# Astrofizyka cząstek

#### prof. dr hab. A.F.Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych IFD

#### Wykład III

- Wielki Wybuch
- Ewolucja Wszechświata
- Promieniowanie tła
- Eksperyment PLANCK

#### Przesunięcie ku czerwieni

Jeśli źródło światła oddala się od obserwatora następuje wydłużenie fali:

$$\lambda' = \lambda \sqrt{\frac{1+\beta}{1-\beta}} \equiv \lambda (1+z)$$

 $z = \frac{\Delta \lambda}{\lambda}$ : przesunięcie ku czerwieni (ang. "redshift")

Linie węgla w widmie kwazara PKS 1232+0815:



W widmach odległych gwiazd zaobserwowano linie znanych nam pierwiastków wyraźnie przesunięte ku czerwieni.

Widoczne przesunięcie odpowiada z=2.34 $(\lambda' = 3.34 \lambda) !$ 

### **DISCOVERY OF EXPANDING UNIVERSE**



#### Przesunięcie ku czerwieni

Przesunięcie ku czerwieni w widmach odległych galaktyk zaobserwował po raz pierwszy Hubble w 1929 r.

Zauważył on też, że prędkość 'ucieczki' rośnie z odległością: (prawo Hubbla)

v = H r

r - odległość od Ziemi, H - stała Hubbla

Wartość podana przez Hubbla:

 $H \approx 500 \ km/s/Mpc$ 

prawie rząd wielkości za dużo :-)

Oryginalne wyniki Hubbla:



#### Przesunięcie ku czerwieni

Przesunięcie ku czerwieni w widmach odległych galaktyk zaobserwował po raz pierwszy Hubble w 1929 r.

Zauważył on też, że prędkość 'ucieczki' rośnie z odległością: (prawo Hubbla)

v = H r

r - odległość od Ziemi, H - stała Hubbla

Wartość podana przez Hubbla:

 $H \approx 500 \ km/s/Mpc$ 

prawie rząd wielkości za dużo :-)

Obecne pomiary:  $H \sim 70 \ km/s/Mpc$ 



#### Przesunięcie ku czerwieni

Obserwowane przesunięcie jest takie samo w całym zakresie widma promieniowania elektromagnetycznego.

Porównanie przesunięcia w zakresie optycznym i radiowym:



Obserwacja Hubbla, że wszystkie obiekty oddalają się, nie wyróżnia w żaden sposób naszego układu odniesienia.



Dowolne dwa obiekty oddalać się będą w ten sam sposób.

#### Zasada kosmologiczna

Kosmologia zajmuje się opisem Wszechświata na odległościach większych od rozmiarów wszystkich znanych nam struktur  $\Rightarrow$  "skala kosmologiczna"

Zasada kosmologiczna: w skalach kosmologicznych Wszechświat jest jednorodny i izotropowy  $\Rightarrow$  materia jest rozłożona równomiernie

Przyjmuje się, że w trakcie ewolucji Wszechświat cały czas znajdował się (w dobrym przybliżeniu) w stanie równowagi termodynamicznej. Poszczególne rodzaje cząstek anihilują w tym samym tempie co są produkowane. Skala czasowa tych procesów « tempo rozszerzania

W miarę rozszerzania Wszechświata maleje średnia energia cząstek (temperatura). Cząstki zbyt masywne przestają być "reprodukowane" i zanikają...

Albo też "odprzęgają się", jeśli zanika ich oddziaływanie z innymi cząstkami...

#### Początki Wszechświata

Przyjmujemy, że Wszechświat rozpoczął swoją ewolucję od pojedynczego punktu, osobliwości, o nieskończonej gęstości energii...



## $10^{-43}$ sekundy

Wszechświat rozszerza się bardzo szybko (tzw. inflacja), nierozróżnialne oddziaływania (nośniki) są w równowadze z materią i antymaterią, np:  $W^+W^- \leftrightarrow q\bar{q}$ 

## 10<sup>—43</sup> seconds



## 10<sup>32</sup> degrees

http://outreach.web.cern.ch/outreach/public/CERN/PicturePacks/BigBang.html

## $10^{-34}$ sekundy

Rozszerzanie ⇒ spadek energii cząstek. Materia znajduje się w stanie Plazmy Kwarkowo-Gluonowej (QGP). Oddziaływania silne oddzielają się od elektrosłabych.



## $10^{-10}$ sekundy

Oddzielenie oddziaływań elektromagnetycznych i słabych. Zanikają swobodne bozony  $W^{\pm}$  i  $Z^{\circ}$  (do tej pory w równowadze z fotonami).



## $10^{-5}$ sekundy

Kwarki formują neutrony i protony. Antymateria zaczyna zanikać bo promieniowanie jest już zbyt słabe aby ją wciąż wytwarzać. W międzyczasie naruszenie  $B - \overline{B}$ ...



#### 3 minuty

Protony i neutrony tworzą jądra lekkich pierwiastków. Wraz z zanikiem reakcji termojądrowych ustala się zawartości różnych izotopów we Wszechświecie.



A.F.Żarnecki

#### 300 000 lat

#### 1 000 000 000 lat

Elektrony wychwytywane przez jądra Formacja galaktyk, synteza ciężkich piertworzą atomy. Wszechświat staje się wiastków w gwiazdach. przeźroczysty dla fotonów.





#### A.F.Żarnecki

#### Sukcesy

#### modelu Wielkiego Wybuchu

- Tłumaczy rozszerzanie się Wszechświata
- Tłumaczy obecność mikrofalowego promieniowania tła
- Tłumaczy fluktuacje mikrofalowego promieniowania tła
- Tłumaczy skład Wszechświata (pierwotna nukleosynteza)

#### Pytania na które wciąż nie mamy pełnej odpowiedzi

- Dlaczego zanikła antymateria?
- Jak formowały się struktury we Wszechświecie?
- Czym jest ciemna materia?
- Czy istnieje ciemna energia?

### Zasada kosmologiczna

Zasada kosmologiczna: w skalach kosmologicznych Wszechświat jest jednorodny i izotropowy  $\Rightarrow$  materia jest rozłożona równomiernie

Zamiast 'przepływu' materii we Wszechświecie (pozycja zależna od czasu: r = r(t)), możemy opisać ewolucję Wszechświata wprowadzając **układ współporuszający się**.

W układzie tym materia (uśredniona na skalach kosmologicznych) spoczywa ( $r = r_0$ ). Zmianę odległości między obiektami opisujemy poprzez wprowadzenie zależnej od czasy metryki:

$$ds^{2} = dt^{2} - R^{2}(t) \left[ \frac{dr^{2}}{1 - k r^{2}} + r^{2} \left( d\theta^{2} + d\phi^{2} \sin^{2} \theta \right) \right]$$

metryka Friedmanna-Robertsona-Walkera, k = -1, 0, 1: krzywizna przestrzeni

#### Krzywizna przestrzeni



k = 0

k = -1

k = +1

### Równania Friedmann'a

W metryce FRW Równanie Einsteina sprowadza się do równań na skalę R(t):

$$H^{2} = \left(\frac{\dot{R}}{R}\right)^{2} = \frac{8\pi G}{3}\rho - \frac{k}{R^{2}} + \frac{1}{3}\Lambda$$
$$\frac{\ddot{R}}{R} = \frac{\Lambda}{3} - \frac{4\pi G}{3}(\rho + 3p)$$

gdzie:  $\rho$  - gęstość materii, p - ciśnienie

Stałą kosmologiczną ∧ wprowadził do swojego równania Einstein, aby 'uratować' statyczny i płaski Wszechświat.

### Gęstość krytyczna

Z równań Friedmanna wynika również zależność między gęstością materii we Wszechświecie a krzywizną przestrzeni.

Gęstość krytyczna:

$$\rho_c = \frac{3H^2}{8\pi G} \sim 10^{-26} \frac{kg}{m^3} \sim 10 \frac{GeV}{c^2/m^3}$$

Parametry gęstości (gęstość w jednostkach  $\rho_c$ ):

$$\Omega_m = \frac{\rho}{\rho_c}$$
$$\Omega_{\Lambda} = \frac{\Lambda}{3H^2}$$

Jeśli  $\Omega_{tot} = \Omega_m + \Omega_{\Lambda} = 1$   $\Rightarrow$  Wszechświat jest 'płaski' (euklidesowy) krzywizna k = 0

Jeśli  $\Omega_{tot} < 1$   $\Rightarrow$  Wszechświat 'otwarty' krzywizna k = -1

Jeśli  $\Omega_{tot} > 1$   $\Rightarrow$  Wszechświat 'zamknięty' krzywizna k = +1

#### Model klasyczny



Przyspieszenie masy m znajdującej się w odległości  $D = r \cdot R(t)$  od początku układu:

$$m\ddot{D} = -\frac{GmM}{D^2} = -\frac{Gm}{D^2} \cdot \frac{4\pi}{3} D^3 \rho$$
  
Sprowadza się do równania na  $R(t)$  ( $r = const$ )

$$\ddot{R} = -\frac{4\pi G}{3} \rho R$$

Natomiast zasada zachowania energii:

$$\frac{m\dot{D}^2}{2} - \frac{GmM}{D} = const$$

Prowadzi do:

$$\dot{R}^2 = \frac{8\pi G}{3} \rho R^2 - k$$

Znak k jest przeciwny znakowi całkowitej energii...

Całkowita gęstość materii/energii we Wszechświecie decyduje też o geometrii przestrzeni na skalach kosmologicznych!

Lokalnie wiemy, że przestrzeń jest płaska (suma kątów trójkąta wynosi 180°).

Ale na dużych odległościach trudno to sprawdzić...



Szczególny przypadek:  $\Lambda = 0$ 

⇒ gęstość materii (krzywizna przestrzeni) określa jednoznacznie charakter ewolucji:

 $\Omega_m < 1 \ (k = -1)$ 

⇒ Wszechświat będzie zawsze rozszerzał się

 $\Omega_m = 1 \ (k = 0)$ 

⇒ asymptotycznie Wszechświat "zatrzyma" się

 $\Omega_m > 1 \ (k = +1)$ 

⇒ Wszechświat kiedyś zacznie się zapadać

Do opisu ewolucji Wszechświata wystarczą (w najprostszym modelu) trzy parametry:

$$H,\,\Omega_m,\,\Omega_{igwedge}$$

Scenariusze ewolucji Wszechświata

#### **EXPANSION OF THE UNIVERSE**



#### Odkrycie

Mikrofalowe promieniowanie tła (CMB) Wyniki z satelity COBE: zostało odkryte w 1965 roku przez A.A.Penazisa i R.W.Wilsona.

Rozkład widmowy promieniowania zgadza się z widmem promieniowania ciała doskonale czarnego.

 $T = 2.725 \pm 0.002 \ K$ 

(1999)





#### Rozkład kątowy

W pierwszym przybliżeniu ( $\Delta T \sim 1K$ ) Jednak gdy przyjrzymy się bliżej promieniowanie tła jest izotropowe:



 $(\Delta T \sim 1 m K)$ :



widzimy wpływ ruchu Ziemi względem 'globalnego' układu.

### Rozkład kątowy

Odejmując wpływ efektu Dopplera  $(\Delta T \sim 200 \mu K)$ :



Odejmując promieniowanie Galaktyki i innych znanych źródeł ( $\Delta T \sim 100 \mu K$ ):



 $\Rightarrow$  zaczyna być ciekawie !!!

⇒ widzimy promieniowanie naszej galaktyki (Drogi Mlecznej)...



### Fluktuacje

Fluktuacje promieniowania wynikają z faktu, że Wszechświat w momencie 'oddzielenia' promieniowania nie był 'statyczny'.

Cały czas 'oscylował' wokół stanu równowagi, w którym ciśnienie promieniowania równoważy przyciąganie grawitacyjne ⇒

Charakter fluktuacji w promieniowaniu tła zależy od rozmiarów Wszechświata w chwili oddzielenia promieniowania...

⇒ zależy od parametrów kosmologicznych



#### Fluktuacje

Rozmiary fluktuacji jakie obecnie obserwujemy zależy też silnie od krzywizny Wszechświata !

Wyniki symulacji:



#### Fluktuacje

Aby opisać rozkład fluktuacji dzieli się obraz na małe kawałki (pixle), a następnie rozkłada uzyskaną macierz korelacji na wielomiany Legendre'a w  $\cos \theta_{ij}$  (odległości kątowej).

Oczekiwany rozkład natężenia dla poszczególnych 'multipoli' (wielomianów danego rzędu) zależy od parametrów modelu

np. dla płaskiego Wszechświata ( $\Omega = 1$ ) oczekujemy dominującego wkładu od  $l \sim 200$ 

Wyniki symulacji dla różnych wartości parametrów:



Misje satelitarne

#### najlepszy sposób na precyzyjne pomiary



#### CMB anisotropies pre-WMAP (January 2003)





• Launched by ESA and placed in L2 orbit in 2009. Full scan every 6 month.



- Cost: 5 cents/european/yr (700ME), 400-650 scientists
- 2 tons, 4.2m diameter,  $36'000 \text{ I of } {}^{4}\text{He}$ ,  $12'000 \text{ I of } {}^{3}\text{He}$

13.11.2013

The Planck satellite results – J. Lesgourgues



8

- Launched by ESA and placed in L2 orbit in 2009. Full scan every 6 month.
- 75 detectors cover 9 frequency channels

13 11 2013

- Planck strengths: large and redundant sky coverage, number of channels & detectors, low detector noise (25 x better than WMAP). Resolution intermediate between WMAP (3 x better) and ACT, SPT.
- HFI requires complex cryogenic cooling at 0.1K (dilution of <sup>3</sup>He in <sup>4</sup>He). Designed for > 2 scans, achieved 5. Turned off in Jan 2012 (due to <sup>3</sup>He level).
- LFI requires cooling at 20K with <sup>4</sup>He only and proceeded until few weeks ago (8 scans).
- 2013 release restricted to "nominal mission", 15 months, > 2 scans. Further temperature data + polarization maps differed to 2014 2015.





13.11.2013

- 2 instruments:
- LFI (led by Italy)
  - HEMTs (transitors)
  - cooled at 20K
  - sensitive to 30-100 GHz
- HFI (led by France/UK)
  - bolometer array
  - cooled at 0.1K
  - sensitive to 100-857 GHz





#### HFI Bolometers array



Cosmology with the Planck satellite

Andrea Zonca, Peter Meinhold, Philip Lubin

#### Planc

Cryogenics Instruments Performance Orbit and scanning strategy Published results Timeline (Other results)

#### ▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

#### Sensitivity

#### Cosmology with the Planck satellite

Andrea Zonca, Peter Meinhold, Philip Lubin

#### Planc

Satellite Cryogenics Instruments Performance Orbit and scannir strategy Published results Timeline (Other results)

| PLANCK                                                                                | LFI |     |     | HFI |     |     |     |     |     |
|---------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Center freq (GHz)                                                                     | 30  | 44  | 70  | 100 | 143 | 217 | 353 | 545 | 857 |
| Angular resolution<br>(FWHM arcmin)                                                   | 33  | 24  | 14  | 10  | 7.1 | 5.0 | 5.0 | 5.0 | 5.0 |
| Sensitivity in Ι<br>[μK.deg] [σ <sub>pix</sub> Ω <sub>pix<sup>1/2</sup>]</sub>        | 2.7 | 2.6 | 2.6 | 1.0 | 0.6 | 1.0 | 2.9 |     |     |
| Sensitivity in Q or U<br>[μK.deg] [σ <sub>pix</sub> Ω <sub>pix</sub> <sup>1/2</sup> ] | 4.5 | 4.6 | 4.6 | 1.8 | 1.4 | 2.4 | 7.3 |     |     |

From the Planck "Blue book"

| WMAP center freq.                         | 23            | 33            | 41            | 61            | 94            |
|-------------------------------------------|---------------|---------------|---------------|---------------|---------------|
| Angular resolution<br>(FWHM arcmin)       | 49            | 37            | 29            | 20            | 12.6          |
| Sensitivity in I<br>[µK.deg], 1 yr (8 yr) | 12.6<br>(4.5) | 12.9<br>(4.6) | 13.3<br>(4.7) | 15.6<br>(5.5) | 15.0<br>(5.3) |

Blue book: http://www.rssd.esa.int/SA/PLANCK/docs/Bluebook-ESA-SCI(2005)1\_V2.pdf

- Launched by ESA and placed in L2 orbit in 2009. Full scan every 6 month.
- 75 detectors cover 9 frequency channels





13.11.2013



## The sky as seen by Planck





# From time-ordered data to maps



## Planck 2013 TT angular spectrum



# Fitting the minimal model

• Minimal  $\Lambda$ CDM model relies on assumption of flat, homogeneous universe with 5 components (photons, baryons, CDM, neutrinos,  $\Lambda$ ) and 4 stages :



• 6 free parameters (abundance of baryons, CDM,  $\Lambda$ ; amplitude and spectral index of primordial fluctuations; epoch of reionisation due to star formation)





15

planck

|                                | Planck   | (CMB+lensing)         | Planck+  | Planck+WP+highL+BAO   |  |  |
|--------------------------------|----------|-----------------------|----------|-----------------------|--|--|
| Parameter                      | Best fit | 68 % limits           | Best fit | 68 % limits           |  |  |
| $\overline{\Omega_{\rm b}h^2}$ | 0.022242 | $0.02217 \pm 0.00033$ | 0.022161 | $0.02214 \pm 0.00024$ |  |  |
| $\Omega_{ m c}h^2$             | 0.11805  | $0.1186 \pm 0.0031$   | 0.11889  | $0.1187 \pm 0.0017$   |  |  |
| $100\theta_{MC}$               | 1.04150  | $1.04141 \pm 0.00067$ | 1.04148  | $1.04147 \pm 0.00056$ |  |  |
| au                             | 0.0949   | $0.089 \pm 0.032$     | 0.0952   | $0.092 \pm 0.013$     |  |  |
| <i>n</i> <sub>s</sub>          | 0.9675   | $0.9635 \pm 0.0094$   | 0.9611   | $0.9608 \pm 0.0054$   |  |  |
| $\ln(10^{10}A_{\rm s})$        | 3.098    | $3.085\pm0.057$       | 3.0973   | $3.091 \pm 0.025$     |  |  |
| $\overline{\Omega_{\Lambda}}$  | 0.6964   | $0.693 \pm 0.019$     | 0.6914   | $0.692 \pm 0.010$     |  |  |
| $\sigma_8$                     | 0.8285   | $0.823 \pm 0.018$     | 0.8288   | $0.826 \pm 0.012$     |  |  |
| Zre                            | 11.45    | $10.8^{+3.1}_{-2.5}$  | 11.52    | $11.3 \pm 1.1$        |  |  |
| $H_0$                          | 68.14    | $67.9 \pm 1.5$        | 67.77    | $67.80 \pm 0.77$      |  |  |
| Age/Gyr                        | 13.784   | $13.796 \pm 0.058$    | 13.7965  | $13.798 \pm 0.037$    |  |  |
| $100\theta_*$                  | 1.04164  | $1.04156 \pm 0.00066$ | 1.04163  | $1.04162 \pm 0.00056$ |  |  |
| <i>r</i> <sub>drag</sub>       | 147.74   | $147.70\pm0.63$       | 147.611  | $147.68\pm0.45$       |  |  |
| $r_{\rm drag}/D_{\rm V}(0.57)$ | 0.07207  | $0.0719 \pm 0.0011$   |          |                       |  |  |

## The basic content of the Universe



Before Planck After Planck
...has changed!

# $\Lambda CDM$ is a very good fit





## Comparison with other datasets: Hubble Constant

The value of the Hubble constant from Planck is in tension with the Riess et al. 2011 result.



Planck + WP  $H_0 = 67.3^{+1.2}_{-1.1} [\text{km/s/Mpc}]$ HST (Riess et al.)  $H_0 = 73.8^{+2.4}_{-2.4} [\text{km/s/Mpc}]$ 

# Planck best-fit vs. other observations

Using Planck + WP, at 1-sigma:

- Peak scale 0.060%
- Baryon density 1.3%
- CDM density 2.3%
- Primordial amplitude 2.5%
- Primordial spectral index 0.76%
- Reionization optical depth 0.13%

13.11.2013

Derived (model-dependent) parameters:

- Hubble parameter
- Λ fractional density

consistency with theory of Nucleosynthesis and measurement of primordial D, He



baryon density  $\omega_{\text{b}}$ 



21

# Planck best-fit vs. other observations

Using Planck + WP, at 1-sigma:





13.11.2013

The Planck satellite results – J. Lesgourgues

# Planck best-fit vs. other observations

Using Planck + WP, at 1-sigma:



13.11.2013

The Planck satellite results – J. Lesgourgues

23

