example: $\tan \beta = 10$, $M_2 = 190.8$ GeV, $\mu = 365.1$ GeV, $|M_1| = 100.5$ GeV, $\Phi_1 = \pi/5$ unitarity quadrangles:

If energy above the heavy -inos,

 threshold behavior of non-diagonal neutralino production – clear signal of nontrivial CP phases

30

in CP-conserving: – S-wave excitation only if $\tilde{\chi}_i^0$ and $\tilde{\chi}_i^0$ have opposite CP-parities - if (ij) and (ik) pairs in S-wave \implies (ik) pair in P-wave • In CP-violating: all pairs can be in S-wave CP conserving: $\Phi_1=0, \Phi_u=0$ **CP violating:** $\Phi_1 = \pi/5$, $\Phi_u = 0$ 20 20 (i j) = (12) (i j) = (12) $\sigma(\mathbf{e}^{+}\mathbf{e}^{-} \rightarrow \chi_{i}^{0} \chi_{j}^{0}) \ [\mathbf{fb}]$ $\chi^{0}_{i} \chi^{0}_{j}$) [fb] (i j) = (13) (i j) = (13) - (i j) = (23) (i i) = (23)10 10 ۸ ۱ $\sigma(e^+e^-$ 0 0 10 20 30 10 20 0 0 E_{cm} -(m_i + m_i) [GeV] $E_{cm} - (m_i + m_i)$ [GeV]

The neutralino sector: new parameter M_1

Observables and errors

- two light neutralino masses with $\delta m_{ ilde{\chi}_1^0}=0.05$ GeV, $\delta m_{ ilde{\chi}_2^0}=1.2$ GeV
- $\tilde{\chi}_1^0 \tilde{\chi}_3^0$ and $\tilde{\chi}_1^0 \tilde{\chi}_4^0$ pairs kinematically accessible at $\sqrt{s} = 500$ GeV, but rates small and complicated $\tilde{\chi}_{3,4}^0$ decays \Longrightarrow neglected
- $\sigma^0_{L,R}\{12\}$ and $\sigma^0_{L,R}\{22\}$ at $\sqrt{s}=400~{\rm GeV}$ and $\sqrt{s}=500~{\rm GeV}$
- $\tilde{\chi}_2^0 o \tilde{\tau}_1^\pm \tau^\mp$ with almost 90%, followed by $\tilde{\tau}_1^\pm o \tau \tilde{\chi}_1^0$
- efficiency of about 25% for $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ production
- 1 σ statistical error at 100 fb⁻¹, including 25% efficiency
- errors on $m_{\tilde{\chi}_1^\pm}, m_{\tilde{e}_L}, m_{\tilde{e}_R}$ and beam polarization

SPA: neutralinos

$ilde{\chi}^0_1 ilde{\chi}^0_2$ production cross section and errors

\sqrt{s}	400	GeV	500	GeV
($P(e^-)$, $P(e^+)$)	(8, +.6)	(+.8,6)	(8, +.6)	(+.8,6)
$\sigma(e^+e^- o \tilde{\chi}^0_1 \tilde{\chi}^0_2)$	148.38	20.06	168.42	20.81
$\delta\sigma_{ m stat}$	2.82	2.63	2.95	2.54
$\delta\sigma_{P(e^-)}$	0.32	0.05	0.37	0.06
$\delta\sigma_{P(e^+)}$	0.28	0.001	0.31	0.01
$\delta \sigma_{m_{ ilde{\chi}_1^\pm}}$	0.21	0.30	0.16	0.26
$\delta \sigma_{m_{ ilde{e}_L}}$	0.20	0.01	0.17	0.01
$\delta \sigma_{m_{{ ilde e}_R}}$	0.00	0.01	0.00	0.01
$\delta\sigma_{ m total}$	2.87	2.65	2.99	2.55

SPA: neutralinos

$ilde{\chi}^0_2 ilde{\chi}^0_2$ production cross section and errors

	400 GeV		500	GeV
($P(e^-)$, $P(e^+)$)	(8, +.6)	(+.8,6)	(8, +.6)	(+.8,6)
$\sigma(e^+e^- o \tilde{\chi}^0_2 \tilde{\chi}^0_2)$	85.84	2.42	217.24	6.10
$\delta\sigma_{ m stat}$	2.33	2.5	3.26	2.44
$\delta\sigma_{P(e^-)}$	0.19	0.05	0.48	0.12
$\delta\sigma_{P(e^+)}$	0.16	0.02	0.41	0.05
$\delta\sigma_{m_{ ilde{\chi}_1^\pm}}$	2.67	0.08	1.90	0.05
$\delta \sigma_{m_{\widetilde{e}_L}}$	0.15	0.004	0.28	0.01
$\delta \sigma_{m_{{ ilde e}_R}}$	0.00	0.00	0.00	0.00
$\delta\sigma_{ m total}$	3.56	2.5	3.83	2.45

We perform a simple $\Delta\chi^2$ test defined as

$$\Delta \chi^2 = \sum_i |\frac{O_i - \bar{O}_i}{\delta O_i}|^2$$

The sum over physical observables O_i includes

- $m_{ ilde{\chi}^0_1}$ and $m_{ ilde{\chi}^0_2}$
- $\sigma^0_{L,R}\{12\},\sigma^0_{L,R}\{22\}$ measured at 400 and 500 GeV

 $\Delta\chi^2$ is a function of unknown M_1 , $\cos 2\Phi_L$ and $\cos 2\Phi_R$, with $\cos 2\Phi_L$ and $\cos 2\Phi_R$ restricted from the chargino sector

Derive 1 σ errors from $\Delta\chi^2=1$

LC results

 $\Delta \chi^2 = 1$ contours in the $M_1, \cos 2\Phi_L, \cos 2\Phi_R$ parameter space

Results from the LC data:

SUSY Parameters					
M_1	M_2	μ	aneta		
99.1 ± 0.15	192.7 ± 0.7	$\mu = 352.8 \pm 8.1$	[8.6 - 11.8]		

Mass Predictions				
$m_{ ilde{\chi}_2^\pm}$	$m_{ ilde{\chi}_3^0}$	$m_{ ilde{\chi}_4^0}$		
379.0 ± 7.2	359.0 ± 7.7	377.9 ± 7.3		

strong correlation between errors for μ and heavy chargino/neutralino masses

LC + LHC

LC data supplemented by the LHC:

LHC will provide a first measurement of $m_{\tilde{\chi}^0_2}$ and $m_{\tilde{\chi}^0_4}$ the processes:

$$\tilde{\chi}_i^0 \to \tilde{\ell}\ell \to \ell\ell\tilde{\chi}_1^0, \quad i=2,4$$

The achievable precision:

 $\delta m_{ ilde{\chi}^0_2}=4.5~{
m GeV}$ and $\delta m_{ ilde{\chi}^0_4}=5.1~{
m GeV}\,$ at 300 fb $^{-1}$

LC + LHC

From the LC + $\delta m_{\tilde{\chi}_4^0} = 5.1~{\rm GeV}$

SUSY Parameters				
M_1	M_2	μ	aneta	
99.1 ± 0.14	192.7 ± 0.5	352.4 ± 4.2	[9 - 11.2]	

 Mass Predictions

 $m_{\tilde{\chi}_2^{\pm}}$ $m_{\tilde{\chi}_3^0}$

 378.5 ± 5.0
 358.8 ± 5.1

Joint analysis of the LC and LHC data:

- At the LHC, $\delta m_{\tilde{\chi}_2^0}$ and $\delta m_{\tilde{\chi}_4^0}$ depend both on the experimental error on the position of $m_{l+l^-}^{max}$, and on $\delta m_{\tilde{\chi}_1^0}$ and $\delta m_{\tilde{\ell}}$.
- from LHC alone, errors for $m_{\tilde{\chi}^0_1}$ and $m_{\tilde{\ell}}$ are of 4.8 GeV
- $m_{\tilde{\chi}^0_1}$ and $m_{\tilde{\ell}}$ measured at the LC with error of 0.05 GeV
- with this input $\delta m_{\tilde{\chi}^0_2}=0.08$ GeV and $\delta m_{\tilde{\chi}^0_4}=2.23$ GeV

Use these errors to determine SUSY parameters

Joint analyses of LC + LHC

 $\Delta\chi^2 = 1$ for the joint analysis of the LC + LHC

34

Final results:

Susy Parameters					
M_1	M_2	μ	aneta		
99.1 ± 0.12	192.7 ± 0.35	352.4 ± 2.2	[9.3 - 10.8]		

Mass Predictions			
$m_{ ilde{\chi}_2^\pm}$	$m_{ ilde{\chi}_3^0}$		
378.5 ± 2.0	358.8 ± 2.2		

The SPA project – a coordinated effort of theory & experiment

Short-term goals:

- reach a SPA Convention on parameter definitions
- collect all necessary tools

Long-term goals:

- assess experimental errors on mass, cross section, BR, ... measurements
- derive the low-energy SUSY parameters
- extrapolate them to the high scale to reveal, hopefully, the SUSY breaking mechanism

For practical reasons: one SPS1a SUSY point chosen.

GMSB

33