High energy QCD and parton saturation: from theory to the HERA data

Stépfane Munier
CPHT, École Polytechnique

High energy kinematics

Tevatron / LHC

$$
\begin{array}{ll}
s \gg Q^{2} \gg \Lambda^{2} & x=\frac{Q^{2}}{Q^{2}+s} \ll 1 \\
\alpha_{s}\left(Q^{2}\right) \ll 1 & \alpha_{s} \log (1 / x) \sim 1
\end{array}
$$

$$
x=\frac{Q^{2}}{Q^{2}+s} \ll \quad[Y=\log (1 / x)]
$$

DGLAP works well for total cross sections in DIS at small x, BUT:
X not justified theoretically: one should resum $\sum c_{n}\left(\alpha_{s} \log (1 / x)\right)^{n}$
x fails to describe some observables in DIS and pp
x some specific small- x phenomena have no natural formulation

Specific small-x phenomena

A specific treatment of the small- x regime is needed!

Outline

* The basic tools of high energy physics: kt factorization. BFKL, CCFM
* The dipole factorization
* Non linear evolution: BK equation, color glass condensate
* Phenomenology of the dipole model

Collinear versus kt-factorization

Collinear factorization

$$
Q^{2} \gg k^{2} \simeq 0
$$

$\sigma\left(x, Q^{2}\right) \sim \int \frac{d z}{z} C\left(\frac{x}{z}\right) f\left(z, Q^{2}\right)$
coefficient function
gluon density
obeys DGLAP
kt factorization

$$
\begin{gathered}
\sigma\left(x, Q^{2}\right) \sim \int \frac{d z}{z} \int d^{2} k \\
\text { off-shell photon-gluon } \\
\text { matrix element }
\end{gathered}
$$

The BFKL equation

Result at leading order, exclusive form:

$$
\mathcal{F}\left(x, k^{2}\right)=\sum_{n=0}^{\infty}\left(\prod_{i=1}^{n} \int_{\mu^{2}}^{k^{2}} \frac{d^{2} q_{i}}{\pi q_{i}^{2}} \int \frac{\bar{\alpha}}{z_{i}} \exp \left(-\bar{\alpha} \log \left(1 / z_{i}\right) \log \left(k_{i}^{2} / \mu^{2}\right)\right)\right) \delta^{2}\left(k-\sum q_{i}\right)
$$

splitting function virtual corrections

$$
\begin{array}{lll}
\text { Predictions: } & \text { ※ } & \mathcal{F}\left(x, k^{2}\right) \sim x^{-\bar{\alpha} \times 4 \log 2} \sim x^{-0.5} \quad \begin{array}{l}
\text { if taken literally, ruled out } \\
\text { by the HERA data }
\end{array} \\
& \text { * } \quad \text { number of final state gluons } & \propto \bar{\alpha} \log (1 / x)
\end{array}
$$

The non-forward BFKL equation

BFKL provides the elastic gluon-gluon scattering amplitude for any t

Photoproduction of vector mesons
Enberg, Motyka, Poludniowski (2002)

Beyond leading log BFKL

Several phenomenological improvements:
\checkmark Exact kinematics of gluon emission Kwiecinski, Martin, Stasto (1997)
\checkmark Running coupling effects Collins, Kwiecinski (1989); Mueller, Kovchegov (1998)...

Full next-to-leading order BFKL kernel computed

Fadin, Lipatov;
Camici, Ciafaloni (1998)

* Corrections are HUGE!!! First, looked inconsistent [oscillating cross sections]
$\begin{array}{ll}* \text { now better understanding } & \begin{array}{l}\text { Salam; Ciafaloni, Colferai, Salam; } \\ \text { Ball, Forte; Brodsky, Lipatov et al (1999)... }\end{array}\end{array}$
* predicted x-dependence agrees with the HERA data $\mathcal{F}\left(x, k^{2}\right) \sim x^{-0.2}$
* sound phenomenology under way Ciafaloni, Colferai, Salam, Stasto;

Altarelli, Ball, Forte (1999-...)

The CCFM approach

Interpolation between BFKL and DGLAP

$$
\begin{aligned}
& \text { improved splitting function: } \quad \bar{\alpha}\left(\frac{1}{z_{i}}+\frac{1}{1-z_{i}}\right) \\
& \mathcal{F}\left(x, k^{2}\right)=\sum_{n=0}^{\infty}\left(\prod_{i=1}^{n} \int_{\mu^{2}}^{k^{2}} \frac{d^{2} q_{i}}{\pi q_{i}^{2}} \int \not \underline{z_{i}} \exp \left(-\bar{\alpha} \log \left(1 / z_{i}\right) \log \left(k_{i}^{2} / \mu^{2}\right)\right)\right) \delta^{2}\left(k-\sum q_{i}\right)
\end{aligned}
$$

Forward jets at HERA

Jung, Salam (2001)
Jung (2003)

Monte-carlo event generator CASCADE:

CCFM + off-shell matrix element

+ hadronization

CCFM works well while collinear factorization fails!
Reasonable description also of c, b production at the Tevatron
\Rightarrow Promising tool to study the hadronic final state!

Outline

* Collinear versus kt factorization. BFKL, CCFM
* The dipole factorization
* Non linear evolution: BK equation, color glass condensate
* Phenomenology of the dipole model

The dipole factorization

For a dipole target, leading order cross section: $\quad \sigma_{d}\left(r_{1,} r_{2}\right)=2 \pi \alpha_{s}^{2} r_{<}^{2}\left(1+\log \frac{r_{>}}{r_{<}}\right)$ hadronic target of size R :

$$
=2 \pi R^{2} N(Y, r)
$$

$$
N \leq 1 \text { from unitarity }
$$

QCD evolution

* Go to the rest frame of the target
* With increasing energy, higher Fork states are accessible
$*$ Large $N_{c} \Rightarrow$ Fork state expanded on dipole basis

$$
\left|r>=\left|r>_{\text {bare }}+\int d^{2} r \psi_{1}\left(r^{\prime}\right)\right| r-r^{\prime}, r^{\prime}>+\ldots\right.
$$

* Each dipole becomes the seed of a new independent evolution
[leading $\log (1 / x)$]
\Rightarrow dipole number density $n(Y) \sim e^{\lambda Y}$
amplitude: $N(Y, r)=\int d^{2} r^{\prime} n\left(Y, r^{\prime}\right) \sigma_{d}\left(r^{\prime}\right)$
Detailed calculation: n and N obey the BFKL equation

$$
\partial_{Y} N(Y, r)=\frac{\bar{\alpha}}{2 \pi} \underbrace{\int d^{2} r^{\prime} \frac{r^{2}}{r^{\prime 2}\left(r-r^{\prime}\right)^{2}}}_{\text {branching probability }}(\underbrace{N\left(Y, r^{\prime}\right)+N\left(Y, r-r^{\prime}\right)}_{\begin{array}{c}
\text { interaction of the } \\
\text { newly created dipoles }
\end{array}}-N(Y, r))
$$

At this level:

dipole model $\Leftrightarrow \mathrm{kt}$ factorization

Unitarity violations

$$
\text { Interaction probability }=1-|1-N(Y, r)|^{2} \quad \Rightarrow N(Y, r) \leq 1
$$

unitarity violated!

What's wrong?

Outline

* Collinear versus kt factorization. BFKL, CCFM
* The dipole factorization
* Non linear evolution: BK equation, color glass condensate
* Phenomenology of the dipole model

Going to higher energies: the BK equation

Gribov, Levin, Ryskin (1981); Mueller, Tang (1986) Balitsky (1996); Kovchegov (1999)

BFKL: a single dipole interacts with the target

At higher energy:
all dipoles may interact simultaneously

Now the amplitude obeys a nonlinear evolution equation:

$$
\begin{aligned}
& \partial_{Y} N(Y, r)=\frac{\bar{\alpha}}{2 \pi} \int d^{2} r^{\prime} \frac{r^{2}}{r^{\prime 2}\left(r-r^{\prime}\right)^{2}}\left(N\left(Y, r^{\prime}\right)+N\left(Y, r-r^{\prime}\right)-N(Y, r)-N\left(Y, r^{\prime}\right) N\left(Y, r-r^{\prime}\right)\right) \\
& \text { Established only when the dipole interactions are independent! } \quad \begin{array}{l}
\text { BFKL } \\
\text { tames the growth } \\
\text { when } N \text { of order } 1
\end{array}
\end{aligned}
$$

Solving BK (I)

Asymptotic solution: traveling waves

$$
N(Y, r)=N\left(\log r^{2}-\log 1 / Q_{s}^{2}(Y)\right)
$$

Also seen on numerical solutions:
Braun (2000); Golec-Biernat, Motyka, Staśto (2002); Albacete, Armesto, Kovner, Salgado, Wiedemann (2003)

$Q_{s}(Y)=$ saturation scale

$$
\Rightarrow \sigma^{\curlyvee p}\left(Q^{2} / Q_{s}^{2}\right)
$$

Geometric scaling
Staśto, Golec-Biernat, Kwieciński (2000)

Solving BK (II)

Mueller, Triantafyllopoulos (2002)
S.M., Peschanski (2004)

* Wave selected at large Y has velocity

$$
\begin{aligned}
& V=\frac{d}{d Y} \log Q_{s}^{2}=\bar{\alpha} \frac{\chi\left(\gamma_{0}\right)}{\gamma_{0}}-\frac{3}{2 \gamma_{0}} \frac{1}{Y}+\frac{3}{\gamma_{0}^{2}} \sqrt{\frac{\pi}{2 \bar{\alpha} \chi^{\prime \prime}\left(\gamma_{0}\right)}} \frac{1}{Y^{3 / 2}}+\ldots \\
& \chi(\gamma)=\text { Mellin transform of BFKL kernel } \quad \gamma_{0} \simeq 0.63 \text { solves } \frac{\chi\left(\gamma_{0}\right)}{\gamma_{0}}=\chi^{\prime}\left(\gamma_{0}\right) \\
& \text { Gribov, Levin, Ryskin (1981) }
\end{aligned}
$$

* Deep in the saturation region: Levin-Tuchin law Levin, Tuchin (2000)

$$
N(Y, r)=1-\exp \left(-c \log ^{2}\left(r^{2} Q_{s}^{2}(Y)\right)\right) \quad \text { equivalent to saturation of the gluon density }
$$

* Finite Y, near the saturation scale:

$$
\mathcal{F}(x, k) \sim 2 \pi R^{2} \frac{1}{\alpha_{s}} \log \frac{Q_{s}^{2}}{k^{2}}
$$

$$
N(Y, r)=N_{0} \times(\underbrace{\left.r^{2} Q_{s}^{2}(Y)\right)^{\gamma_{0}} \log \left(\frac{1}{r^{2} Q_{s}^{2}}\right)}_{\text {geometric scaling }} \underbrace{\exp \left(\frac{-\log ^{2}\left(r^{2} Q_{s}^{2}\right)}{2 \bar{\alpha} X^{\prime \prime}\left(\gamma_{0}\right) Y}\right)}_{\text {diffusion-type violations }}+\ldots
$$

Beyond the BK equation

The assumption that dipoles interact independently is in general not justified
$\partial_{Y} N(Y, r)=\frac{\bar{\alpha}}{2 \pi} \int d^{2} r^{\prime} \frac{r^{2}}{r^{\prime 2}\left(r-r^{\prime}\right)^{2}}\left(N\left(Y, r^{\prime}\right)+N\left(Y, r-r^{\prime}\right)-N(Y, r)-N_{2}\left(Y, r^{\prime}, r-r^{\prime}\right)\right)$
$\neq N\left(Y, r^{\prime}\right) N\left(Y, r-r^{\prime}\right)$
$\partial_{Y} N_{2}\left(Y, r_{1}, r_{2}\right)=\ldots N_{3}\left(Y, r_{1}, r_{2} r_{3}\right) \ldots+$ more complicated color structures beyond dipoles
... infinite hierarchy of coupled equations
Numerical solutions: Salam (1995); Weigert, Rummukainen (2003) Analytical approach: Iancu, Mueller (2003); Mueller, Shoshi (2004)

BK is only a mean field approximation; could be very bad!

Is there saturation at HERA?

$S=1-N$

The dipole S-matrix can be measured from elastic processes (e.g. vector meson production)
$S \sim 1 \Rightarrow$ dilute regime, no saturation
$S \sim 0 \Rightarrow$ dense regime, saturation
Interaction probability $=1-S^{2}$

Outline

* Collinear versus kt factorization. BFKL, CCFM
* The dipole factorization
* Non linear evolution: BK equation, color glass condensate
* Phenomenology of the dipole model

Phenomenology of the dipole model (I)

Golec-Biernat-Wüsthoff model:

$$
N(Y, r)=1-\exp \left(-\frac{r^{2} Q_{s}^{2}(Y)}{4}\right)
$$

$$
Q_{s}^{2}(Y)=\left(\frac{x}{x_{0}}\right)^{-\lambda} \mathrm{GeV}^{2}
$$

* Economical 3-parameter description of small x data, inclusive and diffractive
* Saturation scale at 1 GeV at HERA: a perturbative scale?
* Many recent improvements
\checkmark DGLAP corrections Barels, Golec-Biernat, Kowalski (2002)
\checkmark Impact parameter dependence Kowalki, Teaney (2002)
\checkmark Other similar proposals, better rooted in QCD lancu, Itakura, S.M. (2003)
\checkmark Phenomenology from numerical solutions of BK Levin, Lublinsky etal (2002)

The Kowalski-Teaney model (2003)

Phenomenology of the dipole model (II)

What is it good for?

Provides a natural formulation of diffraction
[Good-Walker picture]
See e.g. S.M., Shoshi (2004)
First model to predict a constant diffractive/total ratio

See also Kovchegov, Levin (1999);
Levin, Lublinsky (2001)

Also: dipole cross section is universal

* inclusive DIS, diffraction
* forward jets in pp...
* sufficiently inclusive observables

A closer look at diffraction

S.M., Shoshi (2004)

Data: ZEUS (2002)

Summary

Various approaches to small x physics with different applications:

BFKL:

\checkmark total cross sections, when energy not too high.
\checkmark phenomenology of NLL in progress!
x but unitarity corrections have no «natural » formulation

CCFM:

\checkmark hadronic final state, both HERA and Tevatron/LHC
Dipoles:
\checkmark inclusive, diffractive, semi-inclusive observables
\checkmark unitarity corrections are incorporated in a natural way
\checkmark nice phenomenology
x but cannot describe exclusive final state!
Still to be understood:
x bunn
Color glass condensate:
\checkmark more systematic treatment of unitarity corrections
\checkmark beyond large number of colors
\checkmark unifying approach to different processes: DIS, pp, pA, AA
impact parameter dependence, solution to the full JIMWLK equation...

Look for clear
signatures of saturation at HERA, RHIC, LHC!

