Elementy fizyki cząstek elementarnych

Wykład IV

- kinematyka rozpraszania
- rozpraszanie nieelastyczne
- partony i kwarki
- struktura protonu
- akcelerator HERA
- wyznaczanie funkcji struktury

Kinematyka

Rozpraszanie elastyczne

"Klasyczne" zderzenie sprężyste: "sonda" ("pocisk") o masie mi energii E rozprasza się na "tarczy" o masie M:

Zagadnienie to możemy rozwiązać w oparciu o zasady zachowania energii i pędu.

Jednak znajomość energii cząstki padającej nie wystarcza do wyznaczenia energii i pędów stanu końcowego.

Musimy wprowadzić jeden dodatkowy parametr, np. parametr zderzenia **b**

W przypadku zderzeń cząstek nie jesteśmy w stanie kontrolować b \Rightarrow wygodniej użyć jako parametru np. kąta rozproszenia θ

Kinematyka

Rozpraszanie elastyczne

W rozpraszaniu cząstek wprowadzamy dodatkowe zmienne:

- przekaz energii: $\nu = E E'$
- przekaz czteropędu: $q^{\mu} = k^{\mu} k'^{\mu}$

Z zasad zachowanie energii i pędu:

$$Q^2 \equiv -q^2 = 2M\nu$$

(niezmiennik transformacji Lorenza)

Energia rozproszonego pocisku i przekaz czteropędu wyrażają się przez kąt rozproszenia θ . W granicy $E \gg m$:

$$E' = \frac{E}{1 + \frac{E}{M}(1 - \cos \theta)} \le E$$
$$Q^2 = 2EE'(1 - \cos \theta) = 4EE' \sin^2 \frac{\theta}{2}$$

Doświadczenie Rutherforda

Wyniki pomiarów

rozpraszania cząstek α na cienkiej złotej folii przeprowadzonych przez H.Geigera i E.Marsdena:

Zaobserwowano rozproszenia cząstek α pod bardzo dużymi kątami, czego nie można było wyjaśnić w modelu "ciastka z rodzynkami" zaproponowanym przez Thomsona

"To było tak jakbyście wystrzelili piętnastocalowy pocisk w kierunku kawałka bibułki, a on odbił się i was uderzył."

E. Rutherford

Doświadczenie Rutherforda

Model Rutherforda

Rutherford zaproponował jądrowy model atomu.

Cały dodatni ładunek atomu (10^{-10} m) skupiony jest w praktycznie punktowym (10^{-14} m) jądrze

Przechodząca cząstka zawsze czuje cały ładunek dodatni ⇒ kąty rozproszenia są dużo większe niż przy ciągłym rozkładzie ładunku

Doświadczenie Rutherforda

Przekrój czynny

Obserwowany rozkład kątowy rozproszonych cząstek α proporcjonalny jest do tzw. rózniczkowego przekroju czynnego na rozpraszanie cząstki o ładunku *e* w potencjale kulombowskim ładunku *Ze*:

> $N(\theta) \sim \frac{d\sigma}{d\Omega} = \frac{Z^2 \alpha^2}{4E^2 \sin^4 \frac{\theta}{2}}$ Wzór Rutherforda

(zaniedbujemy odrzut jądra i efekty spinowe)

Skończone prawdopodobieństwo rozproszenia $\theta = \pi$!

Kąt bryłowy możemy wyrazić przez przekaz czteropędu Q^2

$$Q^{2} = 2EE'(1 - \cos\theta)$$

$$dQ^{2} = 2EE' \sin\theta \, d\theta$$

$$d\Omega = 2\pi \sin\theta \, d\theta = \frac{\pi}{EE'} \, dQ^{2}$$

Otrzymujemy wzór na rozpraszanie Rutherforda w postaci:

$$\frac{d\sigma}{dQ^2} = \frac{4\pi\alpha^2 Z^2}{Q^4} \cdot \frac{E'}{E}$$

(czynnik $\frac{E'}{E}$ uwzględnia odrzut jądra)

Oddziaływanie
$$\frac{1}{r^2} \Rightarrow \frac{d\sigma}{dQ^2}$$

Rozpraszanie elastyczne

<u>Rozdzielczość</u>

Ze wzrostem przekazu czteropędu Q^2 maleje długość fali wymienianego fotonu.

Model Rutherforda - rozpraszanie na jądrze

Model Rutherforda załamuje się
 ⇒ stajemy się czuli na wewnętrzną budowę jądra...

a potem na rozmiary nukleonów...

"miękki" foton małe Q^2

pośrednie Q^2

twardy foton duże Q^2

Czynniki postaci

Skończone rozmiary "tarczy" (jądra, nukleonu) wprowadzają modyfikację do wyrażenia na przekrój czynny:

$$\frac{d\sigma}{dQ^2} = \left(\frac{d\sigma}{dQ^2}\right)_{\text{point}} \cdot \left[F(Q^2)\right]^2$$

gdzie $F(Q^2)$ jest tzw. czynnikiem postaci (form factor), odzwierciedlającym przestrzenny rozkład ładunku tarczy (transformata Fouriera).

Dla sferycznie symetrycznego rozkładu ładunku i małych wartości Q^2 :

$$F(Q^2) \approx 1 - \frac{1}{6}Q^2 \langle R^2 \rangle + \dots$$

Pomiar $F(Q^2)$ w rozpraszaniu elektronów przy $E \sim 500$ MeV pozwolił na dokładny pomiar rozkładu ładunków w różnych jądrach atomowych (odwrotna transformata Fouriera).

Rozpraszanie elastyczne

Czynniki postaci

Ze wzrostem energii wiązek można też było zmierzyć czynnik postaci protonu:

Parametryzacja wyników:

$$F(Q^2) \approx \left(1 + \frac{Q^2}{0.71 GeV^2}\right)^{-2}$$
$$\frac{1}{6} \langle R^2 \rangle \approx \frac{2}{0.71 GeV^2}$$
$$\Rightarrow \bar{R} \approx \sqrt{\frac{12}{0.71 GeV^2}} \approx 4 GeV^{-1}$$
$$\approx 0.8 fm$$

Rozpraszanie nieelatyczne

Do tej pory rozważaliśmy tylko rozpraszanie **elastyczne**, czyli takie dla których "tarcza" (jak i cząstka padająca - "pocisk") pozostawała niezmieniona.

W rozpraszaniu elastycznym energia rozproszonego pocisku jest jednoznacznie określona przez kąt rozproszenia:

$$E' = \frac{E}{1 + \frac{E}{M}(1 - \cos \theta)}$$
$$\Rightarrow M = \frac{EE'(1 - \cos \theta)}{E - E'}$$

Rozpraszanie *e He*

Rozkład energii elektronów o energii 400 MeV, rozproszonych na jądrach He pod kątem 45°:

Oprócz elastycznego rozpraszania e-He ($M = M_{He}$) widoczne jest rozpraszanie e-p ($M = m_p$)

Rozpraszanie nieelastyczne

Rozpraszanie ep

Bardzo podobną strukturę widma energii elektronów obserwujemy w rozpraszaniu na protonach:

Pierwsze (od prawej) maksimum to rozpraszanie elastyczne.

Kolejne to produkcja stanów wzbudzonych protonu (rezonansów barionowych) o masach pomiędzy 1 i 2 GeV.

Masa stanu końcowego:

 $W^2 = M^2 + 2M(E - E') - Q^2$

rośnie dla malejącego E'.

Skąd ciągłe widmo w obszarze głęboko-nieelastycznym ($W \gg M$) E' < 8 GeV ?

Przekrój czynny ep

Stosunek przekroju czynnego na rozpraszanie **nieelastyczne** przy ustalonym W do przekroju czynnego na rozpraszanie elastyczne na ładunku punktowym (σ_{Mott})

Ta sama zależność od Q^2 !!!

⇒ elastyczne rozpraszanie na punktowych partonach σ/σ_{MOTT} W=2 GeVW=3 GeV W=3.5 GeV 10 10 10 elastic 10⁻³ 10 3 0 5 6 $Q^2[GeV^2]$

Model zaproponowany przez Feynman'a w 1969 roku

Model partonowy

Rozpraszanie elektronu na partonie o ładunku e_q :

$$\frac{d\sigma}{dQ^2} = \frac{4\pi\alpha^2 e_q^2}{Q^4} \cdot \left(\frac{E'}{E}\right) \cdot \left[\cos^2\frac{\theta}{2} + \dots\right]$$

Człon $\cos^2 \frac{\theta}{2}$ pochodzi od spinu elektronu. Spin partonu na razie pomijamy (...)

Z kinematyki możemy wyznaczyć efektywną masę partonu:

$$m = \frac{Q^2}{2\nu}$$
$$\frac{m}{M} = \frac{Q^2}{2M\nu} \equiv x$$

Przekrój czynny na rozpraszanie na protonie złożonym z partonów:

 $\frac{d\sigma}{dx \, dQ^2} = \frac{4\pi\alpha^2}{xQ^4} \cdot \left(\frac{E'}{E}\right) \cdot \left[\mathbf{F}_2(\mathbf{x}) \cdot \cos^2 \frac{\theta}{2} + \dots \right]$ gdzie $F_2(x)$ - funkcja struktury

 $F_2(x)$ zdefiniowana jest w oparciu o gęstości prawdopodobieństwa q(x)znalezienia partonu q o masie m = xM:

$$F_2(x) = \sum_{\text{partony } q} e_q^2 x q(x)$$

Skalowanie Bjorkena

Funkcję struktury $F_2(x, Q^2)$ można zdefiniować niezależnie od modelu (!).

Sukcesem modelu partonowego była obserwacja **skalowania** $F_2(x, Q^2)$, czyli braku zależności od Q^2 (wynikającego z elastycznego rozpraszania na partonach)

Jest to tzw. **skalowanie Bjorkena**, zapostulowane przez Bjorkena w 1968 roku.

Zmienna *x* często nazywana jest zmienną bjorkenowską

Kwarki

Model Gell-Mann'a i Zweig'a

W połowie lat 60 obserwowana symetria w świecie znanych cząstek elementarnych doprowadziła Gell-Mann'a i Zweig'a do hipotezy istnienia kwarków

Trzy kwarki tworzyłyby bariony:

Kwarki

Model Gell-Mann'a i Zweig'a

Para kwark-antykwark tworzyłaby mezony

Zakładając istnienie tylko trzech kwarków (u, d, s) można było wytłumaczyć spektrum wszystkich znanych cząstek.

Gell-Mann i Zweig zakładali, że kwarki są:

- bardzo masywne
- silnie związane

Z drugiej strony model partony w modelu partonowym:

• lekkie

• quasi-swobodne

Czy partony to kwarki?

To wcale nie było takie oczywiste...

Kwarki a partony

Spin partonów

Pełne wyrażenie na przekrój czynny w rozpraszaniu głęboko-nieelastycznym $e^{\pm}p$:

$$\frac{d\sigma}{dx \ dQ^2} = \frac{4\pi\alpha^2}{xQ^4} \cdot \left(\frac{E'}{E}\right) \cdot \\ \cdot \qquad \left[\mathbf{F}_2(\mathbf{x}) \cdot \cos^2\frac{\theta}{2} + 2\mathbf{x}\mathbf{F}_1(\mathbf{x}) \cdot \frac{Q^2}{2M^2x^2} \sin^2\frac{\theta}{2}\right]$$

gdzie w zależności od spinu s partonów:

$$F_1(x) = 0$$
 dla $s = 0$
 $2xF_1(x) = F_2(x)$ dla $s = \frac{1}{2}$

Wyniki pomiaru $2xF_1/F_2$:

 $\Rightarrow \text{Partony mają spin } \frac{1}{2}$ (jak kwarki)

Kwarki a partony

Ładunki kwarków

W oddziaływaniach e^{\pm} , μ^{\pm} mierzymy:

$$F_2^{eN}(x) = \sum_q e_q^2 xq(x)$$

ale w oddziaływaniach neutrin:

$$F_2^{\nu N}(x) = \sum_q xq(x)$$

$$\Rightarrow F_2^{eN}(x) = \langle e_q^2 \rangle F_2^{\nu N}(x)$$

gdzie $\langle e_q^2 \rangle$ jest średnim kwadratem ładunku partonu.

Dla kwarków oczekujemy (dla A = 2Z)

$$\langle e_q^2 \rangle = \frac{5}{18}$$

Porównanie pomiarów $F_2^{\nu N}(x)$ i $\frac{18}{5}F_2^{eN}(x)$ (1972):

⇒ Partony mają ładunki takie jak kwarki...

Kwarki a partony

<u>Ładunki kwarków</u>

Ładunki partonów można też sprawdzić w pomiarze:

$$R^{e^+e^-} = \frac{\sigma(e^+e^- \to hadrony)}{\sigma^{th}(e^+e^- \to \mu^+\mu^-)} \approx 3 \cdot \sum_q e_q^2$$

Dla 3 kwarków (u,d,s) oczekujemy $R \approx 2$, dla $E_{CM} > 4 \text{ GeV} \Rightarrow R \approx \frac{10}{3}$ (u,d,s,c)

Po uwzględnieniu poprawek wyższych rzędów wyniki doświadczalne bardzo dobrze to potwierdzają.

Zgodność zawdzięczamy czynnikowi 3 we wzorze na R \Rightarrow liczba "kolorów" w jakich występują kwarki/partony

Funkcja struktury F₂

W modelu partonowym

$$F_2(x) = \sum_q e_q^2 x q(x)$$

- Największy wkład do $F_2(x)$ protonu \Rightarrow kwark u
 - największa gestość

$$u(x) \approx 2d(x) \gg s(x) \dots$$

• ładunek

$$|e_u^2| = 4|e_d^2|$$

If the Proton is:

Three valence quarks

Gluony

Jak dużą rolę odgrywają gluony ?

Możemy to sprawdzić licząc całkę po $x ext{ z } F_2(x)$. Gdyby cały pęd protonu niesiony był przez kwarki

$$\int dx F_2^{\nu N}(x) = \frac{18}{5} \int dx F_2^{eN}(x) = 1$$

Wyniki pomiarów:

Kwarki niosą jedynie około połowy pędu nukleonów \Rightarrow gluony są bardzo ważne !...

Ewolucja QCD

Gluony przenoszą oddziaływania między kwarkami, ale mogą także kreować dodatkowe pary kwarkantykwark (tzw. kwarki morza).

Im dokładniej przyglądamy się protonowi (wyższe Q²) tym więcej partonów (kwarków i gluonów) widzimy

<u>Łamanie skalowania</u>

Chromodynamika kwantowa (QCD) przewiduje, ze rozkłady kwarków (a więc i funkcje strukture) powinny zależeć od Q^2

Dla małych wartości x:

 $F_2(x, Q^2)$ rośnie z Q^2 .

Dla dużych wartości x: $F_2(x, Q^2)$ maleje z Q^2 .

⇒ skalowanie było szczęśliwym zbiegiem okoliczności !...

Pomiary na tarczach

W wiekszości eksperymentów mierzących strukturę protonu w doświadczeniach na tarczach rozpraszano μ lub ν_{μ} .

Długi tor mionu w detektorze \Rightarrow dobra identyfikacja, dokładny pomiar

Przypadek z eksperymentu NuTeV:

Produkty rozbicia protonu mają naogół małe energie (duży błąd pomiaru)

 \Rightarrow analiza oparta na pomiarze rozproszonego leptonu

Pomiary na tarczach

Doświadczenia z rozpraszaniem wiązek elektronów, mionów i neutrin na tarczach pozwoliły na dokładny pomiar rozkładów kwarków w protonie w obszarze:

> $Q^2 < 200 \ GeV^2$ x > 0.001

Dolne ograniczenie na x wynika z warunku $Q^2 > 0.3 \ GeV^2$. Dla mniejszych wartości Q^2 model partonowy załamuje się.

HERA

Projekt HERA

Badanie struktury protonu w obszarze:

- bardzo dużych wartości Q^2 : $Q^2 \sim 10^4 GeV^2$
- oraz bardzo małych wartości x: $x \sim 10^{-4}$

Wiązki przeciwbieżne elektron(pozyton)-proton:

 $E_p \leq 920 \ GeV$ $E_e \approx 27 \ GeV$ $s = 4E_pE_e \approx 10^5 \ GeV^2$ $\sqrt{s} \approx 318 \ GeV$

Dostępna energia o rząd wielkości większa niż w doświadczeniach na tarczy...

<u>Obszar badań</u>

Projekt **HERA** umożliwił rozszerzenie dostępnego w pomiarach NC DIS obszaru kinematycznego o dwa rzędy wielkości w Q^2 i x.

Oddziaływania $p\bar{p}$ w Tevatronie: nie mierzymy bezpośrednio rozkładów partonów, ale możemy je testować...

Kinematyka

Poprzednie definicje zmiennych x i y były x - ułamek czt słuszne tylko w układzie spoczywającego przez parton protonu.

W HERA

zderzenia wiązek przeciwbieżnych

x - ułamek czteropędu protonu niesiony
 przez parton

$$x = \frac{-q^2}{2pq} = \frac{Q^2}{2pq}$$
$$y = \frac{qp}{kp}$$
$$Q^2 = x y s \qquad s \approx 2 k p$$

W układzie spoczywającego protonu: $p^{\mu} = (M, 0, 0, 0)$

⇒ otrzymujemy te same wyrażenia co poprzednio

Hardonizacja

W modelu kwarkowo-partonowym (QPM) rozproszeniu ulega elektron i pojedyńczy kwark. Reszta kwarków z protonu kontynuuje swój 'lot' jako tzw. "remnant" (pozostałości) Pojedyńczych kwarków nigdy nie obserwujemy. Oddziaływania silne prowadzą do tzw. hadronizacji: powstają wtórne pary $q\bar{q}$ i kwark zamienia się w jet (strugę) cząstek (głównie hadronów):

Przypadek symulowany programem PYTHIA

Przypadek NC DIS Ekspertment ZEUS

Rekonstrukcja przypadków

Pomiar w detektorze

W przypadkach NC DIS w detektorze mierzymy:

• elektron o energii E'_e rozproszony pod kątem θ

 \Rightarrow możemy wyznaczyć efektywny kąt rozproszenia γ i energię E_q jetu \Rightarrow partonu

Chcemy wyznaczyć **dwie** zmienne, np. $x i Q^2$ (trzecią zmienną mamy z relacji: $Q^2 = xys$) Mamy **cztery** wielkości mierzone: E'_e , θ , $E_q i \gamma \Rightarrow$ mamy dużą swobodę wyboru metody Teoretycznie (nieskończenie dokładny pomiar) wszystkie metody są równoważne. Efekty doświadczalne (błędy pomiarowe) powodują jednak znaczne różnice w dokładności wyznaczenia x, y i Q^2 różnymi metodami \Rightarrow wybór zależy od eksperymentu...

 E_h, \bar{p}_h

Wyznaczanie funkcji struktury

Przekrój czynny

Funkcję struktury $F_2(x, Q^2)$ wyznaczamy bezpośrednio z pomiaru różniczkowego przekroju czynnego na NC DIS:

$$\frac{d^2\sigma}{dx \ dQ^2} = \frac{4\pi\alpha^2}{xQ^4} (1 - y + \frac{y^2}{2}) \ F_2(x, Q^2) \ (1 + \delta_L + \delta_Z + \delta_{rad})$$

Wyznaczane teoretycznie poprawki pochodzą od:

- δ_L tzw. podłużnej funkcji struktury F_L (wkład gluonów powoduje, że $F_L \equiv F_2 - 2xF_1 \neq 0$)
- δ_Z wymiany bozonu Z° (istotne tylko dla bardzo dużych Q^2)
- δ_{rad} procesów radiacyjnych (poprawki radiacyjne; emisja γ przez elektron przed lub po zderzeniu)

Wyznaczanie funkcji struktury

Przekrój czynny

Różniczkowy przekrój czynny wyznaczamy mierząc liczbę przypadków zrekonstruowanych w przedziałach x i Q^2 :

$$\Delta N^{\left(x \pm \frac{\Delta x}{2}, Q^2 \pm \frac{\Delta Q^2}{2}\right)} = \frac{d^2 \sigma}{dx \ dQ^2} \cdot \Delta x \cdot \Delta Q^2 \cdot \mathcal{L}_{int} \cdot \mathcal{E} \cdot \mathcal{A}$$

gdzie:

- \mathcal{L}_{int} scałkowana świetlność
- *E* efektywność selekcji przypadków
- *A* poprawka związana z niedokładnością pomiaru ("przesypywanie" przypadków pomiędzy przedziałami)

Wykład IV

Wyznaczanie funkcji struktury

Liczba mierzonych przypadków decyduje o błędzie statystycznym wyznaczonych wartości $F_2(x, Q^2)$:

$$\frac{\sigma_{F_2}^{stat}}{F_2} = \frac{1}{\sqrt{\Delta N}}$$

Błędy statystyczne dominują przy dużych Q^2 , przy małych Q^2 są zaniedbywalne.

Błąd systematyczny pomiaru wynika z niepewności:

- poprawek teoretycznych δ_L , δ_Z i δ_{rad}
- pomiaru świetności *L_{int}*
- wyznaczenia poprawek *E* i *A* (niepewności związane z symulacją Monte Carlo badanego procesu i działania detektora)

Błędy systematyczne dominują przy małych Q^2 .

Na ogół są na poziomie kilku % (obecne pomiary w HERA)

