Elementy fizyki cząstek elementarnych

Wykład III

- kinematyka rozpraszania
- doświadczenie Rutherforda
- rozpraszanie nieelastyczne
- partony i kwarki
- struktura protonu

Kinematyka

Rozpraszanie elastyczne

"Klasyczne" zderzenie sprężyste: "sonda" ("pocisk") o masie *m* i energii *E* rozprasza się na "tarczy" o masie *M*:

Zagadnienie to możemy rozwiązać w oparciu o zasady zachowania energii i pędu.

Jednak znajomość energii cząstki padającej nie wystarcza do wyznaczenia energii i pędów stanu końcowego.

Musimy wprowadzić jeden dodatkowy parametr, np. parametr zderzenia **b**

W przypadku zderzeń cząstek nie jesteśmy w stanie kontrolować **b** \Rightarrow wygodniej użyć jako parametru np. kąta rozproszenia θ

Kinematyka

Rozpraszanie elastyczne

W rozpraszaniu cząstek wprowadzamy dodatkowe zmienne:

- przekaz energii: $\nu = E E'$
- przekaz czteropędu: $q^{\mu} = k^{\mu} k'^{\mu}$

Z zasad zachowanie energii i pędu:

$$Q^2 \equiv -q^2 = 2M\nu$$

(niezmiennik transformacji Lorenza)

Energia rozproszonego pocisku i przekaz czteropędu wyrażają się przez kąt rozproszenia θ . W granicy $E \gg m$:

$$E' = \frac{E}{1 + \frac{E}{M}(1 - \cos \theta)} \le E$$
$$Q^2 = 2EE'(1 - \cos \theta) = 4EE' \sin^2 \frac{\theta}{2}$$

Model Thomson

Po odkryciu elektronu (1897), J.J.Thomson zaproponował model atomu w postaci "ciastka z rodzynkami".

Cała objętość atomu była jednorodnie naładowana dodatnio ("ciastko"), a wewnątrz "pływały" elektrony ("rodzynki").

Ponieważ ładunek był rozłożony równomiernie w dużej objętości, nie powinien silnie zakłócać ruchu przechodzących cząstek α .

⇒ oczekujemy jedynie niewielkich odchyleń toru...

Wpływ elektronów można zaniedbać ze względu na małą masę.

W modelu Thomsona można było oszacować maksymalny kąt rozproszenia cząstki α i był on mały $\theta^{max} \ll \pi$.

Odpowiada to sytuacji rozproszenia "pocisku" na dużo lżejszej "tarczy".

Masa przypadająca na jednostkę "rozmytego" ładunku atomu wynosiła ok. $\frac{1}{8}$ masy cząstki α .

Doświadczenie Rutherforda

Rozpraszanie cząstek α na cienkiej złotej folii

Obserwowano błyski wywoływane przez padające cząstki na ekranie scyntylacyjnym

Wyniki pomiarów

Przeprowadzonych przez H.Geigera i E.Marsdena:

Zaobserwowano rozproszenia cząstek α pod bardzo dużymi kątami, $\theta \gg \theta_{Th}^{max}$, czego nie można było wyjaśnić w modelu Thomsona

"To było tak jakbyście wystrzelili piętnastocalowy pocisk w kierunku kawałka bibułki, a on odbił się i was uderzył."

E. Rutherford

Model Rutherforda

Rutherford zaproponował jądrowy model atomu.

Cały dodatni ładunek atomu (10^{-10} m) skupiony jest w praktycznie punktowym (10^{-14} m) jądrze

Przechodząca cząstka zawsze czuje cały ładunek dodatni ⇒ kąty rozproszenia są dużo większe.

Przekrój czynny

Obserwowany rozkład kątowy rozproszonych cząstek α proporcjonalny jest do tzw. rózniczkowego przekroju czynnego na rozpraszanie cząstki o ładunku *e* w potencjale kulombowskim ładunku *Ze*:

> $N(\theta) \sim \frac{d\sigma}{d\Omega} = \frac{Z^2 \alpha^2}{4E^2 \sin^4 \frac{\theta}{2}}$ Wzór Rutherforda

(zaniedbujemy odrzut jądra i efekty spinowe)

Skończone prawdopodobieństwo rozproszenia $\theta = \pi$!

Kąt bryłowy możemy wyrazić przez przekaz czteropędu Q^2

$$Q^{2} = 2EE'(1 - \cos\theta)$$

$$dQ^{2} = 2EE' \sin\theta \, d\theta$$

$$d\Omega = 2\pi \sin\theta \, d\theta = \frac{\pi}{EE'} \, dQ^{2}$$

Otrzymujemy wzór na rozpraszanie Rutherforda w postaci:

$$\frac{d\sigma}{dQ^2} = \frac{4\pi\alpha^2 Z^2}{Q^4} \cdot \frac{E'}{E}$$

(czynnik $\frac{E'}{E}$ uwzględnia odrzut jądra)

Oddziaływanie
$$\frac{1}{r^2} \Rightarrow \frac{d\sigma}{dQ^2} \sim$$

Rozpraszanie elastyczne

<u>Rozdzielczość</u>

Ze wzrostem przekazu czteropędu Q^2 maleje długość fali wymienianego fotonu.

Model Rutherforda - rozpraszanie na jądrze

Model Rutherforda załamuje się
 ⇒ stajemy się czuli na wewnętrzną budowę jądra...

a potem nukleonów...

"miękki" foton małe Q^2

pośrednie Q^2

twardy foton duże Q^2

Rozpraszanie głęboko-nieelatyczne

W rozpraszaniu elastycznym energia rozproszonego pocisku jest jednoznacznie określona przez kąt rozproszenia:

$$E' = \frac{E}{1 + \frac{E}{M}(1 - \cos\theta)} \Rightarrow M = \frac{EE'(1 - \cos\theta)}{E - E'} = \frac{Q^2}{2\nu} = \text{const}$$

Ze wzrostem Q^2 zaczynamy być czuli na wewnętrzną strukturę tarczy

⇒ zderzenie może doprowadzić do jej rozbicia

⇒ kinematyka staje się bardziej skomplikowana...

Rozkład E' w ozpraszaniu elektronów na protonach: ($E=100 \text{ GeV}, \theta = 6^{\circ}$)

Maksimum \Rightarrow rozpraszanie elastyczne. Kolejne \Rightarrow produkcja stanów wzbudzonych protonu o masach pomiędzy 1 i 2 GeV. Dalej ciągłe widmo w obszarze E' < 8 GeV \Rightarrow rozpraszanie **głęboko-nieelastyczne** produkcja stanu końcowego o $W \gg M$

Rozpraszanie głęboko-nieelastyczne

Przekrój czynny ep

Stosunek przekroju czynnego na rozpraszanie **nieelastyczne** przy ustalonym W do przekroju czynnego na rozpraszanie elastyczne na ładunku punktowym (σ_{Mott})

Ta sama zależność od Q^2 !!!

⇒ elastyczne rozpraszanie na punktowych partonach

Model zaproponowany przez Feynman'a w 1969 roku

Rozpraszanie głęboko-nieelastyczne

Model partonowy

Rozpraszanie elektronu na partonie o ładunku e_q :

$$\frac{d\sigma}{dQ^2} = \frac{4\pi\alpha^2 e_q^2}{Q^4} \cdot \left(\frac{E'}{E}\right) \cdot \left[\cos^2\frac{\theta}{2} + \dots\right]$$

Człon $\cos^2 \frac{\theta}{2}$ pochodzi od spinu elektronu. Spin partonu na razie pomijamy (...)

Z kinematyki możemy wyznaczyć efektywną masę partonu:

$$m = \frac{Q^2}{2\nu}$$
$$\frac{m}{M} = \frac{Q^2}{2M\nu} \equiv x$$

Przekrój czynny na rozpraszanie na protonie złożonym z partonów:

 $\frac{d\sigma}{dx \, dQ^2} = \frac{4\pi\alpha^2}{xQ^4} \cdot \left(\frac{E'}{E}\right) \cdot \left[\mathbf{F}_2(\mathbf{x}) \cdot \cos^2 \frac{\theta}{2} + \dots \right]$ gdzie $F_2(x)$ - funkcja struktury

 $F_2(x)$ zdefiniowana jest w oparciu o gęstości prawdopodobieństwa q(x)znalezienia partonu q o masie m = xM:

$$F_2(x) = \sum_{\text{partony } q} e_q^2 x q(x)$$

Rozpraszanie głęboko-nieelastyczne

Skalowanie Bjorkena

Funkcję struktury $F_2(x, Q^2)$ można zdefiniować niezależnie od modelu (!).

Sukcesem modelu partonowego była obserwacja **skalowania** $F_2(x, Q^2)$, czyli braku zależności od Q^2 (wynikającego z elastycznego rozpraszania na partonach)

Jest to tzw. **skalowanie Bjorkena**, zapostulowane przez Bjorkena w 1968 roku.

Zmienna *x* często nazywana jest zmienną bjorkenowską

Kwarki

Model Gell-Mann'a i Zweig'a

W połowie lat 60 obserwowana symetria w świecie znanych cząstek elementarnych doprowadziła Gell-Mann'a i Zweig'a do hipotezy istnienia kwarków

Trzy kwarki tworzyłyby bariony:

Kwarki

Model Gell-Mann'a i Zweig'a

Para kwark-antykwark tworzyłaby mezony

Zakładając istnienie tylko trzech kwarków (u, d, s) można było wytłumaczyć spektrum wszystkich znanych cząstek.

Gell-Mann i Zweig zakładali, że kwarki są:

- bardzo masywne
- silnie związane

Z drugiej strony model partony w modelu partonowym:

• lekkie

• quasi-swobodne

Czy partony to kwarki?

To wcale nie było takie oczywiste...

Kwarki a partony

Spin partonów

Pełne wyrażenie na przekrój czynny w rozpraszaniu głęboko-nieelastycznym $e^{\pm}p$:

$$\frac{d\sigma}{dx \ dQ^2} = \frac{4\pi\alpha^2}{xQ^4} \cdot \left(\frac{E'}{E}\right) \cdot \\ \cdot \qquad \left[\mathbf{F}_2(\mathbf{x}) \cdot \cos^2\frac{\theta}{2} + 2\mathbf{x}\mathbf{F}_1(\mathbf{x}) \cdot \frac{Q^2}{2M^2x^2} \sin^2\frac{\theta}{2}\right]$$

gdzie w zależności od spinu s partonów:

$$F_1(x) = 0$$
 dla $s = 0$
 $2xF_1(x) = F_2(x)$ dla $s = \frac{1}{2}$

Wyniki pomiaru $2xF_1/F_2$:

 $\Rightarrow \text{Partony mają spin } \frac{1}{2}$ (jak kwarki)

Kwarki a partony

Ładunki kwarków

W oddziaływaniach e^{\pm} , μ^{\pm} mierzymy:

$$F_2^{eN}(x) = \sum_q e_q^2 xq(x)$$

ale w oddziaływaniach neutrin:

$$F_2^{\nu N}(x) = \sum_q xq(x)$$

$$\Rightarrow F_2^{eN}(x) = \langle e_q^2 \rangle F_2^{\nu N}(x)$$

gdzie $\langle e_q^2 \rangle$ jest średnim kwadratem ładunku partonu.

Dla kwarków oczekujemy (dla A = 2Z)

$$\langle e_q^2 \rangle = \frac{5}{18}$$

Porównanie pomiarów $F_2^{\nu N}(x)$ i $\frac{18}{5}F_2^{eN}(x)$ (1972):

⇒ Partony mają ładunki takie jak kwarki...

Kwarki a partony

<u>Ładunki kwarków</u>

Ładunki partonów można też sprawdzić w pomiarze:

$$R^{e^+e^-} = \frac{\sigma(e^+e^- \to hadrony)}{\sigma^{th}(e^+e^- \to \mu^+\mu^-)} \approx 3 \cdot \sum_q e_q^2$$

Dla 3 kwarków (u,d,s) oczekujemy $R \approx 2$, dla $E_{CM} > 4 \text{ GeV} \Rightarrow R \approx \frac{10}{3}$ (u,d,s,c)

Po uwzględnieniu poprawek wyższych rzędów wyniki doświadczalne bardzo dobrze to potwierdzają.

Zgodność zawdzięczamy czynnikowi 3 we wzorze na *R* ⇒ liczba "kolorów" w jakich występują kwarki/partony

Funkcja struktury F₂

W modelu partonowym

$$F_2(x) = \sum_q e_q^2 x q(x)$$

Największy wkład do $F_2(x)$ protonu \Rightarrow kwark u

• największa gestość

$$u(x) \approx 2d(x) \gg s(x) \dots$$

• ładunek

$$|e_u^2| = 4|e_d^2|$$

If the Proton is:

A quark

Gluony

Jak dużą rolę odgrywają gluony ?

Możemy to sprawdzić licząc całkę po $x \ge F_2(x)$. Gdyby cały pęd protonu niesiony był przez kwarki

$$\int dx F_2^{\nu N}(x) = \frac{18}{5} \int dx F_2^{e N}(x) = 1$$

Wyniki pomiarów:

Kwarki niosą jedynie około połowy pędu nukleonów \Rightarrow gluony są bardzo ważne !...

Ewolucja QCD

Gluony przenoszą oddziaływania między kwarkami, ale mogą także kreować dodatkowe pary kwarkantykwark (tzw. kwarki morza).

Im dokładniej przyglądamy się protonowi (wyższe Q²) tym więcej partonów (kwarków i gluonów) widzimy

A.F.Żarnecki

<u>Łamanie skalowania</u>

Chromodynamika kwantowa (QCD) przewiduje, ze rozkłady kwarków (a więc i funkcje strukture) powinny zależeć od Q^2

Dla małych wartości x:

 $F_2(x, Q^2)$ rośnie z Q^2 .

Dla dużych wartości x: $F_2(x, Q^2)$ maleje z Q^2 .

⇒ skalowanie było szczęśliwym zbiegiem okoliczności !...

