T.Tymieniecka

HERA Today and Tomorow

- HERA-LHC Workshop
- Status report on HERA and the HERA physics
- Hadronic final states Investigated in Warsaw
 - + Azimuthal Asymmetry in $ep \rightarrow ehX$
 - Instantons
 - Glueballs
 - Pentaquarks
 - Broken chiral symmetry

HERA – LHC workshop

Meetings: CERN October 11-13 2004 DESY January 17-21 2005

- Parton density functions
- Multijet final states and energy flow
- Heavy quarks production
- Diffraction
- Monte Carlo tools

Status report 2003-2004

- Polarized positron beam integrated luminosity in 2004 20 pb⁻¹
- Problems in 2003 synchrotron radiation detectors 15 years old
- Test of standard model $\sigma(e_R^- p \rightarrow v p) = 0$ $\sigma(e_L^+ p \rightarrow \overline{v} p) = 0$

 $\sigma = 38.1 \pm 2.9(stat) \pm 0.8(syst) pb$ $\int L=6.6 pb^{-1}$

2004-2007

- Wiązka spolaryzowana leptonowa (e⁺e⁻) i protonowa polaryzacja docelowe 50 % aktualne 30-40 %
- Planed time table decision in April 2004

AIMS (H1, ZEUS)

- **F**_L
- beyond SM

ARGUMENTS

• HERMES

recoil detector installed summer 2004 start summer 2005

• H1

larger luminosity for *e*⁺ more multilepton events

• ZEUS

not enough date for $e^$ large sample for e^+

Azimuthal asymmetry A.Ukleja using energy flow method

• Azimuthal angle distribution at $Q^2 > 100 \text{ GeV}^2$

T.Tymieniecka

- Energy flow method and multiplicity method
- Experimental results
- LEPTO predictions for azimuthal asymmetry
 - BGF+QCDC+QPM
 - * without PS
 - ★ with PS
 - * with hadronization
- NLO DISENT predictions
- Summary

HERA kinematics

 $Q^2 = -q^2 = -(k_e - k_e)^2$ $x = Q^2/2 P \cdot q$ $y = P \cdot q / P \cdot k_{e}$

$$J = \begin{cases} \gamma, Z^{0} - NC \\ W - CC \end{cases}$$

Azimuthal angle definition for the $ep \rightarrow ehX$ process

 $\frac{d\sigma^{ep \to ehX}}{dx dQ^2 d\phi} = A + B\cos(\phi) + C\cos(2\phi) + D\sin(\phi) + E\sin(2\phi)$

Azimuthal angle distribution for the $ep \rightarrow ehX$ process

 $\frac{d\sigma^{e_{p\to ehX}}}{dx dQ^2 d\phi} = A + B\cos(\phi) + C\cos(2\phi) + D\sin(\phi) + E\sin(2\phi)$

Azimuthal asymmetry comes from:

- ★ Two-body processes (BGF and QCDC)
- * Boson polarization
- ★ Longitudinally polarized electron beam
- ★ Parity violating weak interactions
- ✤ Final hadron polarization
- ★ Intrinsic parton momentum in the proton

Future:

asymmetry can be measured for

- Longitudinally polarized lepton beam
- CC events

Parton densities

good agreement between quark densities from H1 and ZEUS some differences betwee gluon densities from H1 and ZEUS

distribution sensitive to gluon content at 0.01<x<0.1
 </p>

Boson polarization

- See J.G.Kőnner, E.Mirkes, G.Schuler, INT.J.Mod.Phys. A4 (1989) 1781
- Bronkorb, Mirkes, Z.Phys. C66 (1995) 141

$$\frac{d\sigma}{d\phi} = d\sigma_{T} + d\sigma_{L} + d\tau_{LT} \cdot \cos(\phi) + d\tau_{TT} \cdot \cos(2\phi)$$
Modify p_{T} distribution

T-odd effects

$\dots + D\sin(\phi) + E\sin(2\phi)$

K.Hagiwara, K.Hikasa, N.Kai, Phys.Rev. D27 (1983) 84

Azimuthal angle distribution for the $ep \rightarrow ehX$ process

 $\frac{d\sigma^{e_{p\to ehX}}}{dx dQ^2 d\phi} = A + B\cos(\phi) + C\cos(2\phi) + D\sin(\phi) + E\sin(2\phi)$

Azimuthal asymmetry comes from:

- ★ Two-body processes (BGF and QCDC)
- ★ Boson polarization
- ★ Longitudinally polarized electron beam
- ★ Parity violating weak interactions
- ★ Final hadron polarization
- **★** Intrinsic parton momentum in the proton

k_T distribution

Intrinsic parton momentum

Experimental methods

$$\frac{d\sigma^{ep \to ehx}}{dx dQ^2 d\phi} = P_1 + P_2 \cos(\phi) + P_3 \cos(2\phi) + P_4 \sin(\phi)$$

- Fitted function
- Moments of distributions of trigonometrical functions
 * Mean
 * RMS

$$\frac{d\sigma^{e_{p\to ehx}}}{dxdQ^2d\phi} = A + B\cos(\phi) + C\cos(2\phi) + D\sin(\phi) + E\sin(2\phi)$$

Moments:

$$\langle \cos(n\phi) \rangle = \frac{\int d\sigma \cos(n\phi)}{\int d\sigma}$$

Means:

$$\langle \cos(\phi) \rangle = \frac{B}{2A}$$
$$\langle \cos(2\phi) \rangle = \frac{C}{2A}$$
$$\langle \sin(\phi) \rangle = \frac{D}{2A}$$
$$\langle \sin(2\phi) \rangle = \frac{E}{2A}$$

RMS:

$$RMS_{\langle \cos(2\phi)\rangle} = \sqrt{\frac{1}{2} + \frac{C}{2A}}$$

$$\frac{d\sigma^{e_{p\to ehX}}}{dxdQ^2d\phi} = A + B\cos(\phi) + C\cos(2\phi) + D\sin(\phi) + E\sin(2\phi)$$

For pure photon exchange the currents can be written:

¹ R

Previous Measurement

The HCM / Breit frame

$$E_{T}^{BR} = E_{T}^{HCM}$$
$$\phi^{BR} = \phi^{HCM}$$

For massless partons or particles

$$\eta^{\mathrm{BR}} \approx \eta^{\mathrm{HCM}} + 0.5 \cdot \ln(\frac{1-x}{x})$$

Distribution of the azimuthal angle – ZEUS paper 2002

Breit frame

Jet analysis

Fitted to experimental data

$$\frac{1}{\sigma} \frac{d\sigma}{d|\phi_{jet}^{B}|} = \frac{1}{\pi} [1 + f_{1} \cos(\phi_{jet}^{B}) + f_{2} \cos(2\phi_{jet}^{B})]$$

$$Small Large$$

See Oscar Gonzalez thesis and DESY-02-171, Phys.Lett. B551 (2003) 226-240

Distribution of the azimuthal angle – ZEUS paper 2000

HCM frame

 z, p_{T} method

Multiplicity method Charged hadrons

For hadrons with $p_T > p_c$

See Eduardo Rodriguez thesis and DESY-00-040, Phys.Lett. B481 (2000) 199-212

Why pseudorapidity?

$$E_{T}^{BR} = E_{T}^{HCM} = E_{T}^{*}$$
$$\phi^{BR} = \phi^{HCM}$$

For massless partons or particles

$$\eta^{\text{BR}} \approx \eta^{\text{HCM}} + 0.5 \cdot \ln(\frac{1-x}{x})$$

$$z_{h} = \frac{E_{T}^{*}}{Q} \cdot e^{-\eta^{BR}}$$

$$\frac{E_{\rm T}^{*}}{Q} = \sqrt{\frac{z_{\rm h}(1 - x_{\rm h})(1 - z_{\rm h})}{x_{\rm h}}}$$

$$\sqrt{\frac{x_h z_h}{(1-x_h)(1-z_h)}} = e^{\eta^{BR}}$$

Look into pseudorapidity

η

QCD Compton

Pseudorapidity because:

- separation of BGF and QCDC
- separation of hadrons from q and g

Important because:

• BGF \rightarrow gluonic structure function of proton

Why energy flow method instead of multiplicity method?

Tracking detector

$$-1.75 < \eta^{\text{LAB}} < 1.75$$

Calorimeter $-3 < \eta^{\text{LAB}} < 4$

Energy flow method in the laboratory frame

Energy flow objects EFO EFO used as pseudohadrons

pQCD infrared and collinear

singularities out

Peccei, Rückl (1978)

Each particle direction is weighet with its energy

Comments on the energy flow method and pseudorapidity

Advantages

- charged and neutral hadrons included
- hard partons (E_{T}^{*} larger) provides a larger contribution
- ◆ hadrons nearby in the HCM frame → nearby in LAB
- sensitive to parton fragmentation → no dependence on jet algorithms
- ▶ multiplicity method with charged hadrons → sensitive to hadronization
- calorimeter energy scale is cancelled for i.e. $\langle \cos(\phi) \rangle$

Disadventages

no hadrons but clusters of energy
 the quantities like z=Pp_h/Pq are not well measured

Global selection criteria

e γ, Z^0 pq

$$Q^{2} = -q^{2} = -(k_{e'} - k_{e})^{2}$$
$$x = Q^{2}/2 P \cdot q$$
$$y = P \cdot q/P \cdot k_{e}$$

 $\begin{array}{l} 100 <\!\!\mathrm{Q}^2 \!<\! 8000 \ \mathrm{GeV}^2 \\ 0.2 \!<\!\! y \!<\!\! 0.8 \\ 0.01 \!<\! x \!<\! 0.1 \end{array}$

 $\begin{array}{c} \theta_{\text{particle}}^{\text{LAB}}{>}8^{\text{0}}~(\text{First ring}) \\ p_{\text{T}}^{\text{LAB}}{>}150~\text{MeV} \end{array}$

Monte Carlo Models

LEPTO 6.5.1 – matrix element and parton shower

ARIADNE 4.12 – colour dipol model (LO)

DISENT – NLO colour dipol model

DATA versus LO models

Azimuthal asymmetry energy flow method

Compared ZEUS DATA 95-97 with predictions

GeV

Е_нсм

Energy flow method

Energy flow and multiplicity

99

Sequence of subprocesses in DIS

Contribution to asymmetries from: **BGF** + **QCDC**

ME prediction: parton level without PS

ME + PS prediction: parton level with PS

Energy flow method

Prediction:

hadron level + detection

Prediction:

parton level vs. hadron level

Energy flow method

LEPTO 6.5.1

Parton level no PS Parton level with PS Hadron level

Prediction:

parton level vs. hadron level

Energy flow method

LEPTO 6.5.1

Parton level no PS
Parton level with PS
Hadron level

Multiplicity method

$E_T^{HCM} > 1 \text{ GeV}$

Conclusions (part I)

- The multiplicity method is very sensitive to detection inefficiencies
- Therefore the obtained azimuthal asymmetries are dominated by hadronization effects
- Azimuthal asymmetries for 0.01 < x < 0.1 with energy flow the dominant contribution depends on the η interval

 $-5. < \eta^{\text{HCM}} \le -3.$ is dominated by QCDC and NLO $-3. < \eta^{\text{HCM}} \le -1.$ is sensitive to BGF content $-1. < \eta^{\text{HCM}} \le -0.$ by both QCDC + BGF and NLO

DATA versus NLO

Energy flow method

DATA corrected for losses in the HERA beampipe

0.1 <cos DATA 95-97 corr. LEPTO 6.5.1 (full det.) 0 DISENT (NLO) 0.05 Ą 0 -0.05 δ Ŷ δ -0.1 -0.15 -3 -2 -5 -4 -1 пнсм 0.1 <cos2 ϕ^{HCM} > 0.05 δ Ą δ 0 Ā δ -0.05 -0.1 -3 -2 -1 -5 -4 0

(Against rules!)

Stat. uncertainties only

Corrections for DISENT NLO

No model dependence

Uncertainties due to factorization and renormalization scales were calculated by changing $\mu_{F,R} = Q \ to \ 0.5 \cdot Q \ and \ 2 \cdot Q$

The asymmetries fluctuated within a band of ± 0.005

Azimuthal asymmetry energy flow method

Azimuthal angle distribution energy flow method

DATA 95-97 corr. LEPTO 6.5.1

$$\frac{d\sigma}{d\phi} = P_1 + P_2 \cos(\phi) + P_3 \cos(2\phi) + P_4 \sin(\phi)$$

The second independent analysis Fitted values P_2 , P_3 , P_4 are consistent with mean ones $\langle \cos(\phi^{\text{HCM}}) \rangle$, $\langle \cos(2\phi^{\text{HCM}}) \rangle$, $\langle \sin(\phi^{\text{HCM}}) \rangle$

BGF versus QCDC for energy flow method

LEPTO 6.5.1

jet method

charged hadrons (multiplicity method) charged hadrons (multiplicity method) Eduardo Rodrigues DESY-00-040 Phys.Lett. B481 (2000) 199-212

jet method Oscar Gonzalez DESY-02-171 Phys.Lett. B551 (2003) 226-240

Azimuthal asymmetry as f(E^{HCM}(min))

$$-5. < \eta^{\text{HCM}} \le -2.5$$

 $-2.5 < \eta^{\text{HCM}} \le -1.$
 $-1. < \eta^{\text{HCM}} \le 0.$

 \bigcirc

 $E_{T}^{HCM}(min)$ large $\rightarrow pQCD$

Theorists claim that cut on $E_{_{\rm T}}^{_{\rm HCM}}~2~GeV$ is sufficient to removed nonperturbative effects

Method p_T – cut: Chay et al. Phys.Rev. D45 (1992) 46

Phys.Lett. B481 (2000) 199-212

 $-5.<\eta^{\rm HCM} \le -2.5$

 $-1. < \eta^{\text{HCM}} \le 0.$

First measurements in this region of phace space

NLO prediction expects:

- the positive values for $\langle \cos(\phi^{HCM}) \rangle$
- the smaller positive ones for $\langle \cos(2\phi^{\text{HCM}}) \rangle$

Summary and conclusions

A novel approach to azim. asym. is proposed which provides precise measurements and small systematical errors in the wider interval of phase space

The method permits to:

- include charged and neutral hadrons
- enhance contributions of hard partons by weighting with energy,
 i.e. energy flow
- investigate contributions of BGF w.r.t QCDC
- compare these results with the previous ZEUS measurements

<u>Disadvantage:</u>

• cuts on individual hadrons – unreliable

Summary and conclusions

The main results are:

- the NLO effects give not negligible contribution
- they provide better agreement with experimental data
- some small discrepancies are visible which cannot be explained by experimental errors

New look at HERA

HERA jest polską marką odzieżową powszechnie rozpoznawalną i cenioną. Dzięki wysoko wykwalifikowanej kadrze oraz nowoczesnym liniom produkcyjnym, HERA oferuje produkty na najwyższym światowym poziomie. Wieloletnie doświadczenie poparte obserwacja aktualnych światowych trendów mody, pozwoliły Pani Halinie Widlińskiej na tworzenie kolekcji spójnych wzorniczo i kolorystycznie z obowiązującymi liniami największych domów mody. Współpraca z wiodącymi producentami tkanin i dodatków nadaje wyrobom oryginalny i lekki charakter. Kolekcje łączą w sobie zarówno elementy awangardowe, tworzone z nowatorskich oryginalnych materiałów jak i klasyczne całodzienne kostiumy dla kobiet aktywnych zawodowo. Dwa razy do roku HERA wprowadza na rynek nowe kolekcje obejmujące sezony: jesienno-zimowy oraz wiosenno-letni. Bardzo krótkie serie poszczególnych modeli połączone z szeroką gamą wzorniczą pozwalają klientkom firmy na kreowanie własnego, niepowtarzalnego wizerunku, zgodnego ze światowymi trendami.

Myślą przewodnią tworzonych przez firmę HERA kolekcji jest nadanie klientkom charakteru nowoczesności, lekkości, oryginalności a przede wszystkim poczucia wiecznej młodości.

