Astrofizyka cząstek

prof. dr hab. A.F.Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych IFD

Wykład IX

- Wielkie pęki atmosferyczne
- Eksperyment KASKADE
- Eksperyment AUGER
- Poszukiwanie źródeł UHECR
- Projekt JEM-EUSO
- Radiowa detekcja pęków atmosferycznych

<u>Widmo</u>

Pierwotne promieniowanie kosmiczne (cząstki naładowane) docierające do atmosfery Ziemi

Przyjmuje się, że promieniowanie do energii rzędu 10^{15-16} eV przyspieczane jest w falach uderzeniowych rozchodzących się po wybuchu supernowych \Rightarrow mechanizm Fermiego

<u>Widmo</u>

Powyżej 10^{15-16} eV obserwijemy zmiany w nachyleniu widma. \Rightarrow mogą sugerować różne inne i/lub mechanizmy produkcji...

Pomiar bezpośredni

Pierwotne promieniowanie kosmiczne można mierzyć:

- poza atmosferą ziemską eksperymenty satelitarne
- w górnych warstwach atmosfery eksperymenty balonowe

Ale powyżej 10¹⁵ eV strumień staje się zbyt mały

⇒ możliwa jedynie detekcja pośrednia na powierzchni Ziemi

Wtórne promieniowanie kosmiczne

Promieniowanie pierwotne oddziałuje w atmosferze Ziemi. Produkowane są liczne cząstki wtórne, głównie piony i kaony:

 $p + N \rightarrow X + n \pi + m K + \dots$

$$\begin{array}{rccc} \pi^- & \rightarrow & \mu^- + \bar{\nu}_\mu \\ \mu^- & \rightarrow & e^- + \nu_\mu + \bar{\nu}_e \end{array}$$

Docierają do powierzchni Ziemi

- miony μ^{\pm} \sim 70%
- elektrony e^{\pm} ~25%
- protony, piony π^{\pm} ${\sim}3\%$

Łącznie rzędu 180 na $m^2 \cdot s$ większość w zakresie energii rzędu GeV A.F.Żarnecki

Wielkie pęki atmosferyczne

Rozwój kaskady W przypadku kaskady elektromagnetycznej.

Droga radiacyjna w powietrzu $X_0 = 36.7 \text{ g/cm}^2$ Podział energii średnio po przebyciu $d_{\frac{1}{2}} = X_0 \cdot \ln 2$

Rozwój kaskady kończy się gdy energia cząstek spada do poziomu energii krytycznej E_c = 85 MeV Liczba cząstek w maksimum kaskady:

$$N_{max} \sim \frac{E_0}{E_c}$$

Pozycja maksimum:

$$x_{max} \sim X_0 \cdot \ln \frac{E_0}{E_c}$$

Rozwój kaskady W przypadku kaskady elektromagnetycznej.

Wyniki symulacji numerycznej rozwoju kaskdy. Głębokość maksimum kaskady:

Rozwój kaskadyW przypadku kaskady hadronowej.Dominują procesy typu $\pi + A \rightarrow A' + N\pi$ $(N \sim 15)$ Średnia droga π na oddziaływanie: $\lambda_{int} \sim 120 \text{ g/cm}^2$ n=

Średnio 1/3 pionów to $\pi^0 \Rightarrow$ natychmiast się rozpadają

Energia krytyczna $E_c^{\pi} \sim 20~{
m GeV}$ poniżej tej energii zaczynają dominować rozpady...

Liczba cząstek naładowanych w maksimum kaskady:

$$N_{max}^{ch} \sim \left(\frac{E_0}{E_c}\right)^{0.85}$$

gdzie wykładnik 0.85 wynika z założonej krotności cząstek oraz stosunku pionów naładowanych do obojętnych

Profil podłużny

W przypadku ciężkich jąder przyjmujemy, że oddziaływanie jądra o energii E_0 i liczbie masowej A odpowiada złożeniu A oddziaływań protonów o energii E_0/A .

⇒ zasięg ciężkich jąder w atmosferze jest mniejszy niż protonów o tej samej energii

⇒ jedno z głównych kryteriów oceny składu promieniowania

Profil podłużny

W przypadku ciężkich jąder przyjmujemy, że oddziaływanie jądra o energii E_0 i liczbie masowej A odpowiada złożeniu A oddziaływań protonów o energii E_0/A .

⇒ zasięg ciężkich jąder w atmosferze jest mniejszy niż protonów o tej samej energii

⇒ jedno z głównych kryteriów oceny składu promieniowania

Kaskady wywołane przez ciężkie jądra podlegają też mniejszym fluktuacjom...

Profil podłużny

W przypadku ciężkich jąder przyjmujemy, że oddziaływanie jądra o energii E_0 i liczbie masowej A odpowiada złożeniu A oddziaływań protonów o energii E_0/A .

⇒ zasięg ciężkich jąder w atmosferze jest mniejszy niż protonów o tej samej energii

⇒ jedno z głównych kryteriów oceny składu promieniowania

Profil podłużny

Przy powierzchni Ziemi przeważają miony i elektrony

Profil podłużny

Stosunek liczby elektronów i mionów w kaskadzie może także służyć określeniu składu promieniowania

Profil poprzeczny

Cząstki wtórne rozwijającej się kaskady tworzą wąską wiązkę ⇒ rdzeń.

Począstkowy pęd poprzeczny oraz wielokrotne rozpraszanie w atmosferze prowadzi do poszerzania się kaskady \Rightarrow profil poprzeczny

Ze względu na różnice dróg w atmosferze czoło kaskady tworzy cienki, zakrzywiony dysk.

Profil poprzeczny

Rozmiaru poprzeczny kaskady o zadanej energii także zależy od rodzaju cząstki:

- najwęższe kaskady dla fotonów (i elektronów)
- najszersze dla cięzkich jąder

Metody detekcji

Pęki atmosferyczne możemy badać mierząc:

- cząstki naładowane na powierzchni Ziemi głownie elektrony i miony
- promieniowanie Czerenkowa produkowane przez elektrony w rdzeniu
- fluorescencje cząsteczek atmosfery wzbudzanych przez rozwój kaskady
- emisję radiową (!)

Różne eksperymenty stosuja różne podejścia...

Promieniowanie Czerenkowa

Bardzo słaba ($\sim \! 10$ fotonów/m²) emisja w ultrafiolecie (300–550 nm) pochodząca głównie od składowej elektromagnetycznej kaskady.

Foton

Promieniowanie Czerenkowa

Bardzo słaba (\sim 10 fotonów/m²) emisja w ultrafiolecie (300–550 nm) pochodząca głównie od składowej elektromagnetycznej kaskady.

Proton

Fluorescencja

Obserwujemy głównie promieniowanie ultrafioletowe wzbudzonych cząsteczek azotu, w przedziale długości fali między 300 a 400 nm.

Emitowane w ten sposób jest jedynie ok. 0.5% energii traconej przez kaskadę w atmosferze.

Dodatkowo jest to promieniowanie izotropowe, możemy "łapać" jedynie niewielką jego część

⇒ możliwe do wykorzystania jedynie przy najwyższych energiach (> 10¹⁷ eV)

Wymaga szczególnych warunków obserwacyjnych (bezchmurne niebo, bezksiężycowa noc)

Emisja radiowa

Powstaje w wyniku pojawienia się separacji przestrzennej ładunków ujemnych i dodatnich w kaskadzie. Dwa mechanizmy sepraracji:

Wpływ ziemskiego pola magnetycznego (efekt geomagnetyczny) Efekt Askariana:

- w wyniku anihilacji e^+ na froncie kaskady przeważają elektrony
- ⇒ emitują koherentne promieniowanie w zakresie radiowym

Metody detekcji

A.F.Żarnecki

Eksperymenty

A.F.Żarnecki

KASKADE

Detektor

Mierząc niezależnie rozkłady elektronów i mionów docierających do powierzchni Ziemi, można wnioskować nie tylko o energii ale i typie cząstki pierwotnej.

KASKADE

Wyniki

Przykładowy przypadek zmierzonego pęku atmosferycznego.

Na podstawie pomiaru czasu można bardzo dokładnie określić kierunek kaskady ($\Delta \alpha \sim 0.5^\circ - 1.2^\circ$)

Na podstawie mierzonego sygnału (⇒ liczby cząstek) można określić rozmiary i energię kaskady

Wyniki

Zmierzony rozkład kaskad.

Na podstawie porównania z symulacją można wnioskować, że kaskady o najwyższej energii częściej są wywoływane przez ciężkie jądra niż kaskady o niższych energiach.

Ale niepewności związane z symulacją są wciąż duże...

A.F.Żarnecki

Wykład IX

29

KASKADE od 1996

- 252 detektory co 13 m
- pokrycie 200× 200 m²
- energie $10^{14} 10^{17} \text{ eV}$

KASKADE GRANDE

od 2001 (?)

KASKADE GRANDE

- 37 detektorów co ok. 130 m
- pokrycie ok. $700 \times 700 \text{ m}^2$
- detektor centralny
- energie do 10¹⁸ eV

Eksperyment zakończony w 2009...

KASKADE od 1996

- 252 detektory co 13 m
- pokrycie 200 \times 200 m²
- energie $10^{14} 10^{17} \text{ eV}$

KASKADE GRANDE

od 2001 (?)

- 37 detektorów co ok. 130 m
- pokrycie ok. $700 \times 700 \text{ m}^2$
- detektor centralny
- energie do 10¹⁸ eV

Eksperyment zakończony w 2009...

Przykładowa kaskada

Pomiar energii

Niestety detektory były rozłożone zbyt daleko od siebie, żeby precyzyjnie określić gęstość cząstek w rdzeniu pęku

⇒ niepewność energii

Przy tych energiach kształt kaskady jest dość powtarzalny

wystarczy rekonstruować gęstość cząstek w ustalonym miejscu profilu

Pomiar energii

Niestety detektory były rozłożone zbyt daleko od siebie, żeby precyzyjnie określić gęstość cząstek w rdzeniu pęku

⇒ niepewność energii

Przy tych energiach kształt kaskady jest dość powtarzalny

⇒ wystarczy mierzyć gęstość cząstek w ustalonym miejscu profilu

Dla KASKADE GRANDE optymalny do rekonstrucji energii okazał się pomiar gęstości cząstek w odległości 500 m od osi kaskady

Zależność od modelu

Duże niepewności systematyczne związane z modelowaniem oddziaływań w atmosferze Dane LHC pozwoliły na ich istotne zmniejszenie \Rightarrow modele EPOS-LHC, QGS2v4

Wyniki 2015

A.F.Żarnecki

Nowe wyniki wykorzystujące modele oddziaływań oparte na danych LHC:

Obserwatorium Pierre Auger

Badanie promieni kosmicznych w zakresie najwyższych energii, $E > 10 \text{ EeV} (10^{19} \text{ eV})$

- widmo energii
 poszukiwanie efektu GZK
- skład
 lekkie czy ciężkie jądra
- rozkład kierunkowy poszukiwanie źródeł

Duża statystyka dzięki bardzo dużej powierzchni detektora.

Duża dokładność dzięki hybrydowej metodzie detekcji: cząstki naładowane + fluorescencja

1600 detektorów powierzchniowych rozstawionych co 1.5 km na obszarze 3000 km²

24 teleskopy mierzące światło fluorescencyjne zgrupowane w 4 obserwatoriach

Kalibracja

Kalibracja detektorów powierzchniowych opiera się na pomiarze mionów kosmicznych.

Dwa tryby pomiaru: koincydencja 3 fotopowielaczy lub wyzwalanie zewnętrznym sctntylatorem. W obu przypadkach wyraźnie widoczne maksimum VEM (Very Energetic Muon)

Detektor powierzchniowy

Detektory powierzchniowe mierza liczbę cząstek (sygnał w jednostkach VEM) i czas ich przejścia. Profil czasowy pozwala na rekonstrukcję kierunku.

Detektor powierzchniowy

Detektory powierzchniowe mierza liczbę cząstek (sygnał w jednostkach VEM) i czas ich przejścia. Profil czasowy pozwala na rekonstrukcję kierunku.

Detektor powierzchniowy

Detektory powierzchniowe mierza liczbę cząstek (sygnał w jednostkach VEM) i czas ich przejścia. Profil poprzeczny (+kąt) na oszacowanie energii.

Teleskop fluorescencyjny

Schemat teleskopu

Zwierciadło o średnicy 3.4 m, matryca 440 fotopowielaczy rejestrujących promieniowanie UV

Teleskop fluorescencyjny

Schemat teleskopu

Zwierciadło o średnicy 3.4 m, matryca 440 fotopowielaczy rejestrujących promieniowanie UV

Teleskop fluorescencyjny

Obraz wielkiego pęku atmosferycznego zarejestrowany przez jeden z teleskopów.

Rejestrowana jest amplituda sygnału, precyzyjnie mierzony jest też profil czasowy

⇒ pełna rekonstrukcja 3-D !

AUGER

Teleskop fluorescencyjny

Przykład zrekonstruowanego profilu kaskady.

Rozkład czasowy przychodzącego sygnału (fluorescencja + prom. Czerenkowa)

Dopasowany profil podlużny (pozycja 2-D + czas)

Przypadki hybrydowe

Przypadki hybrydowe

Pomiar energii dwoma metodami - bardzo dobra korelacja:

Pozwala na absolutną kalibrację energii z detektorów powierzchniowych.

To bardzo ważne, bo detektory fluorescencyjne działają tylko \sim 10% czasu

 S_{38} - gęstość cząstek po poprawce na pochłanianie w atmosferze (normalizacja do $\theta = 38^{\circ}$)

Przypadki hybrydowe

Pomiar energii dwoma metodami - bardzo dobra korelacja:

Pozwala na absolutną kalibrację energii z detektorów powierzchniowych.

To bardzo ważne, bo detektory fluorescencyjne działają tylko \sim 10% czasu

Rozbudowa systemu

Dodatkowe detektory powierzchniowe, dla obniżenia progu energii

Teleskopy fluorescencyjne pod dużymi kątami → zwiększenie akceptacji

Rozbudowa systemu

Dodatkowe detektory powierzchniowe, dla obniżenia progu energii Teleskopy fluorescencyjne pod dużymi kątami → zwiększenie akceptacji

Rozbudowa systemu

Detektory SD-1500 w pełni efektywne dopiero dla $E > 3 \cdot 10^{18} \text{ eV}$

Detektory SD-750 pozwalają mierzyć już od $E > 3 \cdot 10^{17}$ eV

AUGER

Bardzo nachylone kaskady

Udało się też opracować metodę dokladnej rekonstrukcji energii dla kaskad najwyższych energii nachylonych pod kątem 60° do 80° do zenitu

- \Rightarrow znaczący (29%) wzrost statystyki przypadków o $E > 4 \times 10^{18}$ eV.
- \Rightarrow większe pokrycie sfery niebieskiej (!)

Przykładowe symulacje powierzchniowej gęstości mionów:

Wyraźny wpływ pola magnetycznego Ziemi \Rightarrow zależność od kąta azymutalnego Energia z dopasowania do symulowanego rozkładu przestrzennego dla $E = 10^{19} \text{ eV}$

Dokładność pomiaru

Od uruchomienia w 2004 roku współpraca AUGER doskonaliła metody rekonstrukcji energii i kierunku kaskad. Zestawienie wyników:

Detektory powierzchniowe ($\theta < 60^{\circ}$):

- dokładność pomiaru energii:
 16% (niskie E) do 12 % (wysokie E)
- dokładność pomiaru kierunku:
 od 1.6° (3 stacje) do 0.9° (> 5 stacji)

Przypadki hybrydowe:

- dokładność pomiaru energii:
 8% (teleskopy fluorescencyjne)
- dokładność pomiaru kierunku: 0.6°

Przypadki pod dużymi kątami ($60^{\circ} < \theta < 80^{\circ}$):

- dokładność pomiaru energii: ok. 19% (tylko wysokie energie)
- dokładność pomiaru kierunku: nie gorsza niż 0.5°

Dokładność pomiaru

Wyniki kalibracju różnych klas przypadków powierzchniowych

 N_{19} - normalizacja nachylonej kaskady do kaskady protonowej(!) o $E = 10^{19} \text{ eV}$

Widmo energii

Dobra zgodność widma wyznaczonego różnymi metodami, także dla małych i dużych kątów.

Widmo energii

Dobra zgodność widma wyznaczonego różnymi metodami, także dla małych i dużych kątów.

Wyraźne "załamanie" widma przy $4 \cdot 10^{19}$ eV

Skład promieniowania

Porównanie mierzonej pozycji maksimum kaskady (średnia i dyspersja), w funkcji energii, z przewidywaniami modeli

Skład promieniowania

Wyznaczany skład promieniowania (średnia wartość In A) w funkcji energii

Promieniowanie kosmiczne

Poszukiwanie źródeł

Dla energii poniżej 10¹⁸ eV cząstki naładowane są całkowicie randomizowane przez pola magnetyczne w naszej Galaktyce. Ale dla wyższych energii kierunek z którego obserwujemy cząstkę jest skorelowany z pozycją źródła.

Dla protonów $E \sim 10^{20}$ eV odchylenia na poziomie 1 - 2°

Telescope Array

A.F.Żarnecki

Wykład IX

Telescope Array

W ostatnich latach detektor rozbudowany o część niskoenergetyczną

Nowe teleskopy UV pozwalają także na bezpośredni pomiar prom. Czerenkowa

Konieczna poprawka skali energii w granicach niepewności systematycznych...

Mimo to końcówka widma pozostaje wyraźnie różna!

Energia przy której następuje "odcięcie" widma wyraźnie wyżej w TA...

Ale detektory patrzą na różny obszar nieba...

Telescope Array

Autokorelacja

Zliczanie par przypadków o zadanej różnicy kątowej między kierunkami.

Prawdopodobieństwo, że obserwacja jest zgodna z rozkładem izotropowym.

Telescope Array

Korelacja z lokalnymi strukturami LSS - Large Scale Structures

Blue dots: TA events Red dots: Auger events

Statystyka wciąż zbyt mała na wyciągnięcie jednoznacznych wniosków...

A.F.Żarnecki

Wykład IX

Położenia przypadków rozmyte profilem o szerokości 45°

Położenia przypadków rozmyte profilem o szerokości 45°

Rozkład przestrzenny

Anizotropia obserwowana na poziomie 5.2 σ ($p = 2.6 \cdot 10^{-8}$)

AUGER

Rozkład przestrzenny

(Wyniki 2018)

Amplituda obserwowanej anizotropii rośnie wyraźnie z energią.

Natomiast pozycja na niebie nie zmienia się, statystycznie niezależne próbki o różnych energiach wskazują ten sam kierunek...

AUGER

Rozkład przestrzenny (wyniki 2018)

Dla przypadków najwyższych energii dostrzeżono też korelację z położeniami galaktyk gwiazdotwórczych

Wkład ok. 10%. Efekt na poziomie 4σ

AUGER

Rozkład przestrzenny (wyniki 2018)

Dla przypadków najwyższych energii dostrzeżono też korelację z położeniami galaktyk gwiazdotwórczych, czy też aktywnych jąder galaktyk...

Wkład ok. 7%. Efekt na poziomie 2.7σ

Korelacja z IceCube

przypadki najwyższych energii: neutrina TeV - PeV

Widoczna korelacja kaskad (•) i torów (\diamond) neutrinowych z UHECR dla rozdzielczości ok. 20° (na poziomie znaczoności ~ 2.6 σ) \Rightarrow potrzebna większa statystyka...

Dalsze powiększanie układów detekcyjnych na powierzchni Ziemi bardzo kosztowne.

⇒ projekt obserwacji z kosmosu, z Japońskiego Modułu Eksperymentalnego na ISS

JEM-EUSO

Zasada działania

Detekcja promieniowania UV wytwarzanego przy przejściu pęków atmosferycznych: fluorescencja i promieniowanie Czerenkowa

JEM-EUSO

Zasada działania

Detekcja promieniowania UV wytwarzanego przy przejściu pęków atmosferycznych: fluorescencja i promieniowanie Czerenkowa

Z wysokości 400 km można obserwować powierzchnię od ok. 140 000 km² (obserwacja pionowo) do ok. 300 000 km² (obserwacja pod kątem 30°)

100× AUGER !!!

Schemat

Obszar obserwacji

Ponieważ ISS krąży po orbicie nachylonej ok. 52° do równika cała sfera niebieska dostępna jest obserwacjom \Rightarrow kluczowe dla poszukiwania źródeł

A.F.Żarnecki

Status projektu

Przeprowadzono testy z prototypem naziemnym (we współpracy z Telescope Array) Pierwszy próbny lot balonowy (\sim 40 km) w 2014

Właśnie odbył się 14 dniowy lot (24 kwietnia - 7 maja 2017) balonem NASA Super Pressure Balloon (SPB) kolejny planowany w 2022

Przygotowywany detektor Mini-EUSO - obserwacje z wnętrza ISS. Dwie soczewki o średnicy 25 cm, 1 moduł detekcyjny (2304 piksele). Instalacja na ISS przewidziana na początku 2019 (?)...

Start głównej misji, pierwotnie planowany na 2017, został odsunięty w czasie (≫2020).

Rozważana też mniejsza, uproszczona wersja, oparta na wykorzystaniu zwierciadła i jednej soczewki korekcyjnej: K-EUSO.

Wielkie pęki atmosferyczne

Emisja radiowa

Powstaje w wyniku pojawienia się separacji przestrzennej ładunków ujemnych i dodatnich w kaskadzie. Dwa mechanizmy sepraracji:

Wpływ ziemskiego pola magnetycznego (efekt geomagnetyczny) Efekt Askariana:

- w wyniku anihilacji e^+ na froncie kaskady przeważają elektrony
- ⇒ emitują koherentne promieniowanie w zakresie radiowym

Wielkie pęki atmosferyczne

Emisja radiowa

Odkryta już w 1965 roku (pasmo 44 MHz)

Szereg prac teoretycznych i doświadczalnych na przełomie lat 60 i 70.

Pod koniec lat 70 badania w dziedzinie radioastronomii skierowaly się w kierunku wyzszych częstości ⇒ zanik zainteresowania detekcją pęków

FIRST PULSE (enlarged scale)
(1) many many many many many many many many
(2) - man for a martine (2)
(3)
(5) may many many many
(e) marine hours of a marine the
TRANSMITTER PULSE
Jelley et al. (1965)

Wielkie pęki atmosferyczne

Detekcja radiowa

Zainteresowanie detekcją radiową ponownie na początku XXI wieku Detektor LOPES zbudowany przy detektorze KASKADE (2003)

LOPES

Przypadek wybuchu słonecznego mierzonego 8 antenami w paśmie 45-75 MHz

Rozkład pasujących kierunków:

Przed filtrowaniem

Po filtrowaniu

LOPES

Przypadek mierzonej kaskady, przed dopasowaniem kierunku pęku:

LOPES

Przypadek mierzonej kaskady, po dopasowaniu kierunku pęku:

[1] Event1073867291-10101

LOPES

Dokładność wyznaczenia kierunku z porównania z detektorem KASKADE-Grande.

LOPES

Dokładność wyznaczenia energii z porównania z detektorem KASKADE-Grande.

LOPES

Dokładność wyznaczenia energii z porównania z detektorem KASKADE-Grande.

Tim Huege, ICRC 2013

A.F.Żarnecki

<u>LOFAR</u>

Zestawy anten pracujących w zakresie 30-80 MHz i 120-240 MHz + scyntylatory

LOFAR

Przykładowy przypadek detekcji pęku (30-80 MHz)

<u>LOFAR</u>

Przykładowy przypadek detekcji pęku (30-80 MHz) ⇒ rekonstrukcja profilu

<u>LOFAR</u>

Dopasowanie modelu rozwoju kaskady

LOFAR

Rekonstrukcja kierunku liniowej polaryzacji fali

AERA Auger Engineering Radio Array

AERA Auger Engineering Radio Array

Pierwsza instalacja: 24 detektory co 144 m Kampania pomiarowa: 2011–2013

Logarytmiczno-periodyczne, podwójne anteny dipolowe.

Sygnał próbkowany z częstością 200 MHz.

Mierzona emisja fal elektromagnetycznych w przedziale 30–80 MHz

Obecnie rozbudowane do 153 stacji

AERA

Auger Engineering Radio Array

Kalibracja z detektorami SD750

 $E_{radio} \sim E_{CR}^2$ (!)

AERA Auger Engineering Radio Array

Przykładowy przypadek

Rekonstruowany profil kaskady

AERA Auger Engineering Radio Array

Rozwój szybkich układów programowalnych typu FPGA pozwala na analizę widma sygnału w czasie rzeczywistym

⇒ możliwość autonomicznego wyzwalania zbierania danych

Z. Szadkowski, IEEE Real Time Conference, Padova, June 2016

Szerokopasmowe anteny

Obiecujący kierunek - szerokopasmowe anteny z bardzo szybkim przetwarzaniem danych.

SKA Square Kilometre Array, Australia

Planowana instalacja ok. 130'000 anten w 500 grupach odległych o nie więcej niż 65 km.

Zbierane ok. 160 TB/s danych!

Kluczowa anliaza w czasie rzeczywistym...

Perspektywy

Mozliwość pomiaru pęków atmosferycznych w zakresie fal radiowych przetestowana przez wiele eksperymentów: możliwa dokładna rekonstrukcja kierunku i energii.

Główny problem: bardzo silne tło

- ⇒ dotyczhczasowe pomiary naogół wyzwalane innego typu detektorem
- ⇒ czysto radiową detekcja możliwa w dużych układach

Nowa jakość w badaniach UHECE: detektory są stosunkowo tanie, odporne na warunki, pracują w dzień i w nocy, można budować bardzo duże układy detekcyjne...

Technologia możliwa do zastosowania także w pomiarach wysokoenergetycznego promi. gamma (promieniowanie w atmosferze) i neutrin (promieniowanie w wodzie lub lodzie).