Nagłówki artykułów w lipcu 2003

Odkrycie pentakwarków

Katarzyna Perl Uniwersytet Warszawski Instytut Fizyki Do wiadczalnej

Seminarium Fizyki Wysokich Energii 17 pa dziernik 2003

Plan:

- Co to takiego jest pentakwark i jak został odkryty?
- Przewidywania teoretyczne
- Wyniki do wiadczalne
- Podsumowanie
- Co dalej?

Gdzie odkryto pentakwarki?

- 1. zespół Takashi Nakano (eksperyment LEPS) przy akceleratorze SPring-8 w pobli u Kobe (Japonia)
- dane pokazane na konferencji w 2002 roku
- publikacja 4.VII.2003 w Phys. Rev. Letters

2. zespół Kena Hicksa (eksperyment CLAS) przy akceleratorze CEBAF w Newport News (USA)- dane wysłane do publikacji

3. inne eksperymenty ...

Co to jest pentakwark i jak powstaje?

- Reakcja: 'twarde' kwanty gamma + ¹²C
- Odłamki niektórych zderze to 5-cio kwarkowe obiekty
- Rozpadaj si na K⁺ oraz neutron
- Maksimum w masie niezmienniczej - nazwane cz stk Θ⁺

Co to jest pentakwark i jak powstaje?

- Zupełnie NOWY stan barionowy (klasa cz stek 'egzotyczne bariony')
- 4 kwarki walencyjne i 1 antykwark walencyjny (S=+1)
- Czas ycia 10^{-20} s
- Masa 1.54 GeV
- Prawdopodobnie istniały zaraz po Wielkim Wybuchu

Przewidywania teoretyczne

- (uud) = (uud + u ubar + d dbar + s sbar + ...)
- W tym sensie kombinacje 5-cio kwarkowe (qqqq qbar) s wymieszane ze standardow 3 kwarkow (qqq)
- Czy 5-cio kwarkowa kombinacja mo e istnie je li antykwark ma inny zapach (nie mo e anihilowa) np. (uudd sbar)? Prace teoretyczne od pó nych lat 70-tych
- M. Chemtob, Nucl. Phys. **256**, 600 (1985) na podstawie chiralnego modelu solitonowego przewidział istnienie anty-dekupletu barionów
- M. Praszalowicz, World Scientific (1987), 112 oszacował mas (najl ejsza cz stka) jako 1.530 GeV/c²
- D. Diakonov et al., Z. Phys. A 359, 305 (1997) szeroko Θ⁺< 0.015 GeV/c², przewidywania dotycz ce ci szych członków anty-dekupletu

Chiralny model solitonowy

D. Diakonov, V. Petrov, M. V. Polyakov, Z. Phys A 359, 305 (1997)

- Bariony wchodz ce w skład oktetu (8) i dekupletu (10) barionów - wszystkie s rotacyjnymi wzbudzeniami tego samego obiektu (tzw. chiralnego solitonu)
- Dwa najni sze stany rotacyjne chiralnych solitonów s w oktecie (spin 1/2) i dekuplecie (spin 3/2) barionów, nast pne w *anty-dekuplecie* (10bar) *barionów (spin 1/2)*
- Własno ci cz stek (masy, szeroko ci) mo na przewidzie z symetrii; z danych - identyfikacja rezonansu nukleonowego N(1710, 1/2+) z członkiem sugerowanego any-dekupletu barionów

Anty-dekuplet barionów ($J^P = 1/2^+$)

- Egzotyczne bariony
- Układ (I_3, Y)
- Singlet izospinowy (Y=2, S=1), dublet (Y=1, S=0), tryplet (Y=0, S=-1), kwartet (Y=-1, S=-2)

Przewidywania na multiplety - jak dobrze działa model

1. Oktet barionów (spin 1/2) 2. Dekuplet barionów (spin 3/2) $\Gamma(\Delta \rightarrow N \pi) = 110 \text{ MeV vs. } 110 \text{ MeV (eksp.)}$ $\Gamma(\Sigma^* \rightarrow \Lambda \pi) = 35 \text{ MeV vs. } 35 \text{ MeV (eksp.)}$ $\Gamma(\Sigma^* \rightarrow \Sigma \pi) = 5.3 \text{ MeV vs. } 4.8 \text{ MeV (eksp.)}$ $\Gamma(\Xi^* \rightarrow \Xi \pi) = 8.6 \text{ MeV vs. } 10 \text{ MeV (eksp.)}$ 3. Anty-dekuplet barionów (spin 1/2) $I=0, S=1, egzotyczny \Gamma(Z^+ \rightarrow N \text{ K}) = 15 \text{ MeV}$

I=1/2, S=0, $\Gamma(N_{10bar} \rightarrow N \pi) = 5 \text{ MeV}$ input do modelu, $\Gamma(N_{10bar} \rightarrow N \eta) = 11 \text{ MeV}$ BR z danych i $\Gamma(N_{10bar} \rightarrow \Delta \pi) = 5 \text{ MeV}$ modelu podobne $\Gamma(N_{10bar} \rightarrow \Lambda K) = 5 \text{ MeV}$ $\Gamma(N_{10bar} \rightarrow \Sigma K) = 0.5 \text{ MeV}$

Przewidywania na multiplety - cd.

I=1, S=-1

$$\Gamma(\Sigma_{10bar} \rightarrow N \text{ anty} K) = 6 \text{ MeV}$$

$$\Gamma(\Sigma_{10bar} \rightarrow \Sigma \pi) = 10 \text{ MeV}$$

$$\Gamma(\Sigma_{10bar} \rightarrow \Sigma \eta) = 9 \text{ MeV}$$

$$\Gamma(\Sigma_{10bar} \rightarrow \Lambda \pi) = 17 \text{ MeV}$$

$$\Gamma(\Sigma_{10bar} \rightarrow \Xi K) = 3 \text{ MeV}$$

$$\Gamma(\Sigma_{10bar} \rightarrow \Sigma^* \pi) = 2 \text{ MeV}$$

I=3/2, S=-2, egzotyczne $\Gamma(\Xi_{3/2} \rightarrow \Sigma \text{ K}) = 52 \text{ MeV}$ $\Gamma(\Xi_{3/2} \rightarrow \Xi \pi) = 42 \text{ MeV}$

4. kolejne multiplety ...

Gdzie szuka cz stki Z⁺?

1. Rozpraszanie K^0 p lub K^+ n (problemy z energi wi zek)

2. nukleon + nukleon $p n \rightarrow \Lambda Z^+ \rightarrow \Lambda K^+ n$ lub $\Lambda K^0 p$, $p_{lab} > 2.60 \text{ GeV/c}$ $p p \rightarrow \Sigma^+ Z^+ \rightarrow \Sigma^+ K^+$ lub $\Sigma^+ K^0 p$, $p_{lab} > 2.8 \text{ GeV/c}$

3. foton + nukleon $\gamma p \rightarrow anty K^0 Z^+ \rightarrow anty K^0 K^+ n$ $\gamma n \rightarrow K^- Z^+ \rightarrow K^- K^+ n$ $\mu_{lab} > 1.7 \text{ GeV/c}$ $\gamma n \rightarrow K^- Z^+ \rightarrow K^- K^+ n$ $\mu_{lab} > 1.7 \text{ GeV/c}$

4. pion + nukleon $\pi^- p \rightarrow K^- Z^+ \rightarrow K^- K^+ n$ lub $K^- K^0 p$, $p_{lab} > 1.7 \text{ GeV/c}$ $\pi^+ n \rightarrow \text{anty} K^0 Z^+ \rightarrow \text{anty} K^0 K^+ n$ lub anty $K^0 K^0 p$, $p_{lab} > 1.7 \text{ GeV/c}$

Model kwarkowy (skorelowany)

R. L. Jaffe, F. Wilczek, arXiv:hep-ph/0307341

- Zwi zane stany 4 kwarków i jednego antykwarku (q⁴ qbar)
- Pary qq s skorelowane (spin pary=0)
- Zamiast anty-dekupletu barionów prawie idealnie wymieszany 10bar ⊕ 8
- Cz stki z anty-dekupletu

Model kwarkowy - przewidywania mas

- Θ^+ ([ud]² sbar) 1540 MeV
- N ([ud]² dbar) 1440 MeV (najl ejsza)
- Σ ([ud][su]₊ dbar) oraz Λ ([ud][ds]dbar - [su][ud]ubar) 1600 MeV
- $N_{s}([ud][su]_{+} sbar)$ 1700 MeV
- Σ_{s} ([su]² sbar) 1850 MeV
- Ξ (sqrt(2)[us]² ubar -[su][ds]dbar) 1750 MeV
- $\Xi_{3/2}$ ([us]² dbar) 1750 MeV

Model kwarkowy - przewidywania cd.

- 1. Oprócz mas cz stek przewidywane s równie kanały ich rozpadów
- 2. Proponowane sposoby na poszukiwanie cz stek np.

$$\begin{array}{l} \mathrm{K}^{-} \mathrm{d} \to \mathrm{K}^{+} \mathrm{p} \ \Xi^{-}_{_{3/2}} \\ \Xi^{-}_{_{3/2}} \to \Sigma^{-} \mathrm{K}^{-} \\ \Xi^{-}_{_{3/2}} \to \Xi^{-} \pi^{-} \end{array}$$

3. Przewidywana szeroko Ξ^{--} to 1.5 razy szeroko Θ^+

Eksperymenty, które znalazły pentakwarki

LEPS przy akceleratorze SPring-8 w Japonii
 CLAS przy akceleratorze CEBAF w USA
 DIANA przy akceleratorze ITEP w Rosji
 SAPHIR przy akceleratorze ELSA w Niemczech
 NA49 przy akceleratorze SPS w Szwajcarii

Eksperyment LEPS przy akceleratorze SPring-8 (Japonia)

WEBRAM NSRRC National Synchrotron Radiation Research Center

Jak powstaje wi zka fotonów dla ekperymentu LEPS?

8 GeV elektrony dostarczane przez akcelerator SPring-8

Własno ci wi zki fotonowej dla LEPS

Ró niczkowy przekrój czynny na proces BCS dla ró nych długo ci fali lasera (Ar)

Spektrometr LEPS

- Naładowane cz stki w przednich k tach ±0.4 rad w poziomie i ±0.2 rad w pionie
- Tarcza (SC)- 0.5 cm scyntylator C:H ≈ 1:1
- DC1, DC2, DC3 komory dryfowe
- Magnes dipolowy (0.7 T)
- Detektory czasu przelotu TOF

Własno ci spektrometru LEPS

- Pomiar p du: detektor wierzchołka + komory dryfowe
- Rozdzielczo p dowa dla 1 GeV/c-owych cz stek około 6 MeV/c
- Identyfikacja: TOF dla cz stek o zmierzonym p dzie
- Rozdzielczo TOF to 150 psec dla 4m (odległo tarczy od TOF)
- Pomiar masy z dokładno ci 30 MeV/c² dla 1 GeV/cowego kaonu

LEPS: $\gamma n \to K^- \Theta^+ \to K^- K^+ n$

- Wi zka kwantów gamma o energii 1.5-2.35 GeV, tarcza w glowa
- Pomiar obu kaonów do przodu, produkcja w tarczy (SC)
- Ci cie na pozycj wierzchołka (rys.)
- Ci cie na brakuj c mas reakcji $N(\gamma, K^+K^-)X$ to $0.90 < MM_{\gamma, K+K^-} < 0.98$

Eliminacja tła i poprawki - cd.

- Od fotoprodukcji mezonu ϕ , ci cie na mas niezmiennicz układu K⁺K⁻ od 1.00 do 1.04 GeV/c²
- Od foto-j drowych reakcji $\gamma p \rightarrow K^- K^+ p$
- Ostatecznie 109 przypadków z 4.3 10⁷ zarejestrowanych przez LEPS
- Ruch Fermiego w j drze + energia wi zania nukleonu w j drze ¹²C wpływa na kształt widma brakuj cej masy.
 Poprawiona brakuj ca masa dana jest wzorem:

$$MM_{\gamma,K-}^{c} = MM_{\gamma,K-} - MM_{\gamma,K+K-} + M_{N}$$

LEPS - wyniki

- Poprawiony rozkład brakuj cej masy
- Kreskowane tło nie-rezonansowa produkcja par K⁺K⁻

- Sygnał tło = 19 przypadków, sygnał na poziomie 4.6 σ
- Widmo w obszarze 1.47 -1.61 GeV/c² porównane z symulacjami MC (+ Breit-Wigner) daje mas : 1.54 ± 0.01 GeV/c²
- Szeroko (Γ) mniejsza ni 25 MeV/c²

Eksperyment CLAS przy akceleratorze CEBAF w Jefferson Lab (USA)

- Wi zka fotonów elektrony z CEBAF zderzane z tarcz , promieniowanie hamowania
- Przepływ fotonów 4 10⁶ /s
- Identyfikacja: p d i ładunek w komorach dryfowych + TOF

CLAS - 2 sposoby na pentakwarki

- Fotoprodukcja na deuterze
- Fotony wyprodukowane przez 2.474 oraz 3.115 GeV-owe elektrony
- Tarcza z ciekłego deuteru
- $\gamma d \rightarrow p K^{-} K^{+} n$
- Mechanizm podobny do LEPS

- Fotoprodukcja na protonach
- Fotony wyprodukowane przez 4.1 oraz 5.5 GeV-owe elektrony
- Tarcza z ciekłego wodoru

•
$$\gamma p \rightarrow \pi^+ K^- K^+ n$$

$CLAS: \quad \gamma d \to p \ K^{\text{-}} \Theta^{\text{+}} \to p \ K^{\text{-}} K^{\text{+}} n$

 Tylko przypadki z protonem uczestnikiem (mniejszy przekrój ale i mniejsze tło, łatwiejsza detekcja K⁻, nie wymagane poprawki Fermiego)

Selekcja przypadków

- Pomiar p, K⁻, K⁺ i nic innego naładowanego w stanie ko cowym
- Ci cia na koincydencje czasowe dla fotonów, protonów i kaonów
- Brakuj ca masa neutronu (rys.)
- Do dalszej analizy $\pm 3\sigma$ wokół neutronu

Eliminacja tła - cd.

- Od fotoprodukcji mezonu φ, ci cie na mas niezmiennicz M(K⁺K⁻) > 1.07 GeV/c²
- Od fotoprodukcji wzbudzonych hiperonów $\gamma p \rightarrow K^+ \Lambda^* \rightarrow K^+ p K^$ odrzucenie przypadków z $1.49 < M(pK^-) < 1.54 \text{ GeV/c}^2 \text{ dla}$ $\Lambda^* (1520) \text{ oraz } 1.66 < M(pK^-) <$ $1.71 \text{ GeV/c}^2 \text{ dla } \Lambda^* (1670, 1690)$

- P d neutronu > 70 MeV/c
- P d $K^+ < 1.0 \text{ GeV/c}$

CLAS - wyniki

- Kreskowane tło przypadki wyrzucone ci ciem na Λ^* (1520)
- Maksimum w pobli u 1.543 GeV/c²
- Szeroko FWHM = 22 MeV/c² (zgodna z rozdzielczo ci CLAS)
- Sygnał na poziomie 5.4σ
- Sygnał pozostaje po zmianie ci ----->

CLAS - stabilno wyniku

- a) tylko identyfikcja i pozbycie si neutronów o niskim p dzie, sygnał na poziomie 4.6σ
- b) normalne kryteria selekcji ale $\Delta t_{pK} < 0.75$ ns, sygnał na poziomie 5.9 σ

CLAS: $\gamma p \rightarrow \pi^+ K^- \Theta^+ \rightarrow \pi^+ K^- K^+ n$

- Wi zka fotonów o energiach 3-5.25 GeV
- Pomiar: widmo układu cz stek K⁺ n

 Rekonstrukcja neutronu - z brakuj cej energii i p du, ci cie ± 3σ wokół neutronu

Eliminacja tła - cd.

 Od fotoprodukcji mezonu φ, ci cie na mas niezmiennicz M(K⁺K⁻) > 1.040 GeV/c² po tym ci ciu rozkład:

- Para π⁺ K⁻ najcz ciej kierunek wi zki, para K⁺ n - przeciwny
- 80% przypadków z cosθ
 < 0.5, gdzie θ k t
 mi dzy par π⁺ K⁻ a
 fotonem wi zki
- Do dalszej analizy przypadki z $\cos\theta > 0.5$ (para $\pi^+ \text{ K}^-$ do przodu)

CLAS - wyniki

- Masa: $1.54 \pm 0.01 \text{ GeV/c}^2$
- Szeroko FWHM = 32 MeV/c²
- Sygnał na poziomie 4.8 ± 0.4 σ

Eksperyment DIANA przy synchrotronie protonowym w ITEP (Rosja)

- Dane z komory p cherzykowej
- $K^+ n \rightarrow K^0 p$, gdzie n jest zwiazany a j drze Xe
- Badane widmo masy układu K⁰ p
- Reakcja nisko-energetyczna
- Wi zka K⁺ o p dzie 850 MeV/c z synchrotronu

Własno ci komory p cherzykowej DIANA

- Wymiary 70 x 70 x 140 cm³
- Wypełnienie: ciekły Xe
- Monitorowana przez kamery fotograficzne
- Brak pola magnetycznego

- Naładowane cz stki
- Identyfikcja cz stek: straty jonizacyjne
- P d cz stek: zasi g w Xe
- P d wi zki K⁺: zasi g w Xe (dokładno pomiaru dla p dów 450-550 MeV/c to 20 MeV/c)

Zasi g wi zki K⁺

- Zasi g cz stki dla reakcji $K^+ Xe \rightarrow K^0 X$
- Uwzgl dnione przypadki z K⁰_s (mierzone przez π⁺π⁻ oraz π⁰π⁰) i K⁰_L (brak obserwacji cz stek dziwnych w stanie ko cowym)
- Górna o : p d K⁺

DIANA: $K^+ n(Xe) \rightarrow \Theta^+ (Xe') \rightarrow K^0 p(Xe')$

- Pomiar: widmo masy układu K⁰ p
- Tylko przypadki z protonem i z $K^0_{\ S}$ (-> $\pi^+\pi^-$) w stanie ko cowym
- Odległo mi dzy głównym wierzchołkiem a wierzchołkiem K⁰_s > 2.5 mm
- P d p > 180 MeV/c, p d K⁰_s > 170 MeV/c

P d K⁺ po selekcji przypadków
 K⁺ Xe→ K⁰p Xe'

Eliminacja tła - cd.

- Dla wszystkich przypadków, sygnał na poziomie 2.6 σ
- Kreskowany tło liczone przy u yciu symulacji (uwzgl dniaj m.in. nierezonansow produkcj pary, rozkład p du wi zki, ruch Fermiego, en. wi zania nukleonów w Xe, warunki eksperymentalne itp.)

DIANA - wyniki

- Jedynie przypadki, gdzie cz stki K⁰ p nie s rozpraszane w materii j drowej (zgodnie z symulacjami $\theta_p < 100^0$ i $\theta_{K0} < 100^0$ w stosunku do wi zki oraz $\cos \phi_{(p,K0)} < 0$ - k t azymutalny)
- Masa: 1.539 ± 0.002 GeV/c²
- Szeroko $\Gamma \leq 9 \text{ MeV/c}^2$
- Sygnał na poziomie 4.4σ

Eksperyment SAPHIR przy akceleratorze ELSA (Niemcy)

- Spektrometr magnetyczny
- Wi zka elektronów z akceleratora ELSA (w analizie o energii 2.8 GeV)
- Wi zka fotonów promieniowanie hamowania na miedzianej foli
- Tarcza z ciekłego wodoru (3 x 8 cm) w rodku centralnej komory dryfowej
- Pomiar p du i ładunku pole magnetyczne (Δp/p =1-2.5% dla 300 MeV/c cz stek)
- ciany scyntylatorów TOF

SAPHIR: $\gamma p \rightarrow \Theta^+ K^0_s \rightarrow n K^+ \pi^+\pi^-$

- Zestaw ci kinematycznych
- Identyfikcja naładowanych -TOF, identyfikcja n - prawa zachowania energii i pedu
- $480 < M(\pi^+\pi^-) < 518$ MeV
- cosθ_{K0} > 0.5 k t mi dzy
 K⁰_s a wi zk , cz stsza produkcja kaonu do przodu

SAPHIR - wyniki

- Ci gła linia dopasowanie u ywaj c funkcji Breit-Wigner'a + symulacji Monte Carlo
- Masa: $1.540 \pm 0.004 \pm 0.002 \text{ GeV/c}^2$
- Szeroko $\Gamma < 25 \text{ MeV/c}^2$
- Sygnał na poziomie 4.8σ

Izospin cz stki Θ^+

- Je li Θ⁺ jest cz stk z anty-dekupletu barionów to według przewidywa I=0
- Konwencjonalne wyja nienie interpretuje Θ⁺ jako zwi zany stan NK
- Je li izospin = 1 to mamy 3 stany ładunkowe: $\Theta^0 \ \Theta^+ \ \Theta^{++}$
- W szczególno ci mo liwe $\Theta^{++} \rightarrow p K^+$
- Widmo M(pK⁺) badane przez CLAS brak ostatecznych konkluzji ale raczej izospin = 0

SAPHIR: $\gamma p \rightarrow \Theta^{++} K^{-} \rightarrow p K^{+} K^{-}$

- $\cos\theta_{K-} > 0.5 \text{ k t mi dzy } \text{K}^-$ (analogia do poprzednich)
- Bardzo mały sygnał 75 ± 35 przypadków, czy to wystarczy?

Czy sygnał Θ^{++} jest wystarczaj cy?

- Współczynniki Clebsch-Gordan'a faworyzuj Θ⁺⁺ nad Θ⁺ o czynnik 3 (dla I=2) lub 4 (dla I=1)
- 2. Stan ko cowy K^+K^- oferuje eksperymentalnie dodatkowy czynnik 3 (brak pomiaru $K^0_{_{I}}$, obserwacja $K^0_{_{S}}$ z prawdopodobie stwem 2/3)
- 3. Akceptancja SAPHIR jest znacznie wi ksza dla przypadków z pK^+K^- w stanie ko cowym

Ostatecznie oczekuje si maksimum z wi cej ni 5000 Θ^{++}

 Θ^+ jest izoskalarem

Podsumowanie wyników dla cz stki Θ^+

 Rezonans barionowy o składzie kwarkowym (uudd sbar), najl ejszy członek anty-dekupletu barionów
 I = 0 (izoskalar), S = +1
 bardzo mała szeroko

	kanał	sygnał	$M [GeV/c^2]$	$[MeV/c^2]$
LEPS	$\gamma n \to \mathrm{K}^{-} \mathbf{K}^{+} \mathbf{n}$	4.6σ	1.54 ± 0.01	$\Gamma < 25$
CLAS	$\gamma d \rightarrow p K^{-} \mathbf{K}^{+} \mathbf{n}$	$5.4\pm0.6~\sigma$	1.543 ± 0.005	FWHM = 25
CLAS	$\gamma \mathrm{p} ightarrow \pi^{\scriptscriptstyle +} \mathrm{K}^{\scriptscriptstyle -} \textit{K}^{\scriptscriptstyle +} \textit{n}$	$4.8\pm0.4~\sigma$	1.537 ± 0.01	FWHM = 32
DIANA	$\mathrm{K}^{\scriptscriptstyle +} \: \mathrm{n} \to {\it K}^{\it 0} \: {\it p}$	4.4σ	1.539 ± 0.002	$\Gamma <= 9$
SAPHIR	$\gamma\mathrm{p} ightarrow \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} \textit{K}^{\scriptscriptstyle +} \textit{n}$	4.8 σ	1.540 ± 0.004	Γ < 25

A co z pozostałymi cz stkami anty-dekupletu barionów?

Eksperyment NA49 przy akceleratorze SPS w CERN (Szwajcaria)

- p+p, energia pocisku 158 GeV (sqrt(s) = 17.2 GeV)
- Tarcza cylinder z ciekłym wodorem

- Spektrometr hadronowy
- VTPC1 (pole 1.5 T), VTPC2 (pole 1.1 T), MTPCR, MTPCL - komory projekcji czasowej
- TOF, zestaw kalorymetrów
- Pomiar p du polu magnetycznym
- Identyfikacja dE/dx (lub TOF), rozdzielczo dE/dx 3-6%

NA49: poszukiwanie członków kwartetu izospinowego $\Xi_{3/2}$ (obserwowane w eks. $\Xi_{3/2}^{--}$ oraz $\Xi_{3/2}^{0}$)

- Multiplet o dziwno ci S = -2
- Przewidywana masa 2.070 GeV/c² i szeroko rozpadu na $\Xi \pi 0.040$ GeV/c² (D. Diakonov, V. Petrov, M. Polyakov)
- Skład: $\Xi_{3/2}^{-}(\text{egz. dsds ubar}) \quad \Xi_{3/2}^{-}(\text{dsus ubar}) \quad \Xi_{3/2}^{0}(\text{dsus ubar})$ dbar) $\Xi_{3/2}^{+}(\text{egz. usus dbar})$
- Przewidywana masa około 1.750 GeV/c² i szeroko c 1.5 x szeroko Θ⁺ (R.Jaffe, F. Wilczek)

Poszukiwanie w kanale $\Xi^-\pi^-$

• Pomiar masy niezmienniczej układu

- Ci cie na pozycj głównego wierzchołka p+p
- Identyfikacja: dla pionów i protonów dE/dx ± 3σ wokól nominalnej warto ci dla Bethe-Bloch'a
- Badanie widm układów: $p\pi^{-}$, $\Lambda^{0}\pi^{-}$, $\Xi^{-}\pi^{-}$
- Szereg ci , m.in. odległo ci mi dzy wierzchołkami oddziaływa
- Analogicznie dla antycz stek

Eliminacja tła

- Strzałki nominalna pozycja poszukiwanych cz stek
- a) i b) poszukiwanie Ξ^{-}
- c) i d) poszukiwanie anty ±
- Obszary niebieskie brane do dalszej analizy

NA49 - wyniki

- a) kandydat na $\Xi_{3/2}^{--}$, sygnał na poziomie 4.0 σ
- b) kandydat na $\Xi^0_{3/2}$,
- c) i d) odpowiednie antybariony
- Niebieskie tło od przypadków mieszanych (kombinowanie par Ξπ pochodz cych z ró nych przypadków)
- Fit do sygnału a) i d) daje 1.862 ± 0.002 GeV/c²
- Fit do sygnału b) i c) daje 1.864 ± 0.005 GeV/c²

NA49 - wyniki

- Suma 4 poprzednich rozkładów
- Sygnał na poziomie 5.6 σ
- Fit do sygnału (czerwony) $1.862 \pm 0.002 \text{ GeV/c}^2$
- FWHM = 0.017 GeV/c^2
- Sygnał stabilny ze wzgl du na ci cia

Co dalej?

- Przełomowy moment w fizyce cz stek elementarnych -> zupełnie nowa dziedzina spektroskopii
- Odkryto najl ejszy i najci sze składniki anty-dekupletu
 -> bardzo du e prawdopodobie stwo e istniej i pozostałe
- Stare i dedykowane eksperymenty
- Badanie własno ci pentakwarków (m.in. spin)
- Dlaczego nie poszuka cz stek o wi cej niz 5 kwarkach?