Struktura protonu

Elementy fizyki cząstek elementarnych

Wykład IV

- akcelerator HERA
- rekonstrukcja przypadków NC DIS
- wyznaczanie funkcji struktury
- równania ewolucji QCD
- struktura fotonu

NC DIS

Deep Inelastic Scattering (DIS): rozpraszanie głęboko nieelastyczne Neutral Currents (NC): oddziaływanie z wymianą prądów neutralnych (γ lub Z°)

Kinematyka

Rozpraszanie głęboko nieelastyczne na "tarczy" (spoczywającym nukleonie):

Przekaz energii: u = E - E'Przekaz czteropędu: $q^{\mu} = k^{\mu} - k'^{\mu}$

Opisujemy jako rozpraszanie elastyczne na quasi-swobodnym partonie ⇒

$$Q^{2} \equiv -q^{2} = 2m\nu = 2ME \cdot x \cdot y$$

gdzie $x = \frac{m}{M} \leq 1$
 $y = \frac{\nu}{E} \leq 1$

Mamy więc ograniczenie na Q^2 : $Q^2 = 2ME \cdot x \cdot y = s \cdot x \cdot y \leq s$

Pomiary na tarczach

W wiekszości eksperymentów mierzących strukturę protonu w doświadczeniach na tarczach rozpraszano μ lub ν_{μ} .

Długi tor mionu w detektorze \Rightarrow dobra identyfikacja, dokładny pomiar

Przypadek z eksperymentu NuTeV:

Produkty rozbicia protonu mają naogół małe energie (duży błąd pomiaru)

⇒ analiza oparta na pomiarze rozproszonego leptonu

Pomiary na tarczach

Doświadczenia z rozpraszaniem wiązek elektronów, mionów i neutrin na tarczach pozwoliły na dokładny pomiar rozkładów kwarków w protonie w obszarze:

 $\begin{array}{rcl} Q^2 &<& 200 \; GeV^2 \\ x &>& 0.001 \end{array}$

Dolne ograniczenie na x wynika z warunku $Q^2 > 0.3 \ GeV^2$. Dla mniejszych wartości Q^2 model partonowy załamuje się.

HERA

Projekt HERA

Badanie struktury protonu w obszarze:

- bardzo dużych wartości Q^2 : $Q^2 \sim 10^4 GeV^2$
- oraz bardzo małych wartości $x: x \sim 10^{-4}$

Wiązki przeciwbieżne elektron(pozyton)-proton:

 $E_p \leq 920 \ GeV$ $E_e \approx 27 \ GeV$ $s = 4E_pE_e \approx 10^5 \ GeV^2$ $\sqrt{s} \approx 318 \ GeV$

Dostępna energia o rząd wielkości większa niż w doświadczeniach na tarczy...

<u>Obszar badań</u>

Projekt **HERA** umożliwił rozszerzenie dostępnego w pomiarach NC DIS obszaru kinematycznego o dwa rzędy wielkości w Q^2 i x.

Kinematyka

Poprzednie definicje zmiennych x i y były x - ułamek czteropędu protonu niesiony słuszne tylko w układzie spoczywającego przez parton x^2 x^2 x^2

W HERA

zderzenia wiązek przeciwbieżnych

$$x = \frac{-q^2}{2pq} = \frac{Q^2}{2pq}$$
$$y = \frac{qp}{kp}$$
$$Q^2 = x y s$$
$$s \approx 2 k p$$

W układzie spoczywającego protonu: $p^{\mu} = (M, 0, 0, 0)$

⇒ otrzymujemy te same wyrażenia co poprzednio

Hardonizacja

W modelu kwarkowo-partonowym (QPM) rozproszeniu ulega elektron i pojedyńczy kwark. Reszta kwarków z protonu kontynuuje swój 'lot' jako tzw. "remnant" (pozostałości) Pojedyńczych kwarków nigdy nie obserwujemy. Oddziaływania silne prowadzą do tzw. hadronizacji: powstają wtórne pary $q\bar{q}$ i kwark zamienia się w jet (strugę) cząstek (głównie hadronów):

Przypadek symulowany programem PYTHIA

ZEUS assed. 00000 8 Ш 8 8 ZR

Przypadek NC DIS Ekspertment ZEUS

A.F.Żarnecki

Rekonstrukcja przypadków

Pomiar w detektorze

W przypadkach NC DIS w detektorze mierzymy:

elektron o energii E[']_e rozproszony
 pod kątem θ (kąt rozproszenia mierzymy od kierunku wiązki protonów !)

• stan hadronowy (na ogół nie jest to pojedyńczy jet) o całkowitej energii E_h i pędzie $\vec{p}_h = (p_x, py, pz)_h$ (oś Z zgodnie z kierunkiem wiązki protonów !)

Cząstki lezące w kierunku wiązki protonowej są tracone w rurze akceleratora $\Rightarrow E_h$ i $p_{z,h}$ nie są dobrze mierzone.

Tracone cząstki mają $E^ipprox p^i_z$ (zaniedbujemy masę) i $p^i_xpprox p^i_ypprox 0$

 \Rightarrow nieczułe na straty są więc $\delta_h \equiv (E-p_z)_h$ i $p_{t,h} \equiv \sqrt{p_{x,h}^2 + p_{y,h}^2}$

Rekonstrukcja przypadków

Rekonstrukcja zmiennych

Z pomiaru δ_h i $p_{t,h}$ można wyznaczyć efektywny kąt rozproszenia γ i energię E_q jetu:

$$\cos \gamma = \frac{p_{t,h}^2 - \delta_h^2}{p_{t,h}^2 + \delta_h^2} \qquad E_q = \frac{p_{t,h}}{\sin \theta_h}$$

W QPM \Rightarrow kąt rozproszenia i energia partonu.

- Mamy cztery wielkości mierzone: $E_e^\prime,\, heta,\, E_q$ i γ
- Chcemy wyznaczyć dwie zmienne, np. *x* i Q²

(trzecią zmienną mamy z relacji: $Q^2 = xys$)

⇒ Mamy dużą swobodę wyboru metody

Teoretycznie (nieskończenie dokładny pomiar) wszystkie metody są równoważne.

Efekty doświadczalne (błędy pomiarowe) powodują jednak znaczne różnice w dokładności wyznaczenia x, y i Q^2 różnymi metodami.

Najczęściej używane:

- metoda "elektronowa" rekonstrukcja z pomiaru E'_e i θ (H1)
- Metoda "dwóch kątów" rekonstrukcja z pomiaru θ i γ ZUES Nie korzystamy z pomiaru energii !!!
- \Rightarrow eliminujemy niepewności związane z kalibracją

Wyznaczanie funkcji struktury

Przekrój czynny

Funkcję struktury $F_2(x, Q^2)$ wyznaczamy bezpośrednio z pomiaru różniczkowego przekroju czynnego na NC DIS:

$$\frac{d^2\sigma}{dx \, dQ^2} = \frac{4\pi\alpha^2}{xQ^4} (1 - y + \frac{y^2}{2}) F_2(x, Q^2) (1 + \delta_L + \delta_Z + \delta_{rad})$$

Wyznaczane teoretycznie poprawki pochodzą od:

- δ_L tzw. podłużnej funkcji struktury F_L (wkład gluonów powoduje, że $F_L \equiv F_2 - 2xF_1 \neq 0$)
- δ_Z wymiany bozonu Z° (istotne tylko dla bardzo dużych Q^2)
- δ_{rad} procesów radiacyjnych (poprawki radiacyjne; emisja γ przez elektron przed lub po zderzeniu)

Wyznaczanie funkcji struktury

Przekrój czynny

Różniczkowy przekrój czynny wyznaczamy mierząc liczbę przypadków zrekonstruowanych w przedziałach x i Q^2 :

$$\Delta N^{\left(x \pm \frac{\Delta x}{2}, Q^2 \pm \frac{\Delta Q^2}{2}\right)} = \frac{d^2 \sigma}{dx \, dQ^2} \cdot \Delta x \cdot \Delta Q^2 \cdot \mathcal{L}_{int} \cdot \mathcal{E} \cdot \mathcal{A}$$

gdzie:

- \mathcal{L}_{int} scałkowana świetlność
- *E* efektywność selekcji przypadków
- *A* poprawka związana z niedokładnością pomiaru ("przesypywanie" przypadków pomiędzy przedziałami)

Wykład IV

Wyznaczanie funkcji struktury

Liczba mierzonych przypadków decyduje o błędzie statystycznym wyznaczonych wartości $F_2(x, Q^2)$:

$$\frac{\sigma_{F_2}^{stat}}{F_2} = \frac{1}{\sqrt{\Delta N}}$$

Błędy statystyczne dominują przy dużych Q^2 , przy małych Q^2 są zaniedbywalne.

Błąd systematyczny pomiaru wynika z niepewności:

- poprawek teoretycznych δ_L , δ_Z i δ_{rad}
- pomiaru świetności *L_{int}*
- wyznaczenia poprawek *E* i *A* (niepewności związane z symulacją Monte Carlo badanego procesu i działania detektora)

Błędy systematyczne dominują przy małych Q^2 .

Na ogół są na poziomie kilku % (obecne pomiary w HERA)

<u>Łamanie skalowania</u>

Im dokładniej przyglądamy się protonowi (wyższe Q^2) tym więcej partonów (kwarków i gluonów) widzimy

Klasyczne uzasadnienie – długość fali de Broglie'a:

 $\lambda \cdot q = h$

lub zasada nieoznaczoności:

 $\delta r \cdot q \sim \hbar$ \Rightarrow wyższe Q^2 to lepsza rozdzielczość

Czy można to opisać bardziej ilościowo ?...

Emisja gluonów

W QPM wirtualny foton oddziałuje z pojedyńczym kwarkiem:

Funkcja struktury:

$$F_2(x) = \sum_q e_q^2 x q(x)$$

Jednak kwark może bezpośrednio przed oddziaływaniem wyemitować gluon:

Ułamek pędu x widziany przez foton jest mniejszy niż ułamek y niesiony początkowo przez kwark w protonie. Dodatkowy przyczynek do q(x)

$$\Delta q(x) = \int_x^1 \frac{dy}{y} q(y) \mathcal{P}_{qq}\left(\frac{x}{y}\right)$$

gdzie \mathcal{P}_{qq} określa prawdopodobieństwo emisji gluonu.

Emisja gluonów

Pełne rachunki muszą też uwzględniać emisję gluonu przez rozproszony kwark i wymianę wirtualnego gluonu

Kreacja par qar q

Rozpraszanie może też zajść na kwarku powstałym w wyniku konwersji gluonu na parę $q\bar{q}$

Daje to kolejny przyczynek do q(x)

$$\Delta' q(x) = \int_x^1 \frac{dy}{y} g(y) \mathcal{P}_{qg}\left(\frac{x}{y}\right)$$

gdzie \mathcal{P}_{qg} określa prawdopodobieństwo konwersji gluonu.

Równania ewolucji

Zależność F_2 od Q^2 (łamanie skalowania) nie wynika z samej obecności dodatkowych wkładów $\Delta q(x)$ i $\Delta' q(x)$.

Łamanie skalowania wynika z zależności \mathcal{P}_{qq} i \mathcal{P}_{qg} od Q^2 :

$$\mathcal{P}_{qq/qg} \sim \log \frac{Q^2}{\mu^2}$$

Im wyższe Q^2 tym więcej emitowanych gluonów i par $q\bar{q}$. Chromodynamika kwantowa nie pozwala wyliczyć rozkładów partonów w protonie, ale precyzyjnie przewiduje ich zależność od Q^2 :

$$\frac{\partial}{\partial \log Q^2} \begin{pmatrix} q(x,Q^2) \\ g(x,Q^2) \end{pmatrix} =$$
$$= \frac{\alpha_s(Q^2)}{2\pi} \int_x^1 dy \begin{pmatrix} P_{qq} & P_{qg} \\ P_{gq} & P_{gg} \end{pmatrix} \otimes \begin{pmatrix} q(y,Q^2) \\ g(y,Q^2) \end{pmatrix}$$

Równanie Altarellego–Parisiego (DGLAP)

 $P_{ij}\left(\frac{x}{y}\right)$ są tzw. "funkcjami podziału" (spliting functions) opisują rozkład partonu *i* w partonie *j*

Parametryzacje

Gęstości partonów przy dowolnym Q^2 mogą być wyznaczone z ich rozkładu przy wybranym $Q^2 = Q_0^2$.

Zakładając określoną postać funkcyjną dla rozkładów partonów przy skali Q_0^2 , np:

$$xq(x) = \alpha_q x^{\delta_q} (1-x)^{\eta_q} (1-\gamma_q x)$$

możemy dopasować ją do wszystkich danych doświadczalnych, przy wszystkich Q^2 .

Równania DGLAP idealnie opisują ewolucję $F_2(x, Q^2)$!

⇒ ogromny sukces QCD

Wynik:

Parametryzacja danych przeprowadzona przez współpracę ZEUS:

Znakomita zgodność przez wiele rzędów wielkości w x i Q^2 ...

Analiza QCD

Globalna analiza QCD

Informację o rozkładach kwarków i gluonów w protonie możemy także uzyskać z innych procesów, w szczególności z pomiaru zderzeń proton-antyproton $p\overline{p}$:

- produkcja jetów o dużym p_T
- produkcja par leptonów (proces Drella-Yana)
- produkcja W^{\pm}
- produkcja wysokoenergetycznych fotonów

Produkcja wysokoenergetycznych jetów

 $\begin{array}{cccc} gg
ightarrow gg & q \overline{q}
ightarrow q \overline{q} & q g
ightarrow qg \ gg
ightarrow q \overline{q} & q \overline{q}
ightarrow gg \end{array}$

⇒ duży udział gluonów !

Analiza QCD

Proces Drella-Yana

 $q \overline{q} \rightarrow l^+ l^-$

 \Rightarrow rozkłady kwarków dla dużych x

Produckcja bozonów W^{\pm}

$$\begin{array}{rccc} u\bar{d} \rightarrow & W^+ \rightarrow l^+\nu \\ d\bar{u} \rightarrow & W^- \rightarrow l^-\bar{\nu} \end{array}$$

 \Rightarrow separacja rozkładów u i d

Analiza QCD

Dane użyte do analizy CTEQ

Wyniki dopasowania

Potrafimy bardzo dokładnie wyznaczyć gęstości poszczególnych partonów w protonie.

Informacje o gluonach: z ewolucji funkcji struktury i oddziaływań hadronowych.

Obecnie rozkłady gluonów znamy prawie tak dobrze jak rozkłady kwarków.

Gluony dominują przy małych $x \parallel \parallel$ Ale nie mają bezpośredniego wkładu do $F_2(x) \parallel$

Struktura fotonu

Fotoprodukcja

Fotoprodukcja:

oddziaływanie rzeczywistych fotonów W granicy $Q^2 \rightarrow 0$ elektron emituje prawie rzeczywiste fotony.

Foton taki nie może być zaabsorbowany przez kwark w procesie typu NC DIS:

Obserwujemy natomiast procesy z emisją dwóch partonów (produkcją dwóch jetów):

 $\gamma q
ightarrow qg$

 $\gamma g
ightarrow q \overline{q}$

⇒ "Bezpośrednie" (direct) oddziaływanie fotonu

Experyment ZEUS Fotoprodukcja 2 jetów

A.F.Żarnecki

Struktura fotonu

Produkcja jetów

Spodziewamy się, że cała energia i pęd podłużny fotonu zostanie przekazany produkowanym partonom.

Rekonstruując dwa jety hadronowe oczekujemy:

$$\sum_{jet=1,2} (E-p_z)_{jet} = (E-p_z)_{\gamma} = 2E_{\gamma}$$

Energię fotonu znamy mierząc rozproszony elektron.

Możemy zdefiniować:

$$x_{\gamma} = \frac{\sum_{jet=1,2} (E - p_z)_{jet}}{2E_{\gamma}}$$

Dla "bezpośredniego" oddziaływania fotonów oczekujemy $x_\gamma \approx 1$

Wyniki pomiaru:

ZEUS 1994

A.F.Żarnecki

Struktura fotonu

Aby wytłumaczyć przypadki z $x_{\gamma} \ll 1$ musimy przyjąć, że foton ma wewnętrzną strukturę (partonową) i w oddziaływaniu uczestniczy tylko jeden ze składników fotonu.

⇒ fotoprodukcja "pośrednia" (resolved)

Opisując oddziaływania rzeczywistych fotonów możemy wprowadzić funkcję struktury fotonu $F_2^{\gamma}(x, Q^2)$. Ma ona taką samą interpretację jak F_2 protonu. $F_2^{\gamma}(x, Q^2)$ można mierzyć np. w zderzeniach e^+e^- .

Zebrane wyniki pomiarów funkcji struktury fotonu $F_2^{\gamma}(x, Q^2)$ w różnych eksperymentach.

Wyraźna zależność od Q² - ewolucja opisywana przez QCD

Struktura fotonu

W oddziaływaniach wysokiej energii foton zachowuje się jak hadron.

Jel dominacy, sktorowych (VMD): $|\gamma\rangle \approx |\gamma_0\rangle + \alpha_{em} \cdot \sum_{\rho,\omega,\phi...} a_i |V_i\rangle_{(10)} v_{0} v_{$ $\Rightarrow \sigma_{\gamma p} \sim \alpha_{em} \cdot \sigma_{hp}$ $\sigma_{\gamma\gamma} \sim \alpha_{em}^2 \cdot \sigma_{hp}$ Stała sprzężenia:

 $\alpha_{em} \approx 1/137$

A.F.Żarnecki

Porównanie przekrojów czynnych hp, γp i $\gamma \gamma$:

