Astrofizyka cząstek

prof. dr hab. A.F.Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych IFD

• "Astronomia" neutrin

Massless v's? • no V_R L conserved But v_{R} can well exist and we really have no reason to expect that B and L are exactly conserved Small v masses? • V_{R} very heavy • L not exactly cons. The SM can be easily extended to include Majorana v's

 \oplus

Neutrino Oscillations

- ▶ 1957: Bruno Pontecorvo proposed Neutrino Oscillations in analogy with $K^0 \leftrightarrows \bar{K}^0$ oscillations (Gell-Mann and Pais, 1955)
- Flavor Neutrinos: ν_e , ν_μ , ν_τ produced in Weak Interactions
- ▶ Massive Neutrinos: ν_1 , ν_2 , ν_3 propagate from Source to Detector
- ► A Flavor Neutrino is a superposition of Massive Neutrinos

$$\begin{aligned} |\nu_e\rangle &= U_{e1} \left|\nu_1\right\rangle + U_{e2} \left|\nu_2\right\rangle + U_{e3} \left|\nu_3\right\rangle \\ |\nu_\mu\rangle &= U_{\mu1} \left|\nu_1\right\rangle + U_{\mu2} \left|\nu_2\right\rangle + U_{\mu3} \left|\nu_3\right\rangle \\ |\nu_\tau\rangle &= U_{\tau1} \left|\nu_1\right\rangle + U_{\tau2} \left|\nu_2\right\rangle + U_{\tau3} \left|\nu_3\right\rangle \end{aligned}$$

• U is the 3×3 Neutrino Mixing Matrix

$$|\nu(t > 0)\rangle = U_{e1} e^{-iE_1 t} |\nu_1\rangle + U_{e2} e^{-iE_2 t} |\nu_2\rangle + U_{e3} e^{-iE_3 t} |\nu_3\rangle \neq |\nu_e\rangle$$

$$E_k^2 = p^2 + m_k^2$$

at the detector there is a probability > 0 to see the neutrino as a ν_{μ} Neutrino Oscillations are Flavor Transitions $\propto \sin^2 \left(\frac{\Delta m_{kj}^2 L}{4E}\right)^2$ $\frac{\nu_e \rightarrow \nu_{\mu}}{\bar{\nu}_e \rightarrow \bar{\nu}_{\mu}} \quad \frac{\nu_e \rightarrow \nu_{\tau}}{\bar{\nu}_e \rightarrow \bar{\nu}_{\tau}} \quad \frac{\nu_{\mu} \rightarrow \nu_e}{\bar{\nu}_{\mu} \rightarrow \bar{\nu}_e} \quad \frac{\nu_{\mu} \rightarrow \nu_{\tau}}{\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\tau}}$ transition probabilities depend on U and $\Delta m_{kj}^2 \equiv m_k^2 - m_j^2$

C. Giunti – Neutrino Masses – Moriond - Cosmology 2014 – 27 March 2014 – 3/21

Experimental Evidences of Neutrino Oscillations

C. Giunti – Neutrino Masses – Moriond - Cosmology 2014 – 27 March 2014 – 4/21

$\underline{\theta_{23}} - |\Delta m_{32}^2|$: SK atm. and accelerators

Future: T2K will reach accuracy of $\delta(\sin^2 2\theta_{23})=0.01$ and $\delta(\Delta m_{32}^2)=0.0001 \text{ eV}^2$.⁸

<u>Summary of θ13 measurements</u>

All results are consistent. Reactor combine: $\sin^2 2\theta_{13} = 0.093 \pm 0.009$

Experimental Indications of Sterile Neutrinos

• LSND: Accelerator $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

 3.8σ excess $\Delta m^2\gtrsim 0.2\,{
m eV}^2$ ($\gg\Delta m^2_A\gg\Delta m^2_S$) [PRD 64 (2001) 112007]

 $I \simeq 30 \,\mathrm{m}$ $E \simeq 50 \,\mathrm{MeV}$

▶ Reactor Electron Antineutrino Anomaly: $\bar{\nu}_e \rightarrow \bar{\nu}_e$

 $L\simeq 10-100\,{
m m}$ $E\simeq 4\,{
m MeV}$

 2.8σ deficit $\Delta m^2 \gtrsim 0.5\,{
m eV}^2$

[Mention et al, PRD 83 (2011) 073006]

• Gallium Anomaly: $\nu_e \rightarrow \nu_e$

 $L \simeq 1 \,\mathrm{m}$ $E \simeq 1 \,\mathrm{MeV}$ 2.9 σ deficit $\Delta m^2 > 1 \,\mathrm{eV}^2$

[SAGE, PRC 73 (2006) 045805]

Physics of wide energy range

Solar neutrinos High energy neutrino astronomy Core of Galaxy NGC 4261 大気の原子 Supernova burst Hubble Space Telescope SN1987A 17 Arc Seconds 380 Arc Sec 10^{'15} 10^{'12} 10^{'9} 10⁶ '18 21 10 10 Energy (eV)

Atmospheric neutrinos

Many physics topics

Origin of cosmic ray Acceleration mechanism

3

The concordance flat ACDM model...

The simplest model consistent with present observations.

Plus flat spatial geometry+initial conditions from single-field inflation

Neutrino astronomy

- Advantages w.r.t. other messengers:
 - Photons: interact with CMB and matter
 - Protons: interact with CMB and are deflected by magnetic fields
- <u>Drawback</u>: large detectors (~GTon) are needed.

D

Indirect DM searches

UH

- Unperturbed propagation like for photons
- But signal significance (for the same target) usually considerably worse
 P_x × velocity distribution

 $\Gamma_{
m annihilation}$

Fig. from J.Edsjö

v interactions

٧_u

Earth

- 71

Detec

Indirect detection of dark matter

New feature: signals Sun from the center of σ_{scatt}
 sun or earth!

DN

DM

Torsten Bringmann, University of Hamburg

Detection principle

٧ı

 Array of optical modules in transparent medium (ice/water) to detect Cherenkov light from relativistic secondaries

(mostly sensitive to muons because they have the longest tracks)

- Solution opening angle: $\Theta_{\mu\nu} \approx 0.7^{\circ} \cdot (E_{\nu} / \text{TeV})^{-0.7}$ → possible to do neutrino astronomy!
- tiny x-sections & fluxes: need HUGE volumes!
- background muons:
 - down-going: atmospheric neutrinos
 - up-going: also induced by cosmic rays (hitting the atmosphere the far side of the earth)
 - look for excesses in any given direction

Torsten Bringmann, University of Hamburg

UΗ

Introduction to neutrino experiments

Low (< IO GeV) Energy Experiments are installed in underground facilities:

- Neutrinos from SN Core Collapse

SuperKamiokande

- Neutrinos from Sun

Borexino

SNO

Discovery of neutrino oscillation, SN 1987A

Introduction to neutrino experiments

High (>100 GeV) Energy Experiments are installed in natural medium: Option I:WATER

Introduction to neutrino experiments

Super-Kamiokande "Zdjęcie" Słońca w "świetle" neutrin

rzeczywisty rozmiar Słońca $\sim \frac{1}{2}$ pixla

Neutrina słoneczne

Widmo energii

Widmo energii neutrin elektronowych produkowanych w reakcjach jądrowych na słońcu ⇒

Strumień neutrin o energiach poniżej kilku MeV może być zmierzony metodami radiochemicznymi: mierzymy produkcję powstających izotopów:

 $\nu_e + Cl \rightarrow Ar + e^-$

(eksperyment Homestake)

 ν_e + Ga \rightarrow Gr + e^-

(SAGE, GALLEX, GNO)

Tylko neutrina elektronowe !

Neutrina

Eksperyment Super-Kamiokande

Japonia, w starej kopalni, 1 km pod górą Kamioka, komora o wysokości 40 m i średnicy 40 m, wypełniona wodą

11'000 fotopowielaczy (50 cm średnicy!) rejestruje przechodzące cząstki

rejestrowane jest promieniowanie Czerenkowa

Jak można mierzyć tak małe sygnały ($\sim 5 MeV$) w tak ogromnym detektorze?

A.F.Żarnecki

Tło

- Mimo ogromnej masy detektora oczekiwano jedyni około 30 przypadków oddziaływań neutrin słonecznych na dobę.
- Przypadki skrajnie niskich energii (rzędu 10 MeV) konieczność redukcji tła.
- Główne tło: naturalna promieniotwórczość.
- Stężenie radonu w powietrzu w kopalnie $\sim 3000 Bq/m^3$
- ⇒ hermetyczne drzwi, intensywna wentylacja powietrzem zewnętrznym
- cała komora wyłożona spejcalną platikową osłoną zabezpieczającą przed przenikanie radonu ze skał
- ⇒ hermetyczny zbiornik, dopełniony specjalnie oczyszczonym powietrzem ($3mBq/m^3$) pod ciśnieniem wyższym od atmosferycznego
- ⇒ intensywne filtrowanie wody (ok. 35 t/h, czyli cały detektor w ok. 2 miesiące)

Kalibracja

Fotony przebiegają w wodzie do 60 m - atenuacja światła musi być dokładnie znana i monitorowana.

Można ją wyznaczyć z obserwacji sygnału z rozpadu zatrzymujących się mionów.

Około 1500 "kalibracyjnych" rozpadów dziennie.

Wystarcza do bardzo dokładnego monitorowania zmian w skali tygodni.

Kalibracja

Kalibracja energetyczna: kluczowa przy niskich energiach.

Główna metoda: własny akcelerator (!) 5-16 MeV (zakres energii mierzonych neutrin)

Wiązka wprowadzana pionowo w kilku wybranych punktach.

Kalibracja

Wyniki kalibracji przy pomocy akceleratora

Rozdzielczość energetyczna

- 18.4% przy 5 MeV
- 14.2% przy 10 MeV
- 11.3% przy 20 MeV

Tłumacząc to na parametry kalorymetru

$$\frac{\sigma}{E} \approx \frac{1.2\%}{\sqrt{E[GeV]}} \oplus 7.6\%$$

Kalibracja

Wada akceleratora: tylko wybrane pozycje i jeden kierunek wiązki (pionowy).

Drugie narzędzie: "generator DT" - źródło neutronów.

 $^{3}H + ^{2}H \rightarrow ^{4}He + n$

Izotropowy strumień neutronów 14.2 MeV.

W oddziaływaniu z tlenem (w wodzie):

 $n + {}^{16}O \rightarrow p + {}^{16}N$

Kalibracja

Rozpady ${}^{16}N$ dokładnie znane:

- 66%: 6.129MeV γ + 4.29MeV β
- 28%: 10.419MeV β

"generatora"

Kalibracja

Mierzone rozkłady dla przypadków kalibracyjnych ¹⁶N: Energii Położenia wierzchołka

Obserwacja neutrin słonecznych

Oddziaływania neutrin słonecznych możemy odróżnić od oddziaływań neutrin atmosferycznych mierząc kąt rozproszenia elektronu względem kierunku od słońca:

Wykład VII

Dark Matter annihilation to neutrinos

... where they may come from?

Search for neutrinos from DM annihilation (approaches)

Directional flux

related to regions of increased DM density:

- core of Sun, Earth, Galaxy Center
- constrain SD/SI $\sigma_{\gamma n}$

Diffuse flux:

- flux averaged over large cosmic volumes (many galactic halos) or over Milky Way
- constrain DM self-annihilation cross section <σ·v>

Dark Matter Annihilation in the Sun

Neutrino signal from WIMP annihilations

- WIMPSIM package (Blennow, Edsjö, Ohlsson, 03/2008) used to generate events in the Sun in a model-independent way
- Annihilations into b quarks (soft spectrum) and τ leptons, WW/ZZ bosons (hard spectrum) used as benchmarks
- Take into account v interactions in the Sun medium, regeneration of v_τ in the Sun and v oscillations

V. Bertin - CPPM - Moriond VHEPU - March'13

Search for WIMPs in SuperK (directional flux)

EARTH

SUN

GC

(*) S.Desai et al., Phys.Rev. D70 (2004) 083523

- Search for excess of neutrinos in SK1 data (1679.6 live days)
- WIMP mass range 18GeV-10TeV -> neutrino energy: ~5 GeV 5 TeV
- Data sample: upward through-going muons
- Currently new analysis: more data, lower energy neutrinos also included (T.Tanaka)

11.I.2010, Wrocław

Diffuse search idea

Investigation is limited to "most optimistic" but model independent WIMP annihilation channel

$$\chi + \chi \to \nu + \overline{\nu}$$

neutrino energy = WIMP mass

signal is isotropic

- Relevant for DM diffuse annihilation and also for DM decay modes
- Due to distinctive energy spectra of WIMPinduced neutrinos coming from that "golden channel" it is possible to test data against characteristic distortions in energy and cos spectra
- > Use method of min χ^2 to find best allowed WIMP contribution
- > Derive conservative upper limit on WIMP total self-annihilation cross section < σV >, lifetime τ_{DM}

(*) J.F.Beacom et al., Phys. Rev. D76, 123506 (2007)

Fitted # of DM-induced neutrinos

- » FIT based on Momentum & cosθ_{GC} distributions of all SK samples, systematics included
- » Fitted:
- WIMP signal normalization
- ATM MC normalization and shape via 119 systematic uncertainty terms but Δm²₂₃, sin²2θ₂₃ not varied
- > No allowed excess of DMind v's for M_{χ} in range 0.5 GeV - 800 GeV
- ➢ FIT consistent with 0 → upper limit on DM-ind neutrino flux from Milky Way halo (ϕ) → upper limit on WIMP self-annihilation cross section < $\sigma_A V$ >

40 fitted no of DM-ind $v_{\mu} \, \overline{v}_{\mu}$ per 1000 days GALACTIC CENTER FIT 30 SK-I,II,III 20 10 -10 -20 -30 $\chi + \chi \rightarrow$ -40 10⁻¹ 10² 10^{3} 10⁴ 10 $E_v (M_v)$ [GeV]

SK data livetime: FC/PC 2806 days, UPMU 3109 days

90% CL UPPER LIMIT

- Beginning in the 1970s, the dream of high-energy neutrino astronomy fascinated a small group of visionaries.
- 1990: AMANDA (Antarctic Muon and Neutrino Detector Array) collaboration formed.
- Very clear since the beginning the need of km³ scale neutrino telescope
- 2000: AMANDA completed at the South Pole, first demonstration of feasibility of a large neutrino telescope in the ice
- May 30th, 2008 Antares detector completed!
- 2002: IceCube project approved. The first km³ scale neutrino telescope.
- 2004-2010 drilling of IceCube strings
- 18th of December 2010, IceCube neutrino telescope completed!

Elisa Resconi

ISAPP 2012

AMANDA

(Antarctic Muon And Neutrino Detector Array)

677 modułów na 19 "strunach", 1500–2000 m pod lodem (biegun południowy)

promieniowanie Czerenkowa mierzone przez skierowane do dołu fotopowielacze

Obszar aktywny: ok. 40 mln. ton lodu (!)

Rejestracja mionów o energiach \geq 50 GeV.

The laboratory

South Pole

120

Przypadek mionu z oddziaływania wysokoenergetycznego neutrina

After cuts: 264 hits, 264 OMs

200 TeV v_e candidate

AMANDA

<u>Badania</u>

Duże odległości między licznikami powodują, że detektor czuły jest tylko na neutrina o bardzo wysokiej energii wyprodukowane w ich oddziaływaniach cząstki muszą mięć zasięg porównywalny z rozmiarami detektora.

Poszukiwanie neutrin stowarzyszonych z:

- wybuchami supernowych
- błyskami gamma (GRB)
- gwiazdami neutronowymi

ANTARES Detector

In Mediterranean Sea

40 km from Toulon

2.5 km under water

12 Lines (885 PMTs)

Line length ~450 m

Optimized for muons at TeV energies

Taking high quality data since 2007

The ANTARES Neutrino Telescope

📖 NIM A 656 (2011) 11-38

The ANTARES Site

Toulon

M. Pacha Institute

42 50'N, 6 10'E

.3

N

© 2008 Cnes/Spot Image Image © 2008 DigitalGlobe Image NASA

Neutrino Detection

Reconstruction of muon trajectory from timing and position of PMT hits Detection lines with PMTs

Cherenkov light from muon

Cheap high quality sea water

Muon

Sea floor

Charged Current Interaction

Neutrino

Earth shielding rejects atmospheric muons Upward going muon → neutrino candidate from Southern hemisphere

Sources for DM searches

Physical background

μ

There are two kinds of background:

 Muons produced by cosmic rays in the atmosphere (→ detector deep in the sea and selection of up-going events).
 Atmospheric neutrinos (cut in the energy).

$$p \to \pi^{+}(+K^{+}...) \to \mu^{+} + \nu_{\mu}$$
$$\mapsto e^{+} + \overline{\nu}_{\mu} + \nu_{e}$$
$$n \to \pi^{-}(+K^{-}...) \to \mu^{-} + \overline{\nu}_{\mu}$$
$$\mapsto e^{-} + \nu_{\mu} + \overline{\nu}_{e}$$

Upward Going Muons from Charged Current Neutrino Interactions

Tracks reconstructed by maximization of track likelihood Likelihood = probability density of observed hit time residuals Time residuals = difference between observed and expected time

Cumulative distribution of reconstruction quality variable for upgoing tracks (2007-2010) Distribution of zenith angle with quality variable > -5.2 \rightarrow ~3000 neutrino candidates

Event selection : background rejection

Selection of neutrinos and rejection of atmospheric muons by selecting up-going tracks and cutting on track fit quality

Rejection of atmospheric neutrinos by looking into a cone towards the Sun direction (below horizon only)

V. Bertin - CPPM - Moriond VHEPU - March'13

Sun: unblinded data

Sun: limits on flux

Cross section calculation

Sun: limits on σ_{SD}

Galactic Centre

GC: unblinding data

GC: limits on the flux

GC: <σv> for different channels

Full-Sky Point Source Search

Search for neutrino point sources III

New updated search 2007-2012 (1340 days)

PRELIMINARY !

15

- ➢ 5516 neutrino candidates (90 % of which being better reconstructed than 1⁰)
- No significant excess
- Same most significant cluster with 6 additional events: p-value = 2.1% (2.3 σ) Compatible with background hypothesis

Search for neutrino point sources IV

Most stringent limits for a large part of the Southern Sky in TeV region

Dedicated studies for extendedExperimentalsources (RXJ1713, Vela X) → limitsincluding

Expect further improvement including showers (work in progress)

16

Talk by S. Schulte ID 0425

IceCube

1km³ Cherenkov Array

South Pole Statio

IceCube Lab

IceCube: constructed in 7 seasons

IceCube-1/IceCube-9 IceCube-22 IceCube-40 IceCube-59 IceCube-79 IceCube-79 IceCube-86 (1st year), IceCube-86 (2nd year)

IceCube Array

Photo: Haley Buffman

1 km

Friday, July 6, 12

Water vs Ice

- Very large volumes of medium transparent to Cherenkov light are needed:
 - Ocean, lakes...
 - Antarctic ice
 - Advantages of <u>oceans</u>:
 - Larger scattering length \rightarrow better angular resolution
 - Weaker depth-dependence of optical parameters
 - Possibility of recovery
 - Changeable detector geometry
- Advantages of <u>ice</u>:
 - Larger absorption length
 - No bioluminescence, no ^{40K background, no biofouling}
 - Easier deployment
 - Lower risk of point-failure
- Anyway, a detector in the Northern Hemisphere in necessary for complete sky coverage (Galactic Center!), and it is only feasible in the ocean.

Regions of the sky observed by NTs

IceCube (South Pole) (ang. res.: 0.6°)

ANTARES (43° North) (ang. res.: ~0.3°)

SS433

veto-based analyses attenuate this problem

Friday, July 6, 12

5) Neutrino telescopes: core collapse SN

How does it work (first proposed by Halzen, Jacobsen & Zas, astro-ph/9512080)

IceCube

- 1 km³ neutrino detector
 - Detects the Cherenkov light from charged particles produced in high-energy neutrino interactions
- 5,160 digital optical modules (DOMs) on 86 vertical strings
 - 25.4 cm phototube
 - Autonomous data acquisition
- IceTop 1 km² surface array
 - 162 ice-filled tanks
- Completed, Dec. 2010
- Reliability is excellent
 - 98.5% of channels are active
 - 2 DOMs failed in 2012
- Typical up-time 99%

The detector

~1 Gton instrumented volume

- Completed in December 2010
- >99% of DOMs survived installation
- Expect >97% operational in 2025

Digital Optical Module:

- 10inch PMT
- Electronic digitization
- Communication

DeepCore:

- High efficiency PMT
- ~4xIC sensor density
- 20 Mton detector

2) muons through matter

Energy loss: what is exactly emitting Cherenkov photons?

 $E\mu$ > 500 GeV stochastic energy loss dominant

Neutrino signals

"double-bang" and other signatures (simulation)

(not yet observed)

Backgrounds and Systematics

Backgrounds:

- Cosmic Ray Muons
- Atmospheric Neutrinos

Largest Uncertainties:

- Optical Properties of Ice
- Energy Scale Calibration
- Neutral current / v_e degeneracy

A bundle of muons from a CR interaction in the atmosphere (also observed in the "IceTop" surface array)

Calibration and performance

- Major systematic uncertainties:
 - Optical module efficiency

- Optical properties of the ice
 - The ice is anisotropic! (Paper 0580)
- Studied with on-DOM light sources (LEDs), deployed 337 nm N₂ lasers, and cosmicray muons
- The moon is an anti-source
 - blocks cosmic-rays
- Angular resolution at high energies better than 1^o
 - ◆ 0.5⁰ at 100 TeV

Effective Volume / Target Mass

Fully efficient above 100 TeV for CC electron neutrinos About 400 Mton effective target mass

DeepCore

- Use IceCube outer strings as a veto:
 - 3 complete IC string layers around DeepCore (375m thick)
- Full sky sensitivity: access to southern hemisphere

installed during IC79

PINGU (Precision IceCube Next Generation Upgrade)

Under discussion:

further extension of IceCube for the energy region from few GeV to 50 GeV $\,$

The primary physics goal of PINGU is the study of the **neutrino mass hierarchy**

What is "mass hierarchy":

Dark Matter searches

- WIMP searches are at the lower edge of current energy reach
- Look for neutrinos produced by DM annihilation into standard model particles
- Probe regions in the sky where DM might have gravitationally accumulated:
 - Earth (IC86 ongoing)
 - Sun (IC79 results, IC86 ongoing)
 - Galactic Center (IC79 results/ongoing, IC86 ongoing)
 - Galactic Halo (IC79 results, IC86 ongoing)
 - Dwarf spheroidal galaxies & clusters (IC59 results, IC79-86 ongoing)

Various Potential Dark Matter Signals

Various analyses looking at different source distributions

• Galactic Halo:

- IC22 PRD 8 (2011) 022004
- IC79 in preparation

Galactic Center:

- IC79 in preparation high mass/light ratio
- Dwarf spheroids:
 - IC59 PRD 88 (2013) 122001
- Clusters of galaxies:
 - IC59 PRD 88 (2013) 122001

Atmospheric Neutrino Spectrum

Measured with IceCube in v_{μ} and v_{e}

1) production of muons and neutrinos in the atmosphere

Critical energy depends also from matter density: in astrophysical environment density << atmospheric density.

Neutrino spectrum from astrophysical sites expected to be harder up to higher energies

Neutrino telescopes: UHE cascades

Energy Spectrum

Compatible with benchmark E⁻² astrophysical model

- Harder than any expected atmospheric background
- Merges well into background at low energies
- Potential cutoff at about 2-5
 PeV (or softer spectrum)
- Best fit (per-flavor flux):

• $0.95 \pm 0.3 \ 10^{-8} \text{ E}^{-2} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

Declination Distribution

Or: "zenith Distribution" because we are at the South Pole

- Compatible with isotropic flux
- Events absorbed in Earth from Northern Hemisphere
- Minor excess in south compared to isotropic, but not significant

Declination Distribution

Or: "zenith Distribution" because we are at the South Pole

- Compatible with isotropic flux
- Events absorbed in Earth from Northern Hemisphere
- Minor excess in south compared to isotropic, but not significant

But now two PeV energy candidate neutrinos observed by IceCube

What Did We Find?

28 events in **2 years** of IceCube data (662 days between 2010–2012)

> 28 events observed!

• 26 new events in addition to the two 1 PeV events!

Estimated background:

- $4.6^{+3.7}$ -1.2 atm. neutrinos
- 6.0 ± 3.4 atm. muons

significance w.r.t. reference bkg. model: 3.3σ for 26 events combining with 2.8σ from GZK result: 4.1σ for 26+2 events full likelihood fit of all components: 4.1σ for 28 events

What Did We Find?

37 events in **3 years** of IceCube data (988 days between 2010–2013)

► 37 events observed!

- 35 new events in addition to the two 1 PeV events!
- Estimated background:
 - 6.6^{+5.9}-1.6 atm. neutrinos
 8.4±4.2 atm. muons
 - One of them is an obvious (but expected) background
 - coincident muons from two
 CR air showers

combining with 2.8 σ from GZK result: 4.8 σ for 35+2 events full likelihood fit of all components: 5.7 σ for 36(+1) events

Thank you!

2 PeV event - "Big Bird"

and even more events at few 100 TeV:

8

4 year neutrino sky map

- 1371 live days, with 390,000 events
 - No significant excesses seen
 - Sensitivity depends on declination

- Paper 0550
- Flux limits $E^2 \phi < 10^{-12}$ TeV/cm²/s near the horizon

Hyper-K LOI arXiv:1109.3262

28

Hyper-K Sensitivity 4yrs

Interesting signatures for future neutrino detectors (Hyper-K, MICA (see Talk by E. Resconi), LBNE, ...), other nuclear final states could provide additional sensitivity

P. Coyle (891)

A. Trovato(165)

NU-TH01

Multi-km³ neutrino telescope in the Mediterranean Sea

KM3NeT

Deploy method tested.

Discovery of RXJ1713.7-3946 (Vela X) after about 5 (3.3) observation years.

~4500m

Phase 1 funding secured.

Decision taken for distributed infrastructure:

- KM3NeT-France (Toulon) ~2500m
- KM3NeT-Italy (Capo Passero) ~3400m
- KMNeT-Greece (Pylos)