Detektory cząstek

Elementy fizyki cząstek elementarnych

Wykład III

- Detekcja cząstek
 - ⇒ detektory śladowe
 - ⇒ kalorymetry
- Detektory w dużych eksperymentach

Jonizacja

U podstaw działania przeważającej większości detektorów cząstek elementarnych leży zjawisko jonizacji:

Cząstka naładowana przechodząc przez ośrodek oddziałuje Kulombowsko z elektronami i oddaje im część swojej energii "wybijając" je z atomów.

Jonizacja

Straty energii na jonizację opisuje wzór Bethe-Blocha:

$$-\frac{dE}{dx} = \left(0.307\frac{MeV}{\frac{g}{cm^2}}\right)z^2\frac{Z}{A}\frac{1}{\beta^2}\left[\ln\frac{2m_e\beta^2\gamma^2}{I^2} - \beta^2 - \frac{\delta}{2}\right]$$

gdzie: z - ładunek cząstki,

- β jej prędkość
- I energia jonizacji;

dla większości materiałów \sim 10 eV

- δ poprawka związana
- z polaryzacją ośrodka
- Przy założeniu $m \gg m_e$
- jonizacja zależy wyłącznie od eta / γ

Straty minimalne dla $\gamma \sim$ 3:

 $-\frac{dE}{dx}\Big|_{min} \sim 2MeV/\frac{g}{cm^2}$

 \leftarrow wzór Bethe-Blocha \rightarrow

Jonizacja

Jonizacja może prowadzić do wielu różnorodnych procesów, będących podstawą detekcji cząstek.

Metody "historyczne":

- kondensacja pary
 - \Rightarrow komora mgłowa Wilsona (1911)
- reakcje chemicznych

 \Rightarrow ślady w emulsji "fotograficznej" (~1930) (wciąż używane ze względu na precyzję)

- wrzenie cieczy
 - ⇒ komora pęcherzykowa (1952)
- wyładowanie elektryczne
 - \Rightarrow komora iskrowa

Wykorzystywane współcześnie:

- świecenie (scyntylacja)
 - ⇒ liczniki scyntylacyjne
- przepływ prądu
 - \Rightarrow liczniki gazowe
 - ⇒ detektory półprzewodnikowe

Licznik scyntylacyjny

W niektórych substancjach (kryształach, związkach organicznych) powrotowi wzbudzonego atomu do stanu podstawowego towarzyszy emisja fotonu - scyntylacja

Emitowane fotony mogą być rejestrowane przez fotopowielacze, fotodiody lub inne elementy światłoczułe.

Zalety:

tanie, szybka odpowiedź detektora (kilka ns)...

Wady:

kłopotliwy tor optyczny, brak pomiaru pozycji...

Licznik scyntylacyjny

Ogromny postęp w dziedzinie urządzeń opto-elektronicznych, jaki dokonał się w ostatnich latach, doprowadził do ponownego wzrostu zainteresowania scyntylatorami.

Element odczytu prototypu kalorymetru dla ILC

Krzemowy fotopowielacz

SiPM 3x3 mm², 5625 pixels

Jeszcze nie tak dokładny jak tradycyjny, ale szybki postęp...

Licznik scyntylacyjny

Miniaturyzacja odczytu otworzyła drogę do budowy detektorów śladowych opartych o włókna scyntylujące

Ekspertyment D0

Element odczytu (8 włókien)

Zastosowania aplikacyjne

Liczniki gazowe

Wielodrutowa komora proporcjonalna:

Jony i elektrony swobodne, powstałe w gazie w wyniku jonizacji, dryfują w kierunku odpowiednich elektrod. Pole elektryczne jest najsilniejsze przy drutach anodowych. Przy odpowiednim doborze napięcia może tam dojść do wtórnych jonizacji i kaskadowego powielania ładunku porzez przyspieszane elektrony

 \Rightarrow "wzmocnienie gazowe" ($\sim 10^3 - 10^6$)

Nagroda Nobla 1992 - Georges Charpak:

"for his invention and development of particle detectors, in particular the multiwire proportional chamber" (MWPC)

Liczniki gazowe

Słabym punktem komory wielodrutowej są... druty.

Ze względu na działające siły nie mogą być zbyt blisko siebie \Rightarrow ograniczona rozdzielczość przestrzenna ($\geq 1mm$)

Wielodrutowe komory MWPC, oparte na pomyśle Czarpak'a, stosowane są coraz rzadziej. Nowe pomysły \Rightarrow Micro-Strip Gas Chamber (MSGC):

zamiast drutów - metalowe paski napylone na izolatorze

\sim "pół" komory wielodrutowej

Odległości między paskami mogą być dużo mniejsze

 \Rightarrow dokładniejsze pomiary torów ($\sim 100 \mu m$)

"pixle" zamiast pasków \Rightarrow możliwa rekonstrukcja 2-D !!!

Komora dryfowa

Komora proporcjonalna z wydłużonym obszarem dryfu:

Znając prędkość dryfu elektronów w komorze v_d oraz opóźnienie impulsu z komory Δt możemy wyznaczyć pozycję cząstki...

Typowe prędkości dryfu: $v_d \sim 10^5 \ m/s = 100 \ \mu m/ns$

Dokładność pomiaru czasu $\sim 1ns \Rightarrow$ dokładność pozycji $\sim 100 \mu m$

Wada: pomiar tylko w jednym wymiarze...

<u>Komora TPC</u>

Time Projection Chambre -"komora projekcji czasowej"

Pełna, trójwymiarowa (3D) rekonstrukcja toru cząstki na podstawie:

- czasu dryfu elektronów (1 współrzędna)
- miejsca rejestracji elektronów w MSGC (2 współrzędne)

Schematyczny rysunek TPC (1/4 detektora):

A.F.Żarnecki

<u>Komora TPC</u>

Jednoczesny pomiar pędu (z zakrzywienia toru w polu magnetycznym) i gęstości strat na jonizację pozwala na (częściową) identyfikację cząstek:

Detektory

Detektory półprzewodnikowe

- Są coraz powszechniej używane w fizyce cząstek.
- Przykład konstrukcji detektora krzemowego (silicon micro-strip detector):

⇒ mierzymy przepływ ładunku przez spolaryzowane w kierunku zaporowym złącze pn (diodę). Warstwa typu p w postaci wąskich pasków ⇒ bardzo dokładny pomiar pozycji cząstki (< 10 μ m) Detektory półprzewodnikowe mogą także wykorzystywać inne technologie, np. układy typu CCD (powszechnie używane w kamerach cyfrowych). Pojedyńczy segment detektora wierzchołka eksperymentu **ZEUS**

Detektory półprzewodnikowe

Dzięki rozwojowi technologii możemy budować coraz tańsze i coraz większe detektory:

Detektory półprzewodnikowe są używane głównie do pomiaru wierzchołka oddziaływania i wierzchołków wtórnych

 \Rightarrow identyfikacji mezonów B (kwarku *b*; $c\tau \sim 0.5mm$)

A.F.Żarnecki

Wykład III

Detektory śladowe (mierzące tory cząstek) pozwalają na pomiar pędu jedynie dla cząstek naładowanych (!)

- Aby jak najmniej zakłucać lot cząstki detektory śladowe powinny mieć jak najmniejszą gęstość/grubość
- Cząstki neutralne nie oddziałuję praktycznie w detektorach śladowych
 - ⇒ pozostają "niewidoczne"
 - ⇒ musimy mieć inną metodę dla ich pomiaru

Aby zmierzyć energię cząstek neutralnych lub pęków (ang. jetów) cząstek (zawierających cz. naładowane i neutralne) budujemy

Kalorymetry

Kalorymetry

Pomiar energii w kalorymetrze polega na całkowitej absorbcji cząstki padającej i zamianie jej energii na mierzalny sygnał.

Sygnał pochodzi od kaskady cząstek wtórnych,

powstających w oddziaływaniu cząstki pierwotnej z gęstym materiałem kalorymetru.

Cząstki wtórne "dzielą się" energią cząstki pierwotnej, a jonizując ośrodek prowadzą do powstania sygnału proporcjonalnego do początkowej energii.

Rodzaje kaskad (i kalorymetrów):

- elektromagnetyczne (elektronowo-fotonowe) wywoływane przez elektrony, pozytony, fotony, π°
- hadronowe wywoływane przez inne, silnie oddziałujące cząstki

Kalorymetry elektromagnetyczne

Dla energii powyżej $E_c \sim 10$ MeV:

elektrony tracą energię prawie wyłącznie na promieniowanie hamowania

Wysokoenergetyczny elektron lub foton wpadając do kalorymetru wywołuje kaskadę składającą się z $N \sim E/E_c$ cząstek

Promieniowanie hamowania i kreacja par nie zmieniają energii kaskady

- \Rightarrow 100% tracone na jonizację ośrodka
- \Rightarrow możliwy jest bardzo dokładny pomiar energii.

Kalorymetry hadronowe

Oddziaływania silne hadronów z jądrami ośrodka prowadzą głównie do produkcji pionów (π^{\pm} , π°) i kaonów (K^{\pm} , K°).

Większość energii początkowej cząstki zostaje ostatecznie zużyta na jonizację ośrodka dając mierzony sygnał.

Jednak część energii "gubiona" jest na wzbudzenia i rozbicie jąder oraz neutrina produkowane w rozpadach. Z uwagi na duże fluktuacje w rozwoju kaskady prowadzi to do niepewności w pomiarze energii:

$$\frac{\sigma_E}{E} \sim \frac{50\%}{\sqrt{E[GeV]}}$$

Stosując odpowiednie materiały (np. uran) możemy "odzyskać" część energii traconej w procesach jądrowych i poprawić dokładność pomiaru (tzw. kalorymetry kompensujące).

Możemy też starać się zmierzyć udział różnych procesów w rozwoju kaskady ("tracking calorimeter") Symulacja rozwoju kaskady hadronowej

Kalorymetry jednorodne

Kaskada rozwija się wyłącznie w materiale aktywnym (pozwalającym na pomiar strat energii):

Precyzyjny pomiar, ale kalorymetr duży i kosztowny (materiały aktywne mają naogół niewielkie gęstości)

Kalorymetry próbkujące

Materiał aktywny (pomiar) przekładany wartwami gęstego absorbera (rozwój kaskady):

Dodatkowe fluktuacje pogarszają pomiar, ale kalorymetr jest dużo mniejszy i tańszy

Wpływ fluktuacji maleje ze wzrostem energii

A.F.Żarnecki

Detektory są jak ogry...

Ogry są jak cebula...

Cebula ma warstwy...

Ogry mają warstwy...

Detektory mają warstwy...

<u>Struktura warstwowa</u>

Współczesne eksperymenty fizyki wysokich energii (zwłaszcza te na wiązkach przeciwbieżnych) są naogół zbudowane z wielu różnorodnych elementów.

Ułożone jeden za drugim detektory umożliwiają optymalny pomiar wszystkich rodzajów cząstek i ich (zwykle częściową) identyfikację.

Kaskady elektromagnetyczne są dużo krótsze niż hadronowe, gdyż naogół droga radiacyjna ≪ drogi na oddziaływanie (silne)

Przekrój poprzeczny detektora, ilustrujący tory cząstek

A.F.Żarnecki

A Toroidal LHC ApparatuS (ATLAS)

Compact Muon Solenoid

Eksperyment ZEUS

Przypadek rozpraszania elektron-proton Ekspertment ZEUS

SiD Projekt detektora dla eksperymentu przy ILC

Koncepcja detektora opartego w całości o detektory półprzewodnikowe (krzemowe)

Przyszłe detektory

Rekonstrukcja cząstek Particle Flow Algorithm (PFA)

Detektor wyposażony w "kalorymetr śladowy" umożliwia pełną identyfikację wszystkich produkowanych cząstek i optymalny pomiar ich energii.

