High energy QCD and parton saturation: from theory to the HERA data

Stéphane Munier

CPHT, École Polytechnique

Warsaw, 23 April 2004

High energy kinematics

DGLAP works well for total cross sections in DIS at small x, **BUT**:

- × not justified theoretically: one should resum $\sum c_n (\alpha_s \log(1/x))^n$
- **×** fails to describe some observables in DIS and pp
- \mathbf{x} some specific small-x phenomena have no natural formulation

Specific small-*x* phenomena

Forward jet

A specific treatment of the small-x regime is needed!

Outline

- * The basic tools of high energy physics: kt factorization. BFKL, CCFM
- * The dipole factorization
- * Non linear evolution: BK equation, color glass condensate
- * Phenomenology of the dipole model

Collinear versus kt-factorization

The BFKL equation

Balitsky, Fadin, Kuraev, Lipatov (1977)

Resummation of the terms relevant at small *x* in the perturbation series

$$\mathcal{F}(x,k^{2}) = \sum a_{n}(k) (\alpha_{s} \log(1/x))^{n} + \sum b_{n}(k) \alpha_{s} (\alpha_{s} \log(1/x))^{n} + \dots$$

leading order

next-to-leading order

 $\overline{\alpha} = \frac{\alpha_s N_c}{\pi}$

Result at leading order, exclusive form:

$$\mathcal{F}(x,k^2) = \sum_{n=0}^{\infty} \left(\prod_{i=1}^{n} \int_{\mu^2}^{k^2} \frac{d^2 q_i}{\pi q_i^2} \int \frac{\overline{\alpha}}{z_i} \exp\left(-\overline{\alpha} \log\left(\frac{1}{z_i}\right) \log\left(k_i^2 / \mu^2\right)\right) \right) \delta^2 (k - \sum q_i)$$

splitting function virtual corrections

Predictions:*
$$\mathcal{F}(x,k^2) \sim x^{-\overline{\alpha}\times 4\log 2}$$
~ $x^{-0.5}$ if taken literally, ruled out
by the HERA data*number of final state gluons $\propto \overline{\alpha} \log(1/x)$

The non-forward BFKL equation

BFKL provides the elastic gluon-gluon scattering amplitude for any t

Beyond leading log BFKL

Several phenomenological improvements:

✓ Exact kinematics of gluon emission Kwiecinski, Martin, Stasto (1997)

✓ Running coupling effects Collins, Kwiecinski (1989); Mueller, Kovchegov (1998)...

Full next-to-leading order BFKL kernel computed

Fadin, Lipatov; Camici, Ciafaloni (1998)

* Corrections are HUGE!!! First, looked inconsistent [oscillating cross sections]

* now better understanding

Salam; Ciafaloni, Colferai, Salam; Ball, Forte; Brodsky, Lipatov et al (1999)...

* predicted x-dependence agrees with the HERA data $\mathcal{F}(x, k^2) \sim x^{-0.2}$

* sound phenomenology under way

Ciafaloni, Colferai, Salam, Stasto; Altarelli, Ball, Forte (1999-...)

The CCFM approach

Ciafaloni; Catani, Fiorani, Marchesini (1987-1990)

Forward jets at HERA

Jung, Salam (2001) Jung (2003)

CCFM works well while collinear factorization fails!

Reasonable description also of c, b production at the Tevatron

Promising tool to study the hadronic final state!

Outline

- * Collinear versus kt factorization. BFKL, CCFM
- * The dipole factorization
- * Non linear evolution: BK equation, color glass condensate
- * Phenomenology of the dipole model

The dipole factorization

Nikolaev, Zakharov; Mueller (1994)

longitudinal momentum fraction

$$|\gamma\rangle = |\gamma\rangle_{bare} + \int d^2 r dz \ \psi(z,r)|z,r\rangle + \dots$$

At high energy:

lifetime of quark pair much larger than interaction time
motion in transverse plane frozen

 $= 2 \pi R^2 N(Y, r)$

$$\sigma(Y,Q^2) = \int d^2 r \int dz |\psi(z,r)|^2 \sigma_d(Y,r,p)$$

For a dipole target, leading order cross section: $\sigma_d(r_1,r_2) = 2\pi \alpha_s^2 r_<^2 \left(1 + \log \frac{r_>}{r_<}\right)$

hadronic target of size *R*:

 Q^2

Ζ

1-z

 σ_{dp}

 $N \leq 1$ from unitarity

QCD evolution

Mueller (1994)

- ★ Go to the rest frame of the target
- * With increasing energy, higher Fock states are accessible
- * Large $N_c \Rightarrow$ Fock state expanded on dipole basis

$$|r\rangle = |r\rangle_{bare} + \int d^2 r \psi_1(r') |r-r', r'\rangle + ...$$

* Each dipole becomes the seed of a new *independent* evolution [leading $\log(1/x)$]

 \Rightarrow dipole number density $n(Y) \sim e^{\lambda Y}$

amplitude: $N(Y,r) = \int d^2 r' n(Y,r') \sigma_d(r')$

T * Detailed calculation: *n* and *N* obey the BFKL equation

At this level:

dipole model \Leftrightarrow kt factorization

Navelet, Wallon (1998)

Unitarity violations

Interaction probability =
$$1 - |1 - N(Y, r)|^2 \Rightarrow N(Y, r) \le 1$$

What's wrong?

Outline

- * Collinear versus kt factorization. BFKL, CCFM
- * The dipole factorization
- * Non linear evolution: BK equation, color glass condensate
- * Phenomenology of the dipole model

Going to higher energies: the BK equation

Gribov, Levin, Ryskin (1981); Mueller, Tang (1986)

Balitsky (1996); Kovchegov (1999)

BFKL: a single dipole interacts with the target

At higher energy: all dipoles may interact simultaneously

Now the amplitude obeys a *nonlinear* evolution equation:

$$\partial_{Y} N(Y,r) = \frac{\overline{\alpha}}{2\pi} \int d^{2} r' \frac{r^{2}}{r'^{2} (r-r')^{2}} \left(N(Y,r') + N(Y,r-r') - N(Y,r) - N(Y,r') N(Y,r-r') \right)$$

BFKL tames the growth when the dipole interactions are *independent!* tames the growth when N of order 1

Solving BK (I)

Asymptotic solution: traveling waves

S.M., Peschanski (2003)

Solving BK (II)

Mueller, Triantafyllopoulos (2002) S.M., Peschanski (2004)

* Wave selected at large *Y* has velocity

$$V = \frac{d}{dY} \log Q_s^2 = \overline{\alpha} \frac{\chi(\gamma_0)}{\gamma_0} - \frac{3}{2\gamma_0} \frac{1}{Y} + \frac{3}{\gamma_0^2} \sqrt{\frac{\pi}{2 \overline{\alpha} \chi''(\gamma_0)}} \frac{1}{Y^{3/2}} + \dots$$

 $X(\gamma) =$ Mellin transform of BFKL kernel

$$\gamma_0 \simeq 0.63$$
 solves $\frac{\chi(\gamma_0)}{\gamma_0} = \chi'(\gamma_0)$

Gribov, Levin, Ryskin (1981)

* Deep in the saturation region: Levin-Tuchin law Levin, Tuchin (2000)

$$N(Y, r) = 1 - \exp\left(-c \log^2\left(r^2 Q_s^2(Y)\right)\right)$$

* Finite Y, near the saturation scale:

equivalent to saturation of the gluon density

$$\mathcal{F}(x,k) \sim 2\pi R^2 \frac{1}{\alpha_s} \log \frac{Q_s^2}{k^2}$$

$$N(Y, r) = N_0 \times \left(r^2 Q_s^2 (Y)\right)^{\gamma_0} \log\left(\frac{1}{r^2 Q_s^2}\right) \exp\left(\frac{-\log^2 (r^2 Q_s^2)}{2 \overline{\alpha} X''(\gamma_0) Y}\right) + \dots$$

geometric scaling diffusion-type violations

Beyond the BK equation

« JIMWLK »: Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner (1994-2002-...)

The assumption that dipoles interact independently is in general **not justified**

$$\partial_{Y} N(Y,r) = \frac{\overline{\alpha}}{2\pi} \int d^{2} r' \frac{r^{2}}{r'^{2} (r-r')^{2}} \left(N(Y,r') + N(Y,r-r') - N(Y,r) - N_{2}(Y,r',r-r') \right)$$

$$\neq N(Y,r') N(Y,r-r')$$

 $\partial_Y N_2 (Y, r_1, r_2) = \dots N_3 (Y, r_1, r_2, r_3) \dots + \text{ more complicated color structures beyond dipoles}$

... infinite hierarchy of coupled equations Numerical solutions: Salam (1995); Weigert, Rummukainen (2003) Analytical approach: Iancu, Mueller (2003); Mueller, Shoshi (2004)

BK is only a mean field approximation; could be very bad!

Is there saturation at HERA?

S=1-N

S.M., Stasto, Mueller (2001)

The dipole *S*-matrix can be measured from elastic processes (e.g. vector meson production)

 $S \sim 1 \Rightarrow$ dilute regime, no saturation $S \sim 0 \Rightarrow$ dense regime, saturation

Interaction probability = $1 - S^2$

Outline

- * Collinear versus kt factorization. BFKL, CCFM
- * The dipole factorization
- * Non linear evolution: BK equation, color glass condensate
- * Phenomenology of the dipole model

Phenomenology of the dipole model (I)

Golec-Biernat-Wüsthoff model:

$$V(Y,r) = 1 - \exp\left(-\frac{r^2 Q_s^2(Y)}{4}\right) \qquad \qquad Q_s^2(Y) = \left(\frac{x}{x_0}\right)^{-\lambda} \text{ GeV}^2$$

Golec-Biernat, Wusthoff (1999)

- * Economical 3-parameter description of small x data, inclusive and diffractive
- * Saturation scale at 1 GeV at HERA: a perturbative scale?
- * Many recent improvements
 - ✓ DGLAP corrections Bartels, Golec-Biernat, Kowalski (2002)
 - ✓ Impact parameter dependence Kowalski, Teaney (2002)
 - ✓ Other similar proposals, better rooted in QCD Iancu, Itakura, S.M. (2003)
 - ✓ Phenomenology from numerical solutions of BK Levin, Lublinsky et al (2002)

The Kowalski-Teaney model (2003)

Phenomenology of the dipole model (II) What is it good for?

Provides a natural formulation of diffraction [Good-Walker picture]

See e.g. S.M., Shoshi (2004)

First model to predict a constant diffractive/total ratio

See also Kovchegov, Levin (1999); Levin, Lublinsky (2001)

Also: dipole cross section is universal

inclusive DIS, diffraction
forward jets in pp...
sufficiently inclusive observables

A closer look at diffraction

S.M., Shoshi (2004)

Data: ZEUS (2002)

Summary

Various approaches to small *x* physics with different applications:

BFKL:

 \checkmark total cross sections, when energy not too high.

✓ phenomenology of NLL in progress!

x but unitarity corrections have no « natural » formulation

CCFM:

 \checkmark hadronic final state, both HERA and Tevatron/LHC

Dipoles:

- ✓ inclusive, diffractive, semi-inclusive observables
- \checkmark unitarity corrections are incorporated in a natural way
- ✓ nice phenomenology
- ✗ but cannot describe exclusive final state!

Color glass condensate:

- ✓ more systematic treatment of unitarity corrections
- ✓ beyond large number of colors
- ✓ unifying approach to different processes: DIS, pp, pA, AA

Still to be understood: impact parameter dependence, solution to the full JIMWLK equation...

Look for clear signatures of saturation at HERA, RHIC, LHC!